The Impacts of Regime Shift in Summer Arctic Oscillation on Precipitation in East Asia
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Methods
3. Impacts of AO on Precipitation in East Asia before and after Mid-1980s
3.1. Interdecadal Changes in AO in the North Atlantic
3.2. Impacts of AO on Precipitation in East Asia
4. The Mechanism of AO Affecting Summer Precipitation in East Asia
4.1. Geopotential Height
4.2. Water Vapor Transport
4.3. Wave Activity Flux
5. Summary and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wallace, J.M.; Gutzler, D.S. Teleconnections in the Geopotential Height Field during the Northern Hemisphere Winter. Mon. Weather Rev. 1981, 109, 784–812. [Google Scholar] [CrossRef]
- Thompson, D.W.J.; Wallace, J.M. The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett. 1998, 25, 1297–1300. [Google Scholar] [CrossRef]
- Thompson, D.W.J.; Wallace, J.M. Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Clim. 2000, 13, 1000–1016. [Google Scholar] [CrossRef]
- Li, J.; Wang, J.X.L. A modified zonal index and its physical sense. Geophys. Res. Lett. 2003, 30, 1632. [Google Scholar] [CrossRef]
- Hurrell, J.W. Decadal Trends in the North Atlantic Oscillation. Science 1995, 269, 676–679. [Google Scholar] [CrossRef] [PubMed]
- Gong, D.; Wang, S.; Zhu, J. East Asian Winter Monsoon and Arctic Oscillation. Geophys. Res. Lett. 2001, 28, 2073–2076. [Google Scholar] [CrossRef]
- Gong, D.; Ho, C.H. Arctic Oscillation signals in the East Asian summer monsoon. J. Geophys. Res. 2003, 108, 4066. [Google Scholar] [CrossRef]
- Hurrell, J.W.; Kushnir, Y.; Ottersen, G.; Visbeck, M. An overview of the North Atlantic Oscillation. Geophys. Monogr. Ser. 2003, 134, 1–35. [Google Scholar] [CrossRef]
- Jeong, J.H.; Ho, C.H. Changes in occurrence of cold surges over east Asia in association with Arctic Oscillation. Geophys. Res. Lett. 2005, 32, L14704. [Google Scholar] [CrossRef]
- Yan, H.; Wan, Y.; Cheng, J. Interannual and interdecadal variations in atmospheric circulation factors and rainfall in China and their relationship. Acta Meteorol. Sin. 2005, 19, 253–261. [Google Scholar]
- Shi, N.; Bueh, C. Two types of Arctic Oscillation and their associated dynamic features. Atmos. Ocean. Sci. Lett. 2011, 4, 287–292. [Google Scholar] [CrossRef]
- Kim, H.J.; Ahn, J.B. Possible impact of the autumnal North Pacific SST and November AO on the East Asian winter temperature. J. Geophys. Res. 2012, 117, D12104. [Google Scholar] [CrossRef]
- Sun, J.; Wang, H. Changes of the connection between the summer North Atlantic Oscillation and the East Asian summer rainfall. J. Geophys. Res. 2012, 117, D08110. [Google Scholar] [CrossRef]
- Cui, X.; Gao, Y.; Gong, D.; Guo, D.; Furevik, T. Teleconnection between winter Arctic Oscillation and Southeast Asian summer monsoon in the pre-industry simulation of a coupled climate model. Atmos. Ocean. Sci. Lett. 2013, 6, 349–354. [Google Scholar] [CrossRef]
- Xue, F.; Sun, D.; Zhou, T. Interdecadal and interannual variabilities of the Antarctic Oscillation simulated by CAM3. Atmos. Ocean. Sci. Lett. 2014, 7, 515–520. [Google Scholar] [CrossRef]
- Wan, J.; Li, S. Arctic Oscillation responses to black carbon aerosols emitted from major regions. Atmos. Ocean. Sci. Lett. 2015, 8, 226–232. [Google Scholar] [CrossRef]
- Zuo, J.; Ren, H.; Li, W. Contrasting Impacts of the Arctic Oscillation on Surface Air Temperature Anomalies in Southern China between Early and Mid-Late Winter. J. Clim. 2015, 28, 4015–4026. [Google Scholar] [CrossRef]
- Chen, S.; Song, L. Recent Strengthened Impact of the Winter Arctic Oscillation on the Southeast Asian Surface Air Temperature Variation. Atmosphere 2019, 10, 164. [Google Scholar] [CrossRef]
- Wang, L.; Gong, H.; Lan, X. Interdecadal variation of the Arctic Oscillation and its influence on climate. Trans. Atmos. Sci. 2021, 44, 50–60. (In Chinese) [Google Scholar] [CrossRef]
- Zhu, X.; Xu, X.; Jia, G. Asymmetrical trends of burned area between eastern and western Siberia regulated by atmospheric oscillation. Geophys. Res. Lett. 2021, 48, e2021GL096095. [Google Scholar] [CrossRef]
- Zhang, S.; Gan, T.; Bush, A.; Liu, J.; Zolina, O.; Gelfan, A. Changes of the streamflow of northern river basins of Siberia and their teleconnections to climate patterns. Int. J. Climatol. 2023, 43, 6114–6130. [Google Scholar] [CrossRef]
- Overland, J.E.; Wang, M. Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus A Dyn. Meteorol. Oceanogr. 2010, 62, 1–9. [Google Scholar] [CrossRef]
- Cohen, J.L.; Furtado, J.C.; Barlow, M.A.; Alexeev, V.A.; Cherry, J.E. Arctic warming, increasing snow cover and widespread boreal winter cooling. Environ. Res. Lett. 2012, 7, 014007. [Google Scholar] [CrossRef]
- Liu, J.; Curry, J.A.; Wang, H.; Song, M.; Horton, R.M. Impact of declining Arctic Sea ice on winter snowfall. Proc. Natl. Acad. Sci. USA 2012, 109, 4074–4079. [Google Scholar] [CrossRef] [PubMed]
- Wen, M.; Yang, S.; Kumar, A.; Zhang, P. An Analysis of the Large-Scale Climate Anomalies Associated with the Snowstorms Affecting China in January 2008. Mon. Weather Rev. 2009, 137, 1111–1131. [Google Scholar] [CrossRef]
- Suo, M.; Ding, Y. The structures and evolutions of the wintertime southern branch trough in the subtropical westerlies. Chin. J. Atmos. Sci. 2009, 33, 425–442. (In Chinese) [Google Scholar]
- Zhang, Z.; Gong, D.; Hu, M.; Guo, D.; He, X.; Lei, Y. Anomalous winter temperature and precipitation events in southern China. J. Geogr. Sci. 2009, 19, 471–488. [Google Scholar] [CrossRef]
- Mao, R.; Gong, D.; Yang, J.; Bao, J. Linkage between the Arctic Oscillation and winter extreme precipitation over central-southern China. Clim. Res. 2011, 50, 187–201. [Google Scholar] [CrossRef]
- Gu, W.; Li, C.; Li, W.; Zhou, W.; Chan, J.C.L. Interdecadal unstationary relationship between NAO and east China’s summer precipitation patterns. Geophys. Res. Lett. 2009, 36, L13702. [Google Scholar] [CrossRef]
- Gong, D.; Wang, S. Influence of Arctic Oscillation on winter climate over China. J. Geogr. Sci. 2003, 13, 208–216. [Google Scholar] [CrossRef]
- Xu, H.; Li, J.; Feng, J.; Mao, J. The asymmetric relationship between the winter NAO and the precipitation in Southwest China. Acta Meteorol. Sin. 2012, 70, 1276–1291. (In Chinese) [Google Scholar] [CrossRef]
- Yang, S.; Lau, K.M.; Yoo, S.H.; Kinter, J.L.; Miyakoda, K.; Ho, C.H. Upstream Subtropical Signals Preceding the Asian Summer Monsoon Circulation. J. Clim. 2004, 17, 4213–4229. [Google Scholar] [CrossRef]
- Wu, B.; Wang, J. Possible impacts of winter Arctic Oscillation on Siberian high, the East Asian winter monsoon and sea-ice extent. Adv. Atmos. Sci. 2002, 19, 297–320. [Google Scholar] [CrossRef]
- Chen, S.; Chen, W. Distinctive impact of spring AO on the succedent winter El Niño event: Sensitivity to AO’s North Pacific component. Clim. Dyn. 2022, 58, 235–255. [Google Scholar] [CrossRef]
- Cai, Q.; Wang, J.; Beletsky, D.; Overland, J.; Ikeda, M.; Wan, L. Accelerated decline of summer Arctic sea ice during 1850–2017 and the amplified Arctic warming during the recent decades. Environ. Res. Lett. 2021, 16, 034015. [Google Scholar] [CrossRef]
- Cai, Q.; Beletsky, D.; Wang, J.; Lei, R. Interannual and Decadal Variability of Arctic Summer Sea Ice Associated with Atmospheric Teleconnection Patterns during 1850–2017. J. Clim. 2021, 34, 9931–9955. [Google Scholar] [CrossRef]
- Papritz, L. Arctic Lower-Tropospheric Warm and Cold Extremes: Horizontal and Vertical Transport, Diabatic Processes, and Linkage to Synoptic Circulation Features. J. Clim. 2020, 33, 993–1016. [Google Scholar] [CrossRef]
- Chen, W.; Zhou, Q. Modulation of the Arctic Oscillation and the East Asian winter climate relationships by the 11-year solar cycle. Adv. Atmos. Sci. 2012, 29, 217–226. [Google Scholar] [CrossRef]
- Li, F.; Wang, H.; Gao, Y. On the Strengthened Relationship between the East Asian Winter Monsoon and Arctic Oscillation: A Comparison of 1950–70 and 1983–2012. J. Clim. 2014, 27, 5075–5091. [Google Scholar] [CrossRef]
- Li, F.; Wang, H.; Liu, J. The strengthening relationship between Arctic Oscillation and ENSO after the mid-1990s. Int. J. Climatol. 2014, 34, 2515–2521. [Google Scholar] [CrossRef]
- Huang, W.; Wang, B.; Wright, J.S.; Chen, R. On the Non-Stationary Relationship between the Siberian High and Arctic Oscillation. PLoS ONE 2016, 11, e0158122. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; He, S.; Li, F.; Wang, H.; Zhu, Y. Interdecadal change between the Arctic Oscillation and East Asian climate during 1900–2015 winters. Int. J. Climatol. 2017, 37, 4791–4802. [Google Scholar] [CrossRef]
- Gong, H.; Wang, L.; Chen, W.; Nath, D. Multidecadal Fluctuation of the Wintertime Arctic Oscillation Pattern and Its Implication. J. Clim. 2018, 31, 5595–5608. [Google Scholar] [CrossRef]
- Qiao, S.; Hu, P.; Feng, T.; Cheng, J.; Han, Z.; Gong, Z.; Zhi, R.; Feng, G. Enhancement of the relationship between the winter Arctic oscillation and the following summer circulation anomalies over central East Asia since the early 1990s. Clim. Dyn. 2018, 50, 3485–3503. [Google Scholar] [CrossRef]
- Gong, H.; Wang, L.; Chen, W. Multidecadal Changes in the Influence of the Arctic Oscillation on the East Asian Surface Air Temperature in Boreal Winter. Atmosphere 2019, 10, 757. [Google Scholar] [CrossRef]
- Shen, B.; Lin, Z.; Lu, R.; Lian, Y. Circulation anomalies associated with interannual variation of early- and late-summer precipitation in Northeast China. Sci China Earth Sci. 2011, 54, 1095–1104. [Google Scholar] [CrossRef]
- Zhou, J.; Zhao, J.; He, W.; Gong, Z. Spatiotemporal characteristics and water budget of water cycle elements in different seasons in northeast China. Chin. Phys. B 2015, 24, 049203. [Google Scholar] [CrossRef]
- Kistler, R.; Kalnay, E.; Collins, W.; Saha, S.; White, G.; Woollen, J.; Chelliah, M.; Ebisuzaki, W.; Kanamitsu, M.; Kousky, V.; et al. The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Am. Meteor. Soc. 2001, 82, 247–268. [Google Scholar] [CrossRef]
- Compo, G.P.; Whitaker, J.S.; Sardeshmukh, P.D. Feasibility of a 100-Year Reanalysis Using Only Surface Pressure Data. Bull. Am. Meteorol. Soc. 2006, 87, 175–190. [Google Scholar] [CrossRef]
- Schneider, U.; Becker, A.; Finger, P.; Meyer-Christoffer, A.; Ziese, M.; Rudolf, B. GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol. 2014, 115, 15–40. [Google Scholar] [CrossRef]
- Matsuura, K.; Willmott, C.J. Terrestrial Air Temperature: 1900–2008 Gridded Monthly Time Series (Version 4.01); University of Delaware Department of Geography Center: Newark, DE, USA, 2009. Available online: https://www.esrl.noaa.gov/psd/data/gridded/data.UDel_AirT_Precip.html (accessed on 24 December 2022).
- Huang, B.; Thorne, P.W.; Banzon, V.F.; Boyer, T.; Chepurin, G.; Lawrimore, J.H.; Menne, M.J.; Smith, T.M.; Vose, R.S.; Zhang, H.-M. Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Clim. 2017, 30, 8179–8205. [Google Scholar] [CrossRef]
- North, G.R.; Bell, T.L.; Cahalan, R.F.; Moeng, F.J. Sampling Errors in the Estimation of Empirical Orthogonal Functions. Mon. Weather Rev. 1982, 110, 699–706. [Google Scholar] [CrossRef]
- Takaya, K.; Nakamura, H. A Formulation of a Phase-Independent Wave-Activity Flux for Stationary and Migratory Quasigeostrophic Eddies on a Zonally Varying Basic Flow. J. Atmos. Sci. 2001, 58, 608–627. [Google Scholar] [CrossRef]
- Shaman, J. The Seasonal Effects of ENSO on European Precipitation: Observational Analysis. J. Clim. 2014, 27, 6423–6438. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, Z. Possible impacts of mega-El Niño/Southern Oscillation and Atlantic Multidecadal Oscillation on Eurasian heatwave frequency variability. Q. J. R. Meteorol. Soc. 2016, 142, 1647–1661. [Google Scholar] [CrossRef]
- Nuncio, M.; Chatterjee, S.; Satheesan, K.; Chenoli, S.N.; Subeesh, M.P. Temperature and precipitation during winter in NyÅlesund, Svalbard and possible tropical linkages. Tellus A Dyn. Meteorol. Oceanogr. 2020, 72, 1–15. [Google Scholar] [CrossRef]
- Yamagata, T.; Behera, S.K.; Luo, J.; Masson, S.; Jury, M.R.; Rao, S.A. Coupled Ocean-Atmosphere Variability in the Tropical Indian Ocean. Earth’s Clim. Ocean. Atmos. Interact. Geophys. Monogr. 2004, 147, 189–211. [Google Scholar] [CrossRef]
- Karagiannidis, A.F.; Bloutsos, A.A.; Maheras, P.; Sachsamanoglou, C. Some statistical characteristics of precipitation in Europe. Theor. Appl. Climatol. 2008, 91, 193–204. [Google Scholar] [CrossRef]
- Wang, J.; Gui, S.; Ma, A.; Yang, R.; Zhang, Q. Interdecadal Variability of Summer Precipitation Efficiency in East Asia. Adv. Meteorol. 2019, 2019, 3563024. [Google Scholar] [CrossRef]
- Wen, N.; Liu, Z.; Li, L. Direct ENSO impact on East Asian summer precipitation in the developing summer. Clim. Dyn. 2019, 52, 6799–6815. [Google Scholar] [CrossRef]
- Maialen, M.D.; Jorge, L.P.; Belén, R.F.; Losada, T. The stationarity of the ENSO teleconnection in European summer rainfall. Clim. Dyn. 2023, 61, 489–506. [Google Scholar] [CrossRef]
- Yan, L.; Li, G. Change in the Relationship between the Southern Subtropical Dipole Modes and the Southern Annular Mode in the Mid-1980s. J. Clim. 2015, 28, 9235–9249. [Google Scholar] [CrossRef]
- Hao, S.; Li, J.; Mao, J. Interannual relationship between summer North Atlantic Oscillation and subsequent November precipitation anomalies over Yunnan in Southwest China. J. Meteor. Res. 2022, 36, 718–732. [Google Scholar] [CrossRef]
- Li, C. Introduction to Climate Dynamics, 2nd ed.; China Meteorological Press: Beijing, China, 2000. (In Chinese) [Google Scholar]
- Hoskins, B.J.; Ambrizzi, T. Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci. 1993, 50, 1661–1671. [Google Scholar] [CrossRef]
- Takaya, K.; Nakamura, H. A formulation of a wave-activity flux for stationary Rossby waves on a zonally varying basic flow. Geophys. Res. Lett. 1997, 24, 2985–2988. [Google Scholar] [CrossRef]
- Miao, R.; Wen, M.; Zhang, R.; Li, L. The influence of wave trains in mid-high latitudes on persistent heavy rain during the first rainy season over South China. Clim. Dyn. 2019, 53, 2949–2968. [Google Scholar] [CrossRef]
- Deng, K.; Yang, S.; Ting, M.; Lin, A.; Wang, Z. An intensified mode of variability modulating the summer heat waves in eastern Europe and northern China. Geophys. Res. Lett. 2018, 45, 361–369. [Google Scholar] [CrossRef]
- Chen, S.; Wu, R.; Chen, W.; Hu, K.; Yu, B. Structure and dynamics of a springtime atmospheric wave train over the North Atlantic and Eurasia. Clim. Dyn. 2020, 54, 5111–5126. [Google Scholar] [CrossRef]
- Watanabe, M. Asian Jet Waveguide and a Downstream Extension of the North Atlantic Oscillation. J. Clim. 2004, 17, 4674–4691. [Google Scholar] [CrossRef]
- Ding, Q.; Wang, B. Circumglobal Teleconnection in the Northern Hemisphere Summer. J. Clim. 2005, 18, 3483–3505. [Google Scholar] [CrossRef]
- Sung, M.K.; Kwon, W.T.; Baek, H.J.; Boo, K.O.; Lim, G.H.; Kug, J.S. A possible impact of the North Atlantic Oscillation on the east Asian summer monsoon precipitation. Geophys. Res. Lett. 2006, 33, L21713. [Google Scholar] [CrossRef]
- Linderholm, H.W.; Ou, T.; Jeong, J.H.; Folland, C.K.; Gong, D.; Liu, H.; Liu, Y.; Chen, D. Interannual teleconnections between the summer North Atlantic Oscillation and the East Asian summer monsoon. J. Geophys. Res. 2011, 116, D13107. [Google Scholar] [CrossRef]
- Linderholm, H.W.; Seim, A.; Ou, T.; Jeong, J.H.; Liu, Y.; Wang, X.; Bao, G.; Folland, C.K. Exploring teleconnections between the summer NAO (SNAO) and climate in East Asia over the last four centuries—A tree-ring perspective. Dendrochronologia 2013, 31, 297–310. [Google Scholar] [CrossRef]
- Bollasina, M.A.; Messori, G. On the link between the subseasonal evolution of the North Atlantic Oscillation and East Asian climate. Clim. Dyn. 2018, 51, 3537–3557. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, Z.; Lau, N.C.; Duan, A. Teleconnection between Summer NAO and East China Rainfall Variations: A Bridge Effect of the Tibetan Plateau. J. Clim. 2018, 31, 6433–6444. [Google Scholar] [CrossRef]
- Wu, X.; Hao, Z.; Hao, F.; Zhang, X.; Singh, V.P.; Sun, C. Influence of large-scale circulation patterns on compound dry and hot events in China. J. Geophys. Res. Atmos. 2021, 126, e2020JD033918. [Google Scholar] [CrossRef]
- Lu, R.Y.; Oh, J.H.; Kim, B.J. A teleconnection pattern in upper-level meridional wind over the North African and Eurasian continent in summer. Tellus A Dyn. Meteorol. Oceanogr. 2002, 54, 44–55. [Google Scholar] [CrossRef]
- Enomoto, T.; Hoskins, B.J.; Matsuda, Y. The formation mechanism of the Bonin high in August. Q. J. R. Meteorol. Soc. 2003, 129, 157–178. [Google Scholar] [CrossRef]
- Jin, D.; Guan, Z. Summer Rainfall Seesaw between Hetao and the Middle and Lower Reaches of the Yangtze River and Its Relationship with the North Atlantic Oscillation. J. Clim. 2017, 30, 6629–6643. [Google Scholar] [CrossRef]
- Zhou, F.; Zhang, R.; Han, J. Relationship between the Circumglobal Teleconnection and Silk Road Pattern over Eurasian continent. Sci. Bull. 2019, 64, 374–376. [Google Scholar] [CrossRef]
- Yan, M.; Liu, J. Physical processes of cooling and mega-drought during the 4.2 ka BP event: Results from TraCE-21ka simulations. Clim. Past 2019, 15, 265–277. [Google Scholar] [CrossRef]
- Shang, W.; Duan, K.; Li, S.; Ren, X.; Haung, B. Simulation of the dipole pattern of summer precipitation over the Tibetan Plateau by CMIP6 models. Environ. Res. Lett. 2021, 16, 014047. [Google Scholar] [CrossRef]
- Hong, X.; Lu, R.; Chen, S.; Li, S. The Relationship between the North Atlantic Oscillation and the Silk Road Pattern in Summer. J. Clim. 2022, 35, 6691–6702. [Google Scholar] [CrossRef]
- Saeed, S.; Müller, W.A.; Hagemann, S.; Jacob, D. Circumglobal wave train and the summer monsoon over northwestern India and Pakistan: The explicit role of the surface heat low. Clim. Dyn. 2011, 37, 1045–1060. [Google Scholar] [CrossRef]
- Wu, B.; Lin, J.; Zhou, T. Interdecadal circumglobal teleconnection pattern during boreal summer. Atmos. Sci. Lett. 2016, 17, 446–452. [Google Scholar] [CrossRef]
- Sun, X.; Li, S.; Hong, X.; Lu, R. Simulated influence of the Atlantic Multidecadal Oscillation on summer Eurasian nonuniform warming since the mid-1990s. Adv. Atmos. Sci. 2019, 36, 811–822. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, J.; Zhao, S.; Chen, H. Impact of the eastward shift in the negative—Phase NAO on extreme drought over northern China in summer. J. Geophys. Res. Atmos. 2020, 125, e2019JD032019. [Google Scholar] [CrossRef]
- Limpasuvan, V.; Hartmann, D.L. Wave-Maintained Annular Modes of Climate Variability. J. Clim. 2000, 13, 4414–4429. [Google Scholar] [CrossRef]
- Saunders, M.A.; Qian, B. Seasonal predictability of the winter NAO from north Atlantic sea surface temperatures. Geophys. Res. Lett. 2002, 29, 2049. [Google Scholar] [CrossRef]
- Rao, J.; Ren, R. Varying stratospheric responses to tropical Atlantic SST forcing from early to late winter. Clim. Dyn. 2018, 51, 2079–2096. [Google Scholar] [CrossRef]
- Vihma, T. Effects of Arctic Sea Ice Decline on Weather and Climate: A Review. Surv. Geophys. 2014, 35, 1175–1214. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, H.; Wang, H.; Sun, J.; Li, H.; Qiu, Y. Modulation of the Kara Sea Ice Variation on the Ice Freeze-Up Time in Lake Qinghai. J. Clim. 2019, 32, 2553–2568. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, L.; Gan, B.; Wang, H.; Li, X.; Wu, L. Observed contribution of Barents-Kara sea ice loss to Warm Arctic-Cold Eurasia anomalies by submonthly processes in winter. Environ. Res. Lett. 2023, 18, 034019. [Google Scholar] [CrossRef]
- Tabari, H. Climate change impact on flood and extreme precipitation increases with water availability. Sci. Rep. 2020, 10, 13768. [Google Scholar] [CrossRef]
- Zhang, W.; Furtado, K.; Wu, P.; Zhou, T.; Chadwick, R.; Marzin, C.; Rostron, J.; Sexton, D. Increasing precipitation variability on daily-to-multiyear time scales in a warmer world. Sci. Adv. 2021, 7, eabf8021. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Cao, Y.; Shi, J. Spatial variation of the Arctic Oscillation and its long-term change. Tellus A Dyn. Meteorol. Oceanogr. 2010, 62, 661–672. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, X.; Yan, L.; Xu, J.; Zheng, S. The Impacts of Regime Shift in Summer Arctic Oscillation on Precipitation in East Asia. Atmosphere 2024, 15, 283. https://doi.org/10.3390/atmos15030283
Zou X, Yan L, Xu J, Zheng S. The Impacts of Regime Shift in Summer Arctic Oscillation on Precipitation in East Asia. Atmosphere. 2024; 15(3):283. https://doi.org/10.3390/atmos15030283
Chicago/Turabian StyleZou, Xuxin, Li Yan, Jianjun Xu, and Shaojun Zheng. 2024. "The Impacts of Regime Shift in Summer Arctic Oscillation on Precipitation in East Asia" Atmosphere 15, no. 3: 283. https://doi.org/10.3390/atmos15030283
APA StyleZou, X., Yan, L., Xu, J., & Zheng, S. (2024). The Impacts of Regime Shift in Summer Arctic Oscillation on Precipitation in East Asia. Atmosphere, 15(3), 283. https://doi.org/10.3390/atmos15030283