Factors Influencing Radon Variability and Measurement Protocol Optimization in Romanian Educational Buildings Using Integrated and Continuous Measurements
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Parameters and Characteristics of Buildings
2.2. Work Protocol
3. Results
3.1. Initial Investigation Using Long-Term Integrated Measurements
3.2. Additional Investigation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kapdan, E.; Altinsoy, N. A comparative study of indoor radon concentrations between dwellings and schools. Radiat. Phys. Chem. 2012, 81, 383–386. [Google Scholar] [CrossRef]
- Čeliković, I.; Pantelić, G.; Vukanac, I.; Krneta Nikolić, J.; Živanović, M.; Cinelli, G.; Gruber, V.; Baumann, S.; Quindos Poncela, L.S.; Rabago, D. Outdoor Radon as a Tool to Estimate Radon Priority Areas—A Literature Overview. Int. J. Environ. Res. Public Health 2022, 19, 662. [Google Scholar] [CrossRef] [PubMed]
- IARC. Man-Made Mineral Fibres and Radon. In IARC Monographs on the Evaluation of the Carcinogenic Risks to Humans; IARC: Lyon, France, 1988; Volume 43, ISBN 978-92-832-1243-0. [Google Scholar]
- The Council of the European Union. Council Directive 2013/59/Euratom of 5 December 2013 laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom. Off. J. Eur. Union 2014, 1–73. [Google Scholar]
- ICRP. Lung Cancer Risk from Radon and Progeny and Statement on Radon; ICRP Publication: Ottawa, Canada, 2010. [Google Scholar]
- Gordon, K.; Terry, P.D.; Liu, X.; Harris, T.; Vowell, D.; Yard, B.; Chen, J. Radon in Schools: A Brief Review of State Laws and Regulations in the United States. Int. J. Environ. Res. Public Health 2018, 15, 2149. [Google Scholar] [CrossRef] [PubMed]
- Bican-Brișan, N.; Dobrei, G.-C.; Burghele, B.-D.; Cucoș, A.-L. First Steps towards a National Approach for Radon Survey in Romanian Schools. Atmosphere 2021, 13, 59. [Google Scholar] [CrossRef]
- Trevisi, R.; Leonardi, F.; Buresti, G.; Cianfriglia, M.; Cinelli, G.; Gruber, V.; Heinrich, T.; Holmgren, O.; Salvi, F.; Seri, E.; et al. Radon levels in dwellings and workplaces: A comparison with data from some European countries. J. Eur. Radon Assoc. 2022, 3, 1–13. [Google Scholar] [CrossRef]
- Carpentieri, C.; Zunic, Z.S.; Carelli, V.; Cordedda, C.; Ferrigno, G.; Veselinovic, N.; Bossew, P.; Tollefsen, T.; Cuknic, O.; Vojinovic, Z.; et al. Assessment of long-term radon concentration measurement precision in field conditions (Serbian Schools) for a survey carried out by an international collaboration. Radiat. Prot. Dosim. 2011, 145, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Bochicchio, F.; Žunić, Z.S.; Carpentieri, C.; Antignani, S.; Venoso, G.; Carelli, V.; Cordedda, C.; Veselinović, N.; Tollefsen, T.; Bossew, P. Radon in indoor air of primary schools: A systematic survey to evaluate factors affecting radon concentration levels and their variability. Indoor Air 2014, 24, 315–326. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, K.; Stojanovska, Z.; Tsenova, M.; Badulin, V.; Kunovska, B. Measurement of indoor radon concentration in kindergartens in Sofia, Bulgaria. Radiat. Prot. Dosim. 2014, 162, 163–166. [Google Scholar] [CrossRef] [PubMed]
- CNCAN. Order of the President of CNCAN No. 153/ 27.07.2023, May 2023. Available online: http://www.cncan.ro/assets/Radon/2023/Ordin-153-din-2023-Metodologie-radon.pdf (accessed on 13 June 2024).
- Rey, J.F.; Goyette, S.; Pernot, J.G. Weather Impacts on Indoor Radon Short-Term Measurements in Switzerland. Atmosphere 2023, 14, 1163. [Google Scholar] [CrossRef]
- Dinu, A.C.; Cosma, C.; Dicu, T.; Begy, R.; Moldovan, M.; Papp, B.; Niţă, D.; Burghele, B.; Sainz, C. Thorough investigations on indoor radon in Bǎita radon-prone area (Romania). Sci. Total Environ. 2012, 431, 78–83. [Google Scholar] [CrossRef]
- MDLPA—RTC6 Guide. Available online: http://www.cncan.ro/assets/Radon/2023/Ghid-remediere-aprobat-prin-Ordinulnr.-220192023.pdf (accessed on 22 June 2024).
- Dinu, A.C.; Papp, B.; Dicu, T.; Moldovan, M.; Burghele, D.B.; Moraru, I.T.; Tenţer, A.; Cosma, C. Residential, soil and water radon surveys in north-western part of Romania. J. Environ. Radioact. 2017, 166, 412–416. [Google Scholar] [CrossRef]
- ISO 11665-8:2019; Measurement of Radioactivity in the Environment—Air: Radon-222—Part 8: Methodologies for Initial and Additional Investigations in Buildings. International Organization for Standardization: Geneva, Switzerland, 2019. Available online: https://www.iso.org/obp/ui/en/#iso:std:iso:11665:-8:ed-2:v1:en (accessed on 4 June 2024).
- ISO 11665-5:2020; Measurement of Radioactivity in the Environment—Air: Radon-222 Part 5: Continuous Measurement Methods of the Activity Concentration. International Organization for Standardization: Geneva, Switzerland, 2020.
- ISO 11665-6:2020; Measurement of Radioactivity in the Environment—Air: Radon-222 Part 6: Spot Measurement Methods of the Activity Concentration. International Organization for Standardization: Geneva, Switzerland, 2020.
- ISO 11665-7:2012; Measurement of Radioactivity in the Environment—Air: Radon-222 Part 7: Accumulation Method for Estimating Surface Exhalation Rate. International Organization for Standardization: Geneva, Switzerland, 2012.
- Neznal, M.; Neznal, M.; Matolin, M.; Barnet, I.; Miksova, J. The New Method for Assessing the Radon Risk of Building Sites; Czech Geological Survey: Praga, Czech Republic, 2004. [Google Scholar]
- Florică, Ş.; Burghele, B.D.; Bican-Brişan, N.; Begy, R.; Codrea, V.; Cucoş, A.; Catalina, T.; Dicu, T.; Dobrei, G.; Istrate, A.; et al. The path from geology to indoor radon. Environ. Geochem. Health 2020, 42, 2655–2665. [Google Scholar] [CrossRef] [PubMed]
- Lupulescu, A.; Baciu, C.; Dicu, T.; Burghele, B.-D.; Cucoș, A.L. Determining the Geogenic Radon Potential in Different Layouts and Numbers of Points. Atmosphere 2023, 14, 713. [Google Scholar] [CrossRef]
- Cosma, C.; Dinu, A.C.; Dicu, T. Preliminary results regarding the first map of residential radon in some regions in Romania. Radiat. Prot. Dosim. 2013, 155, 343–350. [Google Scholar] [CrossRef]
- Sferle, T.; Dobrei, G.; Dicu, T.; Burghele, B.D.; Brişan, N.; Cucoş, A.; Catalina, T.; Istrate, A.; Lupulescu, A.; Moldovan, M.; et al. Variation of Indoor Radon Concentration within a Residential Complex. Radiat. Prot. Dosim. 2020, 189, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Cujic, M.; Janković Mandić, L.; Petrović, J.; Dragović, R.; Đorđević, M.; Đokić, M.; Dragović, S. Radon-222: Environmental behavior and impact to (human and non-human) biota. Int. J. Biometeorol. 2021, 65, 69–83. [Google Scholar] [CrossRef] [PubMed]
- García-Tobar, J. Weather-dependent modelling of the indoor radon concentration in two dwellings using CONTAM. Indoor Built Environ. 2019, 28, 1341–1349. [Google Scholar] [CrossRef]
- Spasić, D.; Gulan, L. High Indoor Radon Case Study: Influence of Meteorological Parameters and Indication of Radon Prone Area. Atmosphere 2022, 13, 2120. [Google Scholar] [CrossRef]
Floor Level | N* | Min. | A.M. | S.D. | Max. | Mdn. | G.M. | G.S.D. | % > RL |
---|---|---|---|---|---|---|---|---|---|
Basement | 10 | 84 | 447 | 295 | 892 | 438 | 342 | 2.3 | 60% |
Ground floor | 244 | 33 | 293 | 251 | 1495 | 242 | 212 | 2.3 | 38% |
First floor | 89 | 14 | 113 | 97 | 742 | 87 | 89 | 2.0 | 3% |
Total | 343 | 14 | 251 | 239 | 1495 | 168 | 172 | 2.4 | 29% |
Room Type | N | Min. | A.M. | S.D. | Max. | Mdn. | G.M. | G.S.D. |
---|---|---|---|---|---|---|---|---|
Administrative | 93 | 24 | 213 | 200 | 1199 | 169 | 159 | 2.1 |
Classroom | 105 | 14 | 326 | 270 | 1495 | 257 | 224 | 2.6 |
Laboratory | 49 | 35 | 234 | 185 | 1051 | 187 | 177 | 2.2 |
Other | 96 | 15 | 214 | 245 | 1247 | 113 | 135 | 2.5 |
Measurement Method | Min. | A.M. | S.D. | Max. | Mdn. | G.M. | G.S.D. | % > RL |
---|---|---|---|---|---|---|---|---|
Integrated | 48 | 425 | 267 | 1495 | 365 | 356 | 1.8 | 64% |
Continuous | 43 | 377 | 265 | 1556 | 317 | 308 | 1.9 | 56% |
Type of Investigation | N | Min. | A.M. | S.D. | Max. | Mdn. | G.M. | G.S.D. |
---|---|---|---|---|---|---|---|---|
Leakage (kBq/m3) | 225 | 0.2 | 2.7 | 3.0 | 35.6 | 2.0 | 1.9 | 2.2 |
Exhalation rate (Bq/m2·h) | 37 | 0.2 | 29.6 | 32.9 | 143.8 | 20.0 | 16.4 | 3.9 |
Type of Investigation | Min. | A.M. | S.D. | Max. | Mdn. | G.M. | G.S.D. |
---|---|---|---|---|---|---|---|
RAC in soil gas (kBq/m3) | 5.5 | 25.9 | 14.1 | 83.9 | 22.5 | 22.8 | 1.7 |
RP | 5 | 24 | 14 | 75 | 22 | 21.4 | 1.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dobrei, G.-C.; Moldovan, M.-C.; Dicu, T.; Florică, Ș.; Lupulescu, A.-I.; Țenter, A.-C.; Cucoș, A. Factors Influencing Radon Variability and Measurement Protocol Optimization in Romanian Educational Buildings Using Integrated and Continuous Measurements. Atmosphere 2024, 15, 1154. https://doi.org/10.3390/atmos15101154
Dobrei G-C, Moldovan M-C, Dicu T, Florică Ș, Lupulescu A-I, Țenter A-C, Cucoș A. Factors Influencing Radon Variability and Measurement Protocol Optimization in Romanian Educational Buildings Using Integrated and Continuous Measurements. Atmosphere. 2024; 15(10):1154. https://doi.org/10.3390/atmos15101154
Chicago/Turabian StyleDobrei, Gabriel-Cristian, Mircea-Claudiu Moldovan, Tiberius Dicu, Ștefan Florică, Alexandru-Iulian Lupulescu, Ancuța-Cristina Țenter, and Alexandra Cucoș. 2024. "Factors Influencing Radon Variability and Measurement Protocol Optimization in Romanian Educational Buildings Using Integrated and Continuous Measurements" Atmosphere 15, no. 10: 1154. https://doi.org/10.3390/atmos15101154
APA StyleDobrei, G.-C., Moldovan, M.-C., Dicu, T., Florică, Ș., Lupulescu, A.-I., Țenter, A.-C., & Cucoș, A. (2024). Factors Influencing Radon Variability and Measurement Protocol Optimization in Romanian Educational Buildings Using Integrated and Continuous Measurements. Atmosphere, 15(10), 1154. https://doi.org/10.3390/atmos15101154