Backward Integration of Nonlinear Shallow Water Model: Part I: Solitary Rossby Waves
Abstract
:1. Introduction
2. Basic Equations and Numerical Model
3. Backward Integration
4. Initial Conditions and Numerical Results
4.1. Initial Condition of Solitary Rossby Wave in Forward Integration
4.2. Result with B = 0.395 and CB = 0.395
4.3. Results with B = 0.6 and CB = 0.476
5. Discussion
6. Summary
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, W.Y. Instability in Leapfrog and Forward-Backward Schemes: Part II: Numerical Simulation of Dam Break. J. Comput. Fluids 2011, 45, 70–76. [Google Scholar] [CrossRef]
- Pine, D.J.; Gollub, J.P.; Brady, J.F.; Leshansky, A.M. Chaos and threshold for irreversibility in sheared suspensions. Nature 2005, 438, 15. [Google Scholar] [CrossRef] [PubMed]
- Taylor, G. Low Reynolds Number Flows and Reversibility. 1967. Available online: http://web.mit.edu/hml/notes.html (accessed on 25 September 2024).
- Wikipedia. Taylor–Couette Flow. Available online: https://en.wikipedia.org/wiki/Taylor%E2%80%93Couette_flow (accessed on 25 September 2024).
- Wikipedia. Navier–Stokes Equations. Available online: https://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations (accessed on 25 September 2024).
- Haltiner, G.J.; Williams, R.T. Numerical Prediction and Dynamic Meteorology, 2nd ed.; Wiley: Hoboken, NJ, USA, 1980; p. 477. [Google Scholar]
- Fourier, J.B.J. Theorie Analytique de la Chaleur; Didot: Paris, France, 1822; pp. 499–508. [Google Scholar]
- Sun, W.Y.; Sun, O.M. Backward Integration of Diffusion Equation. Aerosol Air Qual. Res. 2017, 17, 278–289. [Google Scholar] [CrossRef]
- Eckhardt, B.; Hascoët, E. Breaking time reversal symmetry by viscous dephasing. Phys. Rev. E 2005, 72, 037301. [Google Scholar] [CrossRef]
- Fang, L.; Bos, W.J.T.; Liang, S.; Bertoglio, J.-P.; Shao, L. Time reversibility of Navier-Stokes turbulence and its implication for subgrid scale models. J. Turbul. 2012, 13, 639777. [Google Scholar] [CrossRef]
- Kalnay, E.; Park, S.K.; Pu, Z.X.; Gao, J. Application of the Quasi-Inverse Method to Data Assimilation. Mon. Wea. Rev. 2000, 128, 864–875. [Google Scholar] [CrossRef]
- Sun, W.Y. Instability in leapfrog and forward-backward Schemes. Mon. Wea. Rev. 2010, 138, 1497–1501. [Google Scholar] [CrossRef]
- Lorenc, A.C. Analysis Methods for Numerical Weather Prediction. Q. J. R. Meteorol. Soc. 1986, 112, 1177–1194. [Google Scholar] [CrossRef]
- Sasaki, Y. Some basic formalisms in numerical variational analysis. Mon. Wea. Rev. 1970, 98, 875–883. [Google Scholar] [CrossRef]
- Le Dimet, F.; Talagrand, O. Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects. Tellus A. 1986, 38A, 97–110. [Google Scholar] [CrossRef]
- Johnson, C.; Nichols, N.K.; Hoskins, B.J. Very Large Inverse Problems in Atmosphere and Ocean Modelling; Numerical Analysis Report 5/04; Department of Mathematics, University of Reading: Reading, UK, 2005. [Google Scholar] [CrossRef]
- Huang, S.; Xiang, J.; Du, H.; Cao, X. Inverse problems in atmospheric science and their application. J. Phys. Conf. Ser. 2005, 12, 45–57. [Google Scholar] [CrossRef]
- Pu, Z.-X.; Kalnay, E.; Sela, J.; Szunyogh, I. Sensitivity of forecast errors to initial conditions with a quasi-inverse linear model. Mon. Wea. Rev. 1997, 125, 2479–2503. [Google Scholar] [CrossRef]
- Nabi, S.; Grover, P.; Caulfield, C. Robust preconditioned one-shot methods and direct-adjoint-looping for optimizing Reynolds-averaged turbulent flows. Comput. Fluids 2022, 238, 105390. [Google Scholar] [CrossRef]
- O’Connor, L.; Lecoanet, D.; Anders, E.H.; Augustson, K.C.; Burns, K.J.; Vasil, G.M.; Oishi, J.S.; Brown, B.P. Iterative methods for Navier-Stokes inverse problems. Phys Rev. E. 2024, 109, 045108. [Google Scholar] [CrossRef] [PubMed]
- Keller, J.J. Inverse Euler equation. Z. Angew. Math. Phys. 1966, 49, 363–383. [Google Scholar] [CrossRef]
- Kaus, B.J.P.; Podadchikov, Y.Y. Forward and Reverse Modeling of the Three-Dimensional Viscous Rayleigh-Taylor Instability. Geo. Res. Lett. 2001, 6, 1095–1098. [Google Scholar] [CrossRef]
- Sun, W.Y. Diffusion modeling in a convective boundary layer. Atmos. Environ. 1989, 23, 1205–1217. [Google Scholar]
- Sun, W.Y.; Sun, O.M.T. Numerical Simulation of Rossby Wave in Shallow Water. Comput. Fluids 2013, 76, 116–127. [Google Scholar] [CrossRef]
- Boussinesq, J. Essai sur la Theorie des Eaux Courantes. Memoires Presentes par Divers Savants a L’academie des Sciences de L’institut National de France; XXIII, Imprimerie Nationale: Paris, France, 1877; pp. 1–680. [Google Scholar]
- Korteweg, D.J.; de Vries, G. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. London Edinburgh Dublin Philos. Mag. J. Sci. 1895, 39, 422–443. [Google Scholar] [CrossRef]
- Larichev, V.D.; Reznik, G.M. On two-dimensional solitary Rossby waves. Dokl. Akad. Nauk. SSSR 1976, 231, 1077–1079. [Google Scholar]
- Boyd, J.P. Equatorial solitary waves. Part-1: Rossby solitons. J Phys Ocean. 1980, 10, 1699–1717. [Google Scholar] [CrossRef]
- Boyd, J.P. Equatorial solitary waves. Part 3: Westward-traveling motions. J Phys Ocean. 1985, 15, 46–54. [Google Scholar] [CrossRef]
- Muccino, J.C.; Bennett, A.F. Generalized inversion of the Korteweg–de Vries equation. Dyn. Atmos. Ocean. 2002, 35, 227–263. [Google Scholar] [CrossRef]
- Sun, W.Y.; Oh, T.J. Vortex Merger in Shallow Water Model. Asia-Pac. J. Atmos. Sci. 2022, 58, 533–547. [Google Scholar] [CrossRef]
- Sun, W.Y. Challenges and Progress in Computational Geophysical Fluid Dynamics in Recent Decades. Atmosphere 2023, 14, 1324. [Google Scholar] [CrossRef]
- Leonard, B.P. A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comput. Methods Appl. Mech. Eng. 1979, 19, 59–98. [Google Scholar] [CrossRef]
- Sun, W.Y. Numerical experiments for advection equation. J. Comput. Phys. 1993, 108, 264–271. [Google Scholar] [CrossRef]
- Craig, W. An existence theory for water waves and the Boussinesq and Korteweg–de Vries scaling limits. Comm. Partial. Differ. Equ. 1985, 10, 787–1003. [Google Scholar] [CrossRef]
- Segur, H. Lecture 5: Waves in Shallow Water, Part I: The Theory; WHOI-2010-01 2009 Program of Study: Geophysical Fluid Dynamics, Nonlinear Waves; Woods Hole Oceanographic Institution: Falmouth, MA, USA, 2009; pp. 39–51. [Google Scholar]
- Drazin, P.G. Solitons; Lecture Note Series 85; Cambridge University Press London Mathematical Society: London, UK, 1983; ISSN 0076-0552. [Google Scholar]
- Versteeg, H.K.; Malalasekera, W. An Introduction to Computational Fluid Dynamics—The Finite Volume Method; Longman Scientific & Technical: New York, NY, USA, 1995; p. 257. [Google Scholar]
- Sun, W.Y.; Yeh, K.S. A general semi-Lagrangian advection scheme employing forward trajectories. J. R. Meteorol. Soc. 1997, 123, 2463–2476. [Google Scholar]
- Sun, W.Y. An efficient forward semi-Lagrangian model. Terr. Atmos. Ocean. Sci. 2024, 35, 1–6. [Google Scholar] [CrossRef]
- Oh, T.J. The Development and Testing of Characteristic-Based Semi-Lagrangian Two-Dimensional Shallow Water Equations Model. Ph.D. Thesis, Purdue University, West Lafayette, IN, USA, 2007. Available online: https://docs.lib.purdue.edu/dissertations/AAI3278686/ (accessed on 20 December 2020).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, W.-Y. Backward Integration of Nonlinear Shallow Water Model: Part I: Solitary Rossby Waves. Atmosphere 2024, 15, 1161. https://doi.org/10.3390/atmos15101161
Sun W-Y. Backward Integration of Nonlinear Shallow Water Model: Part I: Solitary Rossby Waves. Atmosphere. 2024; 15(10):1161. https://doi.org/10.3390/atmos15101161
Chicago/Turabian StyleSun, Wen-Yih. 2024. "Backward Integration of Nonlinear Shallow Water Model: Part I: Solitary Rossby Waves" Atmosphere 15, no. 10: 1161. https://doi.org/10.3390/atmos15101161
APA StyleSun, W. -Y. (2024). Backward Integration of Nonlinear Shallow Water Model: Part I: Solitary Rossby Waves. Atmosphere, 15(10), 1161. https://doi.org/10.3390/atmos15101161