Characterization and Sources of VOCs during PM2.5 Pollution Periods in a Typical City of the Yangtze River Delta
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Work
2.2. Laboratory Analysis
2.3. Quality Control and Quality Assurance
2.4. OH Radical Loss Rate (LOH)
2.5. Secondary Organic Aerosol Formation Potential (SOAFP) Calculation
2.6. Positive Matrix Factorization (PMF) Model
3. Results and Discussion
3.1. Concentration Characteristics and Chemical Composition of VOCs
Percentage (%) | |||||||
---|---|---|---|---|---|---|---|
City | Sampling Time | VOCs (ppb) | Alkanes | Alkenes | Alkyne | Aromatics | Reference |
Beijing | October–November 2014 | 23.4 | 54.0% | 12.0% | 13.0% | 21.0% | [50] |
Tianjin | November 2018–March 2019 | 30.6 | 56.5% | 21.2% | 9.5% | 12.7% | [58] |
Jinan | November–December 2021 | 23.9 | 59.6% | 17.2% | 10.7% | 12.5% | [51] |
Shanghai | December 2019 | 24.5 | 69.8% | 11.8% | 7.4% | 11.0% | [10] |
Nanjing | December 2019–January 2020 | 38.7 | 63.5% | 23.5% | - * | 13.0% | [48] |
Hangzhou | January–February 2021 | 24.9 | 64.0% | 12.5% | 8.5% | 15.0% | [13] |
Wuhan | February 2021 | 21.2 | 62.9% | 18.2% | 11.9% | 7.0% | [11] |
Zhengzhou | December 2019 | 36.7 | 60.0% | 13.3% | 9.4% | 17.3% | [49] |
Guangzhou | January 2020 | 34.0 | 75.4% | 10.1% | 5.4% | 9.1% | [41] |
Hefei | August 2020 | 13.2 | 68.0% | 19.8% | 12.2% | [22] | |
Vancouver | 2012–2016 | 19.2 | 74.7% | 11.0% | 4.8% | 9.5% | [52] |
Seoul | January 2018–December 2019 | 45.7 | 66.3% | 13.3% | 3.0% | 17.3% | [54] |
Nagoya | December 2003–November 2004 | 28.6 | 57.6% | 17.0% | 6.7% | 18.8% | [53] |
Houston | August 2006–September 2006 | 30.5 | 77.0% | 13.6% | - * | 9.3% | [55] |
Hefei | December 2019 | 21.1 | 59.9% | 15.3% | 15.0% | 9.8% | This study |
3.2. Source Apportionment of VOCs
3.2.1. Diagnostic Ratios of VOCs
3.2.2. PMF Analysis
3.3. OH Loss Rate (LOH) and SOA Formation Potential
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mozaffar, A.; Zhang, Y.-L.; Fan, M.Y.; Cao, F.; Lin, Y.-C. Characteristics of summertime ambient VOCs and their contributions to O3 and SOA formation in a suburban area of Nanjing, China. Atmos. Res. 2020, 240, 104923. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Q.; Zheng, B.; Tong, D.; Lei, Y.; Liu, F.; Hong, C.P.; Kang, S.C.; Yan, L.; Zhang, Y.X.; et al. Persistent growth of anthropogenic non-methane volatile organic compound (NMVOC) emissions in China during 1990–2017: Drivers, speciation and ozone formation potential. Atmos. Chem. Phys. 2019, 19, 8897–8913. [Google Scholar] [CrossRef]
- Huang, R.J.; Zhang, Y.L.; Bozzetti, C.; Ho, K.F.; Cao, J.J.; Han, Y.M.; Daellenbach, K.R.; Slowik, J.G.; Platt, S.M.; Canonaco, F.; et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2014, 514, 218–222. [Google Scholar] [CrossRef]
- Guo, S.; Hu, M.; Zamora, M.L.; Peng, J.F.; Shang, D.; Zheng, J.; Du, Z.; Wu, Z.F.; Shao, M.; Zeng, L.M.; et al. Elucidating severe urban haze formation in China. Proc. Natl. Acad. Sci. USA 2014, 111, 17373–17378. [Google Scholar] [CrossRef]
- Sexton, K.; Adgate, J.L.; Ramachandran, G.; Pratt, G.C.; Mongin, S.J.; Stock, T.H.; Morandi, M.T. Comparison of personal, indoor, and outdoor exposures to hazardous air pollutants in three urban communities. Environ. Sci. Technol. 2004, 38, 423–430. [Google Scholar] [CrossRef]
- Guenther, A.B.; Jiang, X.; Heald, C.L.; Sakulyanontvittaya, T.; Duhl, T.; Emmons, L.K.; Wang, X. The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions. Geosci. Model Dev. 2012, 5, 1471–1492. [Google Scholar] [CrossRef]
- Watson, J.G.; Chow, J.C.; Fujita, E.M. Review of volatile organic compound source apportionment by chemical mass balance. Atmos. Environ. 2001, 35, 1567–1584. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Wang, X.M.; Zhang, Z.; Lu, S.J.; Shao, M.; Lee, F.S.C.; Yu, J.Z. Species profiles and normalized reactivity of volatile organic compounds from gasoline evaporation in China. Atmos. Environ. 2013, 79, 110–118. [Google Scholar] [CrossRef]
- Mozaffar, A.; Zhang, Y.-L. Atmospheric volatile organic compounds (VOCs) in China: A Review. Curr. Pollut. Rep. 2020, 6, 250–263. [Google Scholar] [CrossRef]
- Wang, S.Y.; Zhao, Y.L.; Han, Y.; Li, R.; Fu, H.B.; Gao, S.; Duan, Y.S.; Zhang, L.W.; Chen, J.M. Spatiotemporal variation, source and secondary transformation potential of volatile organic compounds (VOCs) during the winter days in Shanghai, China. Atmos. Environ. 2022, 286, 119203. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Li, F.; Cheng, Q.; Zhang, C.; Liu, Y.F.; Li, Q.J.; Yin, S.J.; Zhang, S.Q.; Liu, X.G. Characteristics and secondary transformation potential of volatile organic compounds in Wuhan, China. Atmos. Environ. 2023, 294, 119469. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, B.; Hua, J.; Yang, T.; Dai, Q.L.; Wu, J.H.; Feng, Y.C.; Hopke, P.K. Global review of source apportionment of volatile organic compounds based on highly time-resolved data from 2015 to 2021. Environ. Int. 2022, 165, 107330. [Google Scholar] [CrossRef] [PubMed]
- Li, B.W.; Ho, S.S.H.; Li, X.H.; Guo, L.Y.; Feng, R.; Fang, X.K. Pioneering observation of atmospheric volatile organic compounds in Hangzhou in eastern China and implications for upcoming 2022 Asian Games. J. Environ. Sci. 2023, 124, 723–734. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Xiao, S.X.; Wang, X.M.; Zhang, Y.L.; Pei, C.L.; Chen, D.H.; Jiang, M.; Liao, T. Volatile organic compounds monitored online at three photochemical assessment monitoring stations in the Pearl River Delta (PRD) Region during summer 2016: Sources and emission areas. Atmosphere 2021, 12, 327. [Google Scholar] [CrossRef]
- Guo, H.; Ling, Z.H.; Cheng, H.R.; Simpson, I.J.; Lyu, X.P.; Wang, X.M.; Shao, M.; Lu, H.X.; Ayoko, G.; Zhang, Y.L.; et al. Tropospheric volatile organic compounds in China. Sci. Total Environ. 2017, 574, 1021–1043. [Google Scholar] [CrossRef]
- An, J.Y.; Huang, Y.W.; Huang, C.; Wang, X.; Yan, R.S.; Wang, Q.; Wang, H.L.; Jing, S.A.; Zhang, Y.; Liu, Y.M.; et al. Emission inventory of air pollutants and chemical speciation for specific anthropogenic sources based on local measurements in the Yangtze River Delta region, China. Atmos. Meas. Tech. Phys. 2021, 21, 2003–2025. [Google Scholar] [CrossRef]
- GB 3095-2012; Ambient Air Quality Standards. Ministry of Environmental Protection of the People’s Republic of China: Beijing, China, 2012.
- Cao, J.H.; Kang, M.; Zhou, X.; Zhou, W.Z.; Lu, Y.; Shen, C.Y.; Huang, C.Q.; Chu, Y.N. Characteristics and source apportionment of volatile organic compounds in Hefei Science Dongpu Reservoir. J. Atmos. Environ. Opt. 2017, 12, 362–370. [Google Scholar]
- Hu, R.; Liu, G.; Zhang, H.; Xue, H.; Wang, X. Levels, characteristics and health risk assessment of VOCs in different functional zones of Hefei. Ecotoxicol. Environ. Saf. 2018, 160, 301–307. [Google Scholar] [CrossRef]
- Wang, X.; Liu, G.; Hu, R.; Zhang, H.; Zhang, M.; Zhang, F. Distribution, sources, and health risk assessment of volatile organic compounds in Hefei City. Arch. Environ. Contam. Toxicol. 2020, 78, 392–400. [Google Scholar] [CrossRef]
- Wang, S.B.; Liu, G.J.; Zhang, H.; Yi, M.J.; Liu, Y.; Hong, X.Y.; Bao, X. Insight into the environmental monitoring and source apportionment of volatile organic compounds (VOCs) in various functional areas. Air Qual. Atmos. Health 2021, 15, 1121–1131. [Google Scholar] [CrossRef]
- Yu, H.; Liu, Q.Q.; Wei, N.N.; Hu, M.F.; Xu, X.Z.; Wang, S.; Zhou, J.C.; Zhao, W.X.; Zhang, W.J. Investigation of summertime ozone formation and sources of volatile organic compounds in the suburb area of Hefei: A case study of 2020. Atmosphere 2023, 14, 740. [Google Scholar] [CrossRef]
- Hu, F.; Xie, P.H.; Tian, X.; Xu, J.; Li, A.; Lupaşcu, A.; Butler, T.; Hu, Z.; Lv, Y.S.; Zhang, Z.D.; et al. Integrated analysis of the transport process and source attribution of an extreme ozone pollution event in Hefei at different vertical heights: A case of study. Sci. Total Environ. 2024, 906, 167237. [Google Scholar] [CrossRef] [PubMed]
- Shan, C.G.; Wang, W.; Liu, C.; Sun, Y.W.; Hu, Q.H.; Xu, X.W.; Tian, Y.; Zhang, H.F.; Morino, I.; Griffith, D.W.T.; et al. Regional CO emission estimated from ground-based remote sensing at Hefei site, China. Atmos. Res. 2019, 222, 25–35. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Guo, H.; Wang, X.M.; Simpson, I.J.; Barletta, B.; Blake, D.R.; Meinardi, S.; Rowland, F.S.; Cheng, H.R.; Saunders, S.M.; et al. Emission patterns and spatiotemporal variations of halocarbons in the Pearl River Delta region, southern China. J. Geophys. Res. Atmos. 2010, 115, D15. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Wang, X.M.; Blake, D.R.; Li, L.F.; Zhang, Z.; Wang, S.Y.; Guo, H.; Lee, F.S.C.; Gao, B.; Chan, L.Y.; et al. Aromatic hydrocarbons as ozone precursors before and after outbreak of the 2008 financial crisis in the Pearl River Delta region, south China. J. Geophys. Res. Atmos. 2012, 117, D15. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Wang, X.M.; Barletta, B.; Simpson, I.J.; Blake, D.R.; Fu, X.X.; Zhang, Z.; He, Q.F.; Liu, T.Y.; Zhao, X.Y.; et al. Source attributions of hazardous aromatic hydrocarbons in urban, suburban and rural areas in the Pearl River Delta (PRD) region. J. Hazard. Mater. 2013, 250–251, 403–411. [Google Scholar] [CrossRef]
- Atkinson, R.; Arey, J. Atmospheric degradation of volatile organic compounds. Chem. Rev. 2003, 103, 4605–4638. [Google Scholar] [CrossRef] [PubMed]
- Grosjean, D. In situ organic aerosol formation during a smog episode—Estimated production and chemical functionality. Atmos. Environ. Part A-Gen. Top. 1992, 26, 953–963. [Google Scholar] [CrossRef]
- Grosjean, D.; Seinfeld, J.H. Parameterization of the formation potential of secondary organic aerosols. Atmos. Environ. 1989, 23, 1733–1747. [Google Scholar] [CrossRef]
- Claeys, M.; Graham, B.; Vas, G.; Wang, W.; Vermeylen, R.; Pashynska, V.; Cafmeyer, J.; Guyon, P.; Andreae, M.O.; Artaxo, P.; et al. Formation of secondary organic aerosols through photooxidation of isoprene. Science 2004, 303, 1173–1176. [Google Scholar] [CrossRef]
- Bejan, I.G.; Olariu, R.-I.; Wiesen, P. Secondary organic aerosol formation from nitrophenols photolysis under atmospheric conditions. Atmosphere 2020, 11, 1346. [Google Scholar] [CrossRef]
- Schueneman, M.K.; Day, D.A.; Peng, Z.; Pagonis, D.; Jenks, O.J.; de Gouw, J.A.; Jimenez, J.L. Secondary organic aerosol formation from the OH oxidation of phenol, catechol, styrene, furfural, and methyl furfural. ACS Earth Space Chem. 2024, 8, 1179–1192. [Google Scholar] [CrossRef]
- Kroll, J.H.; Ng, N.L.; Murphy, S.M.; Flagan, R.C.; Seinfeld, J.H. Secondary organic aerosol formation from isoprene photooxidation under high-NOx conditions. Geophys. Res. Lett. 2005, 32, 18. [Google Scholar] [CrossRef]
- Martín-Reviejo, M.; Wirtz, K. Is benzene a precursor for secondary organic aerosol? Environ. Sci. Technol. 2005, 39, 1045–1054. [Google Scholar] [CrossRef]
- Lü, Z.-F.; Hao, J.-M.; Duan, J.-C.; Li, J.-H. Estimate of the formation potential of secondary organic aerosol in Beijing summertime. Huan Jing Ke Xue 2009, 30, 969–975. [Google Scholar]
- Paatero, P.; Tapper, U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 1994, 5, 111–126. [Google Scholar] [CrossRef]
- Hui, L.R.; Liu, X.G.; Tan, Q.W.; Feng, M.; An, J.L.; Qu, Y.; Zhang, Y.H.; Cheng, N.L. VOC characteristics, sources and contributions to SOA formation during haze events in Wuhan, Central China. Sci. Total Environ. 2019, 650, 2624–2639. [Google Scholar] [CrossRef]
- Nayebare, S.R.; Aburizaiza, O.S.; Siddique, A.; Carpenter, D.O.; Hussain, M.M.; Zeb, J.; Aburiziza, A.J.; Khwaja, H.A. Ambient air quality in the holy city of Makkah: A source apportionment with elemental enrichment factors (EFs) and factor analysis (PMF). Environ. Pollut. 2018, 243, 1791–1801. [Google Scholar] [CrossRef]
- Guan, Y.N.; Wang, L.; Wang, S.J.; Zhang, Y.H.; Xiao, J.Y.; Wang, X.L.; Duan, E.H.; Li, L.A. Temporal variations and source apportionment of volatile organic compounds at an urban site in Shijiazhuang, China. J. Environ. Sci. 2020, 97, 25–34. [Google Scholar] [CrossRef]
- Pei, C.L.; Yang, W.Q.; Zhang, Y.L.; Song, W.; Xiao, S.X.; Wang, J.; Zhang, J.P.; Zhang, T.; Chen, D.H.; Wang, Y.J.; et al. Decrease in ambient volatile organic compounds during the COVID-19 lockdown period in the Pearl River Delta region, south China. Sci. Total Environ. 2022, 823, 153720. [Google Scholar] [CrossRef]
- Liu, Y.; Shao, M.; Fu, L.L.; Lu, S.H.; Zeng, L.M.; Tang, D.G. Source profiles of volatile organic compounds (VOCs) measured in China: Part I. Atmos. Environ. 2008, 42, 6247–6260. [Google Scholar] [CrossRef]
- Li, B.W.; Ho, S.S.H.; Xue, Y.G.; Huang, Y.; Wang, L.Q.; Cheng, Y.; Dai, W.T.; Zhong, H.B.; Cao, J.J.; Lee, S.C. Characterizations of volatile organic compounds (VOCs) from vehicular emissions at roadside environment: The first comprehensive study in Northwestern China. Atmos. Environ. 2017, 161, 1–12. [Google Scholar]
- Yuan, B.; Shao, M.; Lu, S.H.; Wang, B. Source profiles of volatile organic compounds associated with solvent use in Beijing, China. Atmos. Environ. 2010, 44, 1919–1926. [Google Scholar] [CrossRef]
- Zheng, J.Y.; Yu, Y.F.; Mo, Z.W.; Zhang, Z.; Wang, X.M.; Yin, S.S.; Peng, K.; Yang, Y.; Feng, X.Q.; Cai, H.H. Industrial sector-based volatile organic compound (VOC) source profiles measured in manufacturing facilities in the Pearl River Delta, China. Sci. Total Environ. 2013, 456–457, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Shiu, C.-J.; Liu, S.C.; Chang, C.-C.; Chen, J.-P.; Chou, C.C.K.; Lin, C.-Y.; Young, C.-Y. Photochemical production of ozone and control strategy for Southern Taiwan. Atmos. Environ. 2007, 41, 9324–9340. [Google Scholar] [CrossRef]
- He, Z.R.; Wang, X.M.; Ling, Z.H.; Zhao, J.; Guo, H.; Shao, M.; Wang, Z. Contributions of different anthropogenic volatile organic compound sources to ozone formation at a receptor site in the Pearl River Delta region and its policy implications. Atmos. Meas. Tech. Phys. 2019, 19, 8801–8816. [Google Scholar]
- Wang, M.; Lu, S.H.; Shao, M.; Zeng, L.M.; Zheng, J.; Xie, F.J.; Lin, H.T.; Hu, K.; Lu, X.D. Impact of COVID-19 lockdown on ambient levels and sources of volatile organic compounds (VOCs) in Nanjing, China. Sci. Total Environ. 2021, 757, 143823. [Google Scholar] [CrossRef]
- Zhang, D.; He, B.; Yuan, M.H.; Yu, S.J.; Yin, S.S.; Zhang, R.Q. Characteristics, sources and health risks assessment of VOCs in Zhengzhou, China during haze pollution season. J. Environ. Sci. 2021, 108, 44–57. [Google Scholar]
- Yang, W.Q.; Zhang, Y.L.; Wang, X.M.; Li, S.; Zhu, M.; Yu, Q.Q.; Li, G.H.; Huang, Z.H.; Zhang, H.N.; Wu, Z.F.; et al. Volatile organic compounds at a rural site in Beijing: Influence of temporary emission control and wintertime heating. Atmos. Meas. Tech. Phys. 2018, 18, 12663–12682. [Google Scholar]
- Wang, B.L.; Liu, Z.G.; Li, Z.A.; Sun, Y.C.; Wang, C.; Zhu, C.Y.; Sun, L.; Yang, N.; Bai, G.; Fan, G.L.; et al. Characteristics, chemical transformation and source apportionment of volatile organic compounds (VOCs) during wintertime at a suburban site in a provincial capital city, east China. Atmos. Environ. 2023, 298, 119621. [Google Scholar]
- Xiong, Y.; Du, K. Source-resolved attribution of ground-level ozone formation potential from VOC emissions in Metropolitan Vancouver, BC. Sci. Total Environ. 2020, 721, 137698. [Google Scholar] [CrossRef] [PubMed]
- Saito, S.; Nagao, I.; Kanzawa, H. Characteristics of ambient C2–C11 non-methane hydrocarbons in metropolitan Nagoya, Japan. Atmos. Environ. 2009, 43, 4384–4395. [Google Scholar] [CrossRef]
- Kang, S.; Kim, J.-A.; Lee, M.; Park, J.; Jeon, E.; Shim, M.; Shin, Y. An analysis of the temporal variability in volatile organic compounds (VOCs) within megacity Seoul and an identification of their sources. Atmos. Pollut. Res. 2022, 13, 101338. [Google Scholar] [CrossRef]
- Leuchner, M.; Rappenglueck, B. VOC source-receptor relationships in Houston during TexAQS-II. Atmos. Environ. 2010, 44, 4056–4067. [Google Scholar] [CrossRef]
- Suthawaree, J.; Kato, S.; Okuzawa, K.; Kanaya, Y.; Pochanart, P.; Akimoto, H.; Wang, Z.; Kajii, Y. Measurements of volatile organic compounds in the middle of Central East China during Mount Tai Experiment 2006 (MTX2006): Observation of regional background and impact of biomass burning. Atmos. Meas. Tech. Phys. 2010, 10, 1269–1285. [Google Scholar] [CrossRef]
- Blake, D.R.; Rowland, F.S. Urban leakage of liquefied petroleum gas and its impact on Mexico-city air-quality. Science 1995, 269, 953–956. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Liu, B.S.; Li, Y.F.; Zhang, Y.F.; Bi, X.H.; Wu, J.H.; Song, C.B.; Dai, Q.L.; Han, Y.; Ren, G.; et al. Multi-scale volatile organic compound (VOC) source apportionment in Tianjin, China, using a receptor model coupled with 1-hr resolution data. Environ. Pollut. 2020, 265, 115023. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Y.L.; Wang, X.M.; Lu, S.J.; Huang, Z.H.; Huang, X.Y.; Yang, W.Q.; Wang, Y.S.; Zhang, Q. Spatiotemporal patterns and source implications of aromatic hydrocarbons at six rural sites across China’s developed coastal regions. J. Geophys. Res.-Atmos. 2016, 121, 6669–6687. [Google Scholar] [CrossRef]
- Cui, L.L.; Wu, D.; Wang, S.X.; Xu, Q.C.; Hu, R.L.; Hao, J.M. Measurement report: Ambient volatile organic compound (VOC) pollution in urban Beijing: Characteristics, sources, and implications for pollution control. Atmos. Meas. Tech. Phys. 2022, 22, 11931–11944. [Google Scholar] [CrossRef]
- Yao, Z.L.; Wu, B.B.; Shen, X.B.; Cao, X.Y.; Jiang, X.; Ye, Y.; He, K.B. On-road emission characteristics of VOCs from rural vehicles and their ozone formation potential in Beijing, China. Atmos. Environ. 2015, 105, 91–96. [Google Scholar] [CrossRef]
- Deng, C.X.; Jin, Y.J.; Zhang, M.; Liu, X.W.; Yu, Z.M. Emission characteristics of VOCs from on-road vehicles in an urban tunnel in Eastern China and predictions for 2017–2026. Aerosol Air Qual. Res. 2018, 18, 3025–3034. [Google Scholar] [CrossRef]
- Mo, Z.W.; Shao, M.; Lu, S.H.; Qu, H.; Zhou, M.Y.; Sun, J.; Gou, B. Process-specific emission characteristics of volatile organic compounds (VOCs) from petrochemical facilities in the Yangtze River Delta, China. Sci. Total Environ. 2015, 533, 422–431. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.W.; Deng, H.; Bai, Z.P.; Kong, S.F.; Wang, X.Y.; Hao, J.M.; Han, X.Y.; Ning, P. Emission and profile characteristic of volatile organic compounds emitted from coke production, iron smelt, heating station and power plant in Liaoning Province, China. Sci. Total Environ. 2015, 515–516, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Akagi, S.K.; Yokelson, R.J.; Wiedinmyer, C.; Alvarado, M.J.; Reid, J.S.; Karl, T.; Crounse, J.D.; Wennberg, P.O. Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos. Chem. Phys. 2011, 11, 4039–4072. [Google Scholar] [CrossRef]
- Wang, M.; Shao, M.; Lu, S.-H.; Yang, Y.-D.; Chen, W.-T. Evidence of coal combustion contribution to ambient VOCs during winter in Beijing. Chin. Chem. Lett. 2013, 24, 829–832. [Google Scholar] [CrossRef]
- Nelson, P.F.; Quigley, S.M. The meta, para-xylenes-ethylbenzene ratio—A technique for estimating hydrocarbon age in ambient atmospheres. Atmos. Environ. 1983, 17, 659–662. [Google Scholar] [CrossRef]
- Atkinson, R. Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 2000, 34, 2063–2101. [Google Scholar] [CrossRef]
- Hui, L.R.; Liu, X.G.; Tan, Q.W.; Feng, M.; An, J.L.; Qu, Y.; Zhang, Y.H.; Deng, Y.J.; Zhai, R.X.; Wang, Z. VOC characteristics, chemical reactivity and sources in urban Wuhan, central China. Atmos. Environ. 2020, 224, 117340. [Google Scholar] [CrossRef]
- Guan, Y.N.; Liu, X.J.; Zheng, Z.Y.; Dai, Y.W.; Du, G.M.; Han, J.; Hou, L.A.; Duan, E.H. Summer O3 pollution cycle characteristics and VOCs sources in a central city of Beijing-Tianjin-Hebei area, China. Environ. Pollut. 2023, 323, 121293. [Google Scholar] [CrossRef]
- de Gouw, J.A.; Cooper, O.R.; Warneke, C.; Hudson, P.K.; Fehsenfeld, F.C.; Holloway, J.S.; Hübler, G.; Nicks, D.K.; Nowak, J.B.; Parrish, D.D.; et al. Chemical composition of air masses transported from Asia to the U. S. West Coast during ITCT 2K2: Fossil fuel combustion versus biomass-burning signatures. J. Geophys. Res.-Atmos. 2004, 109, D23. [Google Scholar] [CrossRef]
- Lau, A.K.H.; Yuan, Z.B.; Yu, J.Z.; Louie, P.K.K. Source apportionment of ambient volatile organic compounds in Hong Kong. Sci. Total Environ. 2010, 408, 4138–4149. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Shao, M.; Liu, Y.; Lu, S.H.; Kuster, W.; Goldan, P.; Xie, S.D. Source apportionment of ambient volatile organic compounds in Beijing. Environ. Sci. Technol. 2007, 41, 4348–4353. [Google Scholar] [CrossRef]
- Guo, H.; Cheng, H.R.; Ling, Z.H.; Louie, P.K.K.; Ayoko, G.A. Which emission sources are responsible for the volatile organic compounds in the atmosphere of Pearl River Delta? J. Hazard. Mater. 2011, 188, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.Q.; Song, W.; Zhang, Y.L.; Mu, Z.B.; Pang, W.H.; Zhang, H.N.; Wang, X.M. Emissions of isoprenoids from dominant tree species in subtropical China. Front. For. Glob. Chang. 2022, 5, 1089676. [Google Scholar] [CrossRef]
- Deng, P. Study on Ozone Pollution Characteristics and Countermeasures in Hefei City. Master’s Thesis, Hefei University of Technology, Hefei, China, 2022. [Google Scholar]
- Han, Y.; Wang, T.; Li, R.; Fu, H.B.; Duan, Y.S.; Gao, S.; Zhang, L.W.; Chen, J.M. Measurement report: Volatile organic compound characteristics of the different land-use types in Shanghai: Spatiotemporal variation, source apportionment and impact on secondary formations of ozone and aerosol. Atmos. Meas. Tech. Phys. 2023, 23, 2877–2900. [Google Scholar] [CrossRef]
- Wang, X.; Han, Y.; Tu, X.; Shen, J.D.; Zhang, B.J.; Fu, H.B. Distribution of volatile organic compounds (VOCs) in the urban atmosphere of Hangzhou, East China: Temporal variation, source attribution, and impact on the secondary formations of ozone and aerosol. Front. Environ. Sci. 2024, 12, 1418948. [Google Scholar] [CrossRef]
- Fan, M.-Y.; Zhang, Y.-L.; Lin, Y.-C.; Li, L.; Xie, F.; Hu, J.; Mozaffar, A.; Cao, F. Source apportionments of atmospheric volatile organic compounds in Nanjing, China during high ozone pollution season. Chemosphere 2021, 263, 128025. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.Q.; Hu, K.; Zhang, K.; Zhu, S.N.; Wang, M.; Li, L. VOCs sources and roles in O3 formation in the central Yangtze River Delta region of China. Atmos. Environ. 2023, 302, 128025. [Google Scholar] [CrossRef]
- Xu, Z.N.; Zou, Q.L.; Jin, L.L.; Shen, Y.M.; Shen, J.S.; Xu, B.Y.; Qu, F.Q.; Zhang, F.; Xu, J.W.; Pei, X.Y.; et al. Characteristics and sources of ambient Volatile Organic Compounds (VOCs) at a regional background site, YRD region, China: Significant influence of solvent evaporation during hot months. Sci. Total Environ. 2023, 857, 159674. [Google Scholar] [CrossRef]
- Gao, K.; Zhang, H.; Liu, M.-D.; Zhao, X.-Y.; Wu, T.; Jia, Q.-N. Characteristics, Atmospheric reactivity, and source apportionment of ambient volatile organic compounds in Wuhu. Huan Jing Ke Xue 2020, 41, 4885–4894. [Google Scholar]
- Zhang, J.; Zhao, Y.; Zhao, Q.Y.; Shen, G.F.; Liu, Q.; Li, C.Y.; Zhou, D.R.; Wang, S.K. Characteristics and source apportionment of summertime volatile organic compounds in a fast developing city in the Yangtze River Delta, China. Atmosphere 2018, 9, 373. [Google Scholar] [CrossRef]
- Mo, Z.W.; Shao, M.; Lu, S.H.; Niu, H.; Zhou, M.Y.; Sun, J. Characterization of non-methane hydrocarbons and their sources in an industrialized coastal city, Yangtze River Delta, China. Sci. Total Environ. 2017, 593–594, 641–653. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.Q.; Yu, Q.Q.; Pei, C.L.; Liao, C.H.; Liu, J.J.; Zhang, J.P.; Zhang, Y.L.; Qiu, X.N.; Zhang, T.; Zhang, Y.B.; et al. Characteristics of volatile organic compounds in the Pearl River Delta Region, China: Chemical reactivity, source, and emission regions. Atmosphere 2022, 13, 9. [Google Scholar] [CrossRef]
- Shao, M.; Fu, L.L.; Liu, Y.; Lu, S.H.; Zhang, Y.H.; Tang, X.Y. Key reactive components and their sources of atmospheric volatile organic compounds in Beijing city. Sci. Sin. Terrae 2005, 35, 123–130. [Google Scholar]
- Shi, Y.-Q.; Zheng, K.-Y.; Ding, W.-T.; Liu, J.-P.; Chen, H.-G.; Gao, G.; Wang, L.-L.; Wang, N.; Ma, S.-L.; Zheng, Y.; et al. Pollution characteristics and source apportionment of atmospheric volatile organic compounds in winter in Kaifeng city. Huan Jing Ke Xue 2023, 44, 1933–1942. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Huang, X.; Xiao, S.; Zhang, Z.; Zhang, Y.; Wang, X. Characterization and Sources of VOCs during PM2.5 Pollution Periods in a Typical City of the Yangtze River Delta. Atmosphere 2024, 15, 1162. https://doi.org/10.3390/atmos15101162
Zhang D, Huang X, Xiao S, Zhang Z, Zhang Y, Wang X. Characterization and Sources of VOCs during PM2.5 Pollution Periods in a Typical City of the Yangtze River Delta. Atmosphere. 2024; 15(10):1162. https://doi.org/10.3390/atmos15101162
Chicago/Turabian StyleZhang, Dan, Xiaoqing Huang, Shaoxuan Xiao, Zhou Zhang, Yanli Zhang, and Xinming Wang. 2024. "Characterization and Sources of VOCs during PM2.5 Pollution Periods in a Typical City of the Yangtze River Delta" Atmosphere 15, no. 10: 1162. https://doi.org/10.3390/atmos15101162
APA StyleZhang, D., Huang, X., Xiao, S., Zhang, Z., Zhang, Y., & Wang, X. (2024). Characterization and Sources of VOCs during PM2.5 Pollution Periods in a Typical City of the Yangtze River Delta. Atmosphere, 15(10), 1162. https://doi.org/10.3390/atmos15101162