Is It Possible to Breathe Fresh Air in Health Resorts? A Five-Year Seasonal Evaluation of Benzo(a)pyrene Levels and Health Risk Assessment of Polish Resorts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Human Health Exposure Assessment
2.3. Statistical Analysis
3. Results and Discussion
3.1. PM10 Concentrations
3.2. Benzo(a)pyrene
3.3. Health Effects from Benzo(a)pyrene Exposure
3.3.1. Risk for Patients
3.3.2. Risk for Resort Employees
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bai, L.; Wang, J.; Ma, X.; Lu, H. Air Pollution Forecasts: An Overview. Int. J. Environ. Res. Public Health 2018, 15, 780. [Google Scholar] [CrossRef]
- Borck, R.; Schrauth, P. Population Density and Urban Air Quality. Reg. Sci. Urban. Econ. 2021, 86, 103596. [Google Scholar] [CrossRef]
- Xu, K.; Cui, K.; Young, L.H.; Wang, Y.F.; Hsieh, Y.K.; Wan, S.; Zhang, J. Air Quality Index, Indicatory Air Pollutants and Impact of COVID-19 Event on the Air Quality near Central China. Aerosol Air Qual. Res. 2020, 20, 1204–1221. [Google Scholar] [CrossRef]
- Koolen, C.D.; Rothenberg, G. Air Pollution in Europe. ChemSusChem 2019, 12, 164–172. [Google Scholar] [CrossRef]
- Juginović, A.; Vuković, M.; Aranza, I.; Biloš, V. Health Impacts of Air Pollution Exposure from 1990 to 2019 in 43 European Countries. Sci. Rep. 2021, 11, 22516. [Google Scholar] [CrossRef]
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021; Volume xxi, pp. 1–273. [Google Scholar]
- Cheng, Y.H.; Yan, J.W. Comparisons of Particulate Matter, CO, and CO2 Levels in Underground and Ground-Level Stations in the Taipei Mass Rapid Transit System. Atmos. Environ. 2011, 45, 4882–4891. [Google Scholar] [CrossRef]
- Sofia, D.; Gioiella, F.; Lotrecchiano, N.; Giuliano, A. Mitigation Strategies for Reducing Air Pollution. Environ. Sci. Pollut. Res. 2020, 27, 19226–19235. [Google Scholar] [CrossRef]
- Kuchcik, M. Air Pollution in Polish Health Resorts—A Problem for Both Local Authorities and Patients. Geogr. Rev. 2020, 92, 109–134. [Google Scholar] [CrossRef]
- Lansford, J.L.; Vlachos, D.G. Infrared Spectroscopy Data- and Physics-Driven Machine Learning for Characterizing Surface Microstructure of Complex Materials. Nat. Commun. 2020, 11, 1513. [Google Scholar] [CrossRef]
- Victor, F.S.; Kugarajah, V.; Bangaru, M.; Ranjan, S.; Dharmalingam, S. Electrospun Nanofibers of Polyvinylidene Fluoride Incorporated with Titanium Nanotubes for Purifying Air with Bacterial Contamination. Environ. Sci. Pollut. Res. 2021, 28, 37520–37533. [Google Scholar] [CrossRef]
- Li, L.; Hu, J.; Li, J.; Gong, K.; Wang, X.; Ying, Q.; Qin, M.; Liao, H.; Guo, S.; Hu, M.; et al. Modelling Air Quality during the EXPLORE-YRD Campaign—Part II. Regional Source Apportionment of Ozone and PM2.5. Atmos. Environ. 2021, 247, 118063. [Google Scholar] [CrossRef]
- Liu, H.; Yu, J.; Zhang, S.; Ding, B. Air-Conditioned Masks Using Nanofibrous Networks for Daytime Radiative Cooling. Nano Lett. 2022, 22, 9485–9492. [Google Scholar] [CrossRef]
- Liu, C.; Hu, H.; Zhou, S.; Chen, X.; Hu, Y.; Hu, J. Change of Composition, Source Contribution, and Oxidative Effects of Environmental PM2.5 in the Respiratory Tract. Environ. Sci. Technol. 2023, 57, 11605–11611. [Google Scholar] [CrossRef]
- Gupta, A.D.; Soni, A.; Gupta, T. Synergistic Cancer Risk Assessment from PM1 Bound Metals and PAHs in the Indo-Gangetic Region. Sustain. Chem. Environ. 2023, 1, 100002. [Google Scholar] [CrossRef]
- Bukowska, B.; Mokra, K.; Michałowicz, J. Benzo[a]Pyrene—Environmental Occurrence, Human Exposure, and Mechanisms of Toxicity. Int. J. Mol. Sci. 2022, 23, 6348. [Google Scholar] [CrossRef] [PubMed]
- Aquilina, N.J.; Harrison, R.M. Evaluation of the Cancer Risk from PAHs by Inhalation: Are Current Methods Fit for Purpose? Environ. Int. 2023, 177, 107991. [Google Scholar] [CrossRef]
- Mallah, M.A.; Changxing, L.; Mallah, M.A.; Noreen, S.; Liu, Y.; Saeed, M.; Xi, H.; Ahmed, B.; Feng, F.; Mirjat, A.A.; et al. Polycyclic Aromatic Hydrocarbon and Its Effects on Human Health: An Overeview. Chemosphere 2022, 296, 133948. [Google Scholar] [CrossRef]
- Merenda, B.; Maciejewski, P.; Bezyk, Y.; Sówka, I. Indoor Air Quality in a Selected Health Resort Facility: Analysis of PM10, PM2.5 and 222Rn Concentrations. J. Ecol. Eng. 2022, 23, 202–215. [Google Scholar] [CrossRef]
- Pacín, C.; Martínez-Abaigar, J.; Núñez-Olivera, E.; Aboal, J.R.; De Nicola, F.; Fernández, J.Á. Polycyclic Aromatic Hydrocarbons (PAHs) Levels in PM10 and Bulk Deposition Using Mosspheres: A Pilot Study in an Urban Environment. Environ. Res. 2023, 223, 115406. [Google Scholar] [CrossRef]
- Anioł, E.; Suder, J.; Bihałowicz, J.S.; Majewski, G. The Quality of Air in Polish Health Resorts with an Emphasis on Health on the Effects of Benzo(a)Pyrene in 2015–2019. Climate 2021, 9, 74. [Google Scholar] [CrossRef]
- Kobus, D.; Merenda, B.; Sówka, I.; Chlebowska-Styś, A.; Wroniszewska, A. Ambient Air Quality as a Condition of Effective Healthcare Therapy on the Example of Selected Polish Health Resorts. Atmosphere 2020, 11, 882. [Google Scholar] [CrossRef]
- Radziemska, M.; Mazur, Z. Content of Selected Heavy Metals in Ni-Contaminated Soil Following the Application of Halloysite and Zeolite. J. Ecol. Eng. 2016, 17, 125–133. [Google Scholar] [CrossRef]
- Wyszkowski, M.; Radziemska, M. Assessment of Tri- and Hexavalent Chromium Phytotoxicity on Oats (Avena sativa L.) Biomass and Content of Nitrogen Compounds. Water Air Soil. Pollut. 2013, 224, 1619. [Google Scholar] [CrossRef]
- Tammekivi, T.; Kaasik, M.; Hamer, P.; Santos, G.S.; Šteinberga, I. Air Pollution Situation in Small Towns, Including Winter Resorts: A Comparative Study of Three Cases in Northern Europe. Air Qual. Atmos. Health 2023, 16, 945–961. [Google Scholar] [CrossRef]
- EN 12341:2023; Ambient Air—Standard Gravimetric Measurement Method for the Determination of the PM10 or PM2,5 Mass Concentration of Suspended Particulate Matter. European Committee for Standarization: Brussels, Belgium, 2023.
- E.C. of the European Parliament and of the Council. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on Ambient Air Quality and Cleaner Air for Europe; Official Journal of the European Union: Brussels, Belgium, 2008. [Google Scholar]
- Minister of Climate and Environment. Ordinance of the Minister of Environment Regulation on Levels of Certain Substances in Ambient Air. J. Laws 2021, 845, 4–6. [Google Scholar]
- Minister of the Environment. Regulation of the Ministry of Environment Environment Safety Law Concerning Evaluation of Substances Levels in the Air. J. Laws 2012, 1032, 5–8. [Google Scholar]
- Myers, J.N.; Harris, K.L.; Rekhadevi, P.V.; Pratap, S.; Ramesh, A. Benzo(a)Pyrene-Induced Cytotoxicity, Cell Proliferation, DNA Damage, and Altered Gene Expression Profiles in HT-29 Human Colon Cancer Cells. Cell Biol. Toxicol. 2021, 37, 891–913. [Google Scholar] [CrossRef] [PubMed]
- Pulster, E.L.; Johnson, G.; McCluskey, J.; Harbison, R.D. Public Health Risk Analysis for Ambient Polycyclic Aromatic Hydrocarbon Exposure Surrounding a Petrochemical Complex in Curaçao. Hum. Ecol. Risk Assess. Int. J. 2020, 26, 2173–2188. [Google Scholar] [CrossRef]
- Penkała, M.; Bihałowicz, J.S.; Rogula-Kozłowska, W.; Rogula-Kopiec, P.; Klik, B.; Bihałowicz, J.; Lewicka, S.; Olszowski, T.; Majewski, G. Health Hazard Related to Fine Road Dust in Poland. Chem. Didact. Ecol. Metrol. 2023, 28, 79–92. [Google Scholar] [CrossRef]
- Sówka, I.; Kobus, D.; Skotak, K.; Zathey, M.; Merenda, B.; Paciorek, M. Assessment of the Health Risk Related to Air Pollution in Selected Polish Health Resorts. J. Ecol. Eng. 2019, 20, 132–145. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Toxicological Review of Benzo[a]Pyrene; Integrated Risk Information System: Washington, DC, USA, 2017.
- Rybak, J.; Wróbel, M.; Pieśniewska, A.; Rogula-Kozłowska, W.; Majewski, G. Possible Health Effects of Road Dust in Winter: Studies in Poland. Appl. Sci. 2023, 13, 7444. [Google Scholar] [CrossRef]
- Majewski, G.; Klik, B.; Rogula-Kozłowska, W.; Rogula-Kopiec, P.; Rybak, J.; Radziemska, M.; Liniauskienė, E. Assessment of Heavy Metal Inhalation Risks in Urban Environments in Poland: A Case Study. J. Ecol. Eng. 2023, 24, 330–340. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.; Agrawal, M. World Air Particulate Matter: Sources, Distribution and Health Effects. Environ. Chem. Lett. 2017, 15, 283–309. [Google Scholar] [CrossRef]
- Majewski, G.; Rogula-Kozłowska, W.; Szeląg, B.; Anioł, E.; Rogula-Kopiec, P.; Brandyk, A.; Walczak, A.; Radziemska, M. New Insights into Submicron Particles Impact on Visibility. Environ. Sci. Pollut. Res. 2022, 29, 87969–87981. [Google Scholar] [CrossRef]
- Fallahizadeh, S.; Kermani, M.; Esrafili, A.; Asadgol, Z.; Gholami, M. The Effects of Meteorological Parameters on PM10: Health Impacts Assessment Using AirQ+ Model and Prediction by an Artificial Neural Network (ANN). Urban Clim. 2021, 38, 100905. [Google Scholar] [CrossRef]
- Badyda, A.; Gayer, A.; Czechowski, P.O.; Majewski, G.; Dąbrowiecki, P. Pulmonary Function and Incidence of Selected Respiratory Diseases Depending on the Exposure to Ambient PM10. Int. J. Mol. Sci. 2016, 17, 1954. [Google Scholar] [CrossRef]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 505570. [Google Scholar] [CrossRef]
- Maring, T.; Kumar, S.; Jha, A.K.; Kumar, N.; Pandey, S.P. Airborne Particulate Matter and Associated Heavy Metals: A Review. Macromol. Symp. 2023, 407, 2100487. [Google Scholar] [CrossRef]
- EEA Air Quality in Europe 2022; Report No. 05/2022; European Environmental Agency: Copenhagen, Denmark, 2022.
- Filonchyk, M.; Hurynovich, V.; Yan, H. Impact of COVID-19 Lockdown on Air Quality in the Poland, Eastern Europe. Environ. Res. 2021, 198, 110454. [Google Scholar] [CrossRef]
- Guerreiro, C.B.B.; Horálek, J.; De Leeuw, F.; Couvidat, F. Benzo(a)Pyrene in Europe: Ambient Air Concentrations, Population Exposure and Health Effects. Environ. Pollut. 2016, 214, 657–667. [Google Scholar] [CrossRef]
- Volná, V.; Hladký, D.; Seibert, R.; Krejčí, B. Transboundary Air Pollution Transport of PM10 and Benzo[a]Pyrene in the Czech–Polish Border Region. Atmosphere 2022, 13, 341. [Google Scholar] [CrossRef]
- Schreiberová, M.; Vlasáková, L.; Vlček, O.; Šmejdířová, J.; Horálek, J.; Bieser, J. Benzo[a]Pyrene in the Ambient Air in the Czech Republic: Emission Sources, Current and Long-Term Monitoring Analysis and Human Exposure. Atmosphere 2020, 11, 955. [Google Scholar] [CrossRef]
- Szulc, A.; Tomaszewska, B. The Concept of Using Local Renewable Energy Sources as Possibility to Reduce Low Emission in Health Resort Rabka-Zdrój. Geol. Explor. Tech. 2018, 57, nr2. [Google Scholar]
- Widziewicz, K.; Rogula-Kozłowska, W.; Majewski, G. Lung Cancer Risk Associated with Exposure to Benzo(A)Pyrene in Polish Agglomerations, Cities, and Other Areas. Int. J. Environ. Res. 2017, 11, 685–693. [Google Scholar] [CrossRef]
- Targa, J.; Ripoll, A.; Banyuls, L.; González Ortiz, A.; Soares, J. Status Report of Air Quality in Europe for Year 2022, Using Validated and Up-to-Date Data; ETC-HE Report; ETC Human Health and the Environment (ETC HE): Germany, Norway, 2023; Volume 2. [Google Scholar]
- Lewandowska, A.U.; Staniszewska, M.; Witkowska, A.; Machuta, M.; Falkowska, L. Benzo(a)Pyrene Parallel Measurements in PM1 and PM2.5 in the Coastal Zone of the Gulf of Gdansk (Baltic Sea) in the Heating and Non-Heating Seasons. Environ. Sci. Pollut. Res. 2018, 25, 19458–19469. [Google Scholar] [CrossRef]
- Brusco, N.K.; Watts, J.J.; Shields, N.; Taylor, N.F. Are Weekend Inpatient Rehabilitation Services Value for Money? An Economic Evaluation alongside a Randomized Controlled Trial with a 30 Day Follow Up. BMC Med. 2014, 12, 89. [Google Scholar] [CrossRef]
- Zajączkowski, M.; Cegliński, P. Analysis of Development Potential of Health Resort Enterprises on the Example of Przedsiębiorstwo Uzdrowisko Ciechocinek S.A. in Aleksandrów County. J. Educ. Health Sport 2018, 8, 699–710. [Google Scholar] [CrossRef]
- Wisnom, M.; Gallagher, K. Quality of Work Life in the Resort Spa Industry. Int. J. Spa Wellness 2018, 1, 159–177. [Google Scholar] [CrossRef]
- Working Time Setting and Settlement—Your Europe in Poland—Gov.Pl Website. Available online: https://www.gov.pl/web/your-europe/working-time-setting-and-settlement (accessed on 31 August 2024).
- Statistical Centre in Poland Therapeutic Activities of Health Resort Facilities and Inpatient Rehabilitation Facilities in 2022; Central Statistical Library: Warsaw, Poland, 2022.
- Królak, S. Spa tourism in Poland—Reflections on the essence, determinants and future. Reg. Dev. Reg. Policy 2021, 2, 125–146. [Google Scholar] [CrossRef]
- Kupcewicz, E.; Bentkowska, A. Health and Its Significance in the Modern Concept of Wellness and Spa. J. Educ. Health Sport 2023, 49, 44–55. [Google Scholar] [CrossRef]
- Garg, A.; Gupta, N.C.; Kumar, A. Spatio-Temporal Variability and Health Risk Assessment of Benzo[a]Pyrene in Different Population Through Ambient Air Exposure in Delhi, India. Expo. Health 2022, 14, 111–127. [Google Scholar] [CrossRef]
- Zhang, Y.; Tao, S.; Shen, H.; Ma, J. Inhalation Exposure to Ambient Polycyclic Aromatic Hydrocarbons and Lung Cancer Risk of Chinese Population. Proc. Natl. Acad. Sci. USA 2009, 106, 21063–21067. [Google Scholar] [CrossRef]
- Kasala, E.R.; Bodduluru, L.N.; Barua, C.C.; Sriram, C.S.; Gogoi, R. Benzo(a)Pyrene Induced Lung Cancer: Role of Dietary Phytochemicals in Chemoprevention. Pharmacol. Rep. 2015, 67, 996–1009. [Google Scholar] [CrossRef]
- Liao, K.; Yu, J.Z. Abundance and Sources of Benzo[a]Pyrene and Other PAHs in Ambient Air in Hong Kong: A Review of 20-Year Measurements (1997–2016). Chemosphere 2020, 259, 127518. [Google Scholar] [CrossRef]
- Kargulewicz, I. Air Emissions of Selected Substances from Particular Sectors Including Metallurgy in Poland. Arch. Foundry Eng. 2017, 17, 83–86. [Google Scholar] [CrossRef]
- Pepłowska, M.; Kryzia, D. Examining Pollution Emissions in Relation to Atmospheric Conditions: A Case Study on Air-Quality Management in Kraków. Polityka Energetyczna–Energy Policy J. 2023, 26, 117–130. [Google Scholar] [CrossRef]
- Majewski, G.; Rogula-Kozłowska, W.; Rozbicka, K.; Rogula-Kopiec, P.; Mathews, B.; Brandyk, A. Concentration, Chemical Composition and Origin of PM1: Results from the First Long-Term Measurement Campaign in Warsaw (Poland). Aerosol Air Qual. Res. 2018, 18, 636–654. [Google Scholar] [CrossRef]
- Romanova, A.; Porowski, A.; Zielski, T.; Dancewicz, A. Origin and Evolution of Chemical Composition of Mineral Waters of Szczawno-Zdrój Inferred from Long-Term Variation of Ionic Ratios, Sudetes Mts. (SW Poland). Environ. Earth Sci. 2021, 80, 374. [Google Scholar] [CrossRef]
Year | HR1 | HR2 | HR3 | HR4 | HR5 | HR6 | HR7 | |
---|---|---|---|---|---|---|---|---|
2018 | Mean ± SD | 25.10 ± 15.90 | 31.38 ± 21.75 | 33.49 ± 19.48 | 20.78 ± 12.50 | 39.25 ± 27.10 | 29.35 ± 21.10 | 43.54 ± 27.60 |
Min | 2.80 | 5.40 | 7.00 | 2 | 6 | 4 | 7.6 | |
Max | 96.8 | 134.80 | 132.20 | 106.1 | 216 | 175.3 | 191.7 | |
2019 | Mean ± SD | 20.96 ± 11.06 | 25.08 ± 16.73 | 29.42 ± 21.50 | 17.59 ± 10.77 | 31.15 ± 24.14 | 22.44 ± 18.18 | 34.79 ± 23.08 |
Min | 4.40 | 5.80 | 7.50 | 2 | 7.8 | 3.5 | 8.8 | |
Max | 78.80 | 144.20 | 145.10 | 104.2 | 256 | 156.6 | 184.3 | |
2020 | Mean ± SD | 20.95 ± 10.34 | 26.96 ± 21.33 | 23.29 ± 18.77 | 16.22 ± 7.68 | 27.28 ± 17.08 | 17.33 ± 12.44 | 30.80 ± 18.39 |
Min | 4.70 | 4.10 | 2.40 | 2.9 | 5.2 | 2.6 | 6.7 | |
Max | 71.60 | 128.80 | 132.80 | 50 | 110 | 98.2 | 101.8 | |
2021 | Mean ± SD | 22.80 ± 14.39 | 28.14 ± 20.63 | 31.95 ± 28.08 | 16.35 ± 9.01 | 31.92 ± 21.59 | 21.88 ± 16.49 | 32.33 ± 21.02 |
Min | 3.20 | 5.80 | 5.80 | 3.1 | 6.8 | 4.1 | 7.4 | |
Max | 118.70 | 128.40 | 179.40 | 55.5 | 150.4 | 142.6 | 124.3 | |
2022 | Mean ± SD | 20.14 ± 11.06 | 23.86 ± 15.23 | 27.83 ± 20.83 | 16.27 ± 8.36 | 27.29 ± 17.71 | 20.96 ± 14.17 | 28.05 ± 16.09 |
Min | 5.90 | 5.30 | 4.70 | 4.2 | 3.3 | 2.9 | 6.4 | |
Max | 69.00 | 93.70 | 120.80 | 57.7 | 125.7 | 87.3 | 95.2 |
Year | HR1 | HR2 | HR3 | HR4 | HR5 | HR6 | HR7 |
---|---|---|---|---|---|---|---|
2018 | 29 | 57 | 58 | 12 | 68 | 36 | 93 |
2019 | 7 | 28 | 48 | 4 | 46 | 21 | 68 |
2020 | 4 | 47 | 25 | 0 | 37 | 56 | 48 |
2021 | 14 | 41 | 51 | 1 | 55 | 23 | 62 |
2022 | 9 | 25 | 47 | 3 | 27 | 19 | 40 |
Year | HR1 | HR2 | HR3 | HR4 | HR5 | HR6 | HR7 | |
---|---|---|---|---|---|---|---|---|
2018 | Mean ± SD | 1.83 ± 2.17 | 7.55 ± 8.86 | 5.12 ± 5.76 | 1.25 ± 1.44 | 7.07 ± 9.34 | 6.10 ± 7.41 | 4.88 ± 6.06 |
Min | 0.00 | 0.30 | 0.40 | 0.10 | 0.10 | 0.10 | 0.20 | |
Max | 8.10 | 36.30 | 23.20 | 4.90 | 46.00 | 32.70 | 23.50 | |
2019 | Mean ± SD | 1.54 ± 1.84 | 5.75 ± 6.42 | 3.78 ± 4.13 | 0.57 ± 0.68 | 4.31 ± 5.24 | 3.94 ± 4.08 | 3.94 ± 4.37 |
Min | 0.00 | 0.20 | 0.20 | 0.10 | 0.10 | 0.30 | 0.10 | |
Max | 7.10 | 23.40 | 21.40 | 3.00 | 22.00 | 22.20 | 17.80 | |
2020 | Mean ± SD | 1.27 ± 1.39 | 8.99 ± 11.25 | 3.99 ± 3.63 | 0.67 ± 0.87 | 4.33 ± 5.03 | 4.08 ± 4.10 | 3.72 ± 4.36 |
Min | 0.00 | 0.10 | 0.40 | 0.10 | 0.10 | 0.20 | 0.10 | |
Max | 5.10 | 43.40 | 16.60 | 4.80 | 28.60 | 17.90 | 20.00 | |
2021 | Mean ± SD | 1.77 ± 2.01 | 8.35 ± 9.29 | 5.78 ± 4.85 | 0.32 ± 0.41 | 5.86 ± 6.37 | 6.86 ± 5.93 | 3.53 ± 4.09 |
Min | 0.10 | 0.10 | 0.50 | 0.10 | 0.10 | 0.40 | 0.10 | |
Max | 9.90 | 41.50 | 16.60 | 2.80 | 20.40 | 26.50 | 17.30 | |
2022 | Mean ± SD | 1.32 ± 1.42 | 4.20 ± 4.67 | 4.73 ± 4.76 | 0.20 ± 0.26 | 2.67 ± 3.12 | 3.74 ± 4.39 | 1.77 ± 2.03 |
Min | 0.10 | 0.10 | 0.80 | 0.10 | 0.00 | 0.30 | 0.10 | |
Max | 5.40 | 23.20 | 21.70 | 1.70 | 11.10 | 19.60 | 8.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majewski, G.; Niezgoda, W.; Klik, B. Is It Possible to Breathe Fresh Air in Health Resorts? A Five-Year Seasonal Evaluation of Benzo(a)pyrene Levels and Health Risk Assessment of Polish Resorts. Atmosphere 2024, 15, 1147. https://doi.org/10.3390/atmos15101147
Majewski G, Niezgoda W, Klik B. Is It Possible to Breathe Fresh Air in Health Resorts? A Five-Year Seasonal Evaluation of Benzo(a)pyrene Levels and Health Risk Assessment of Polish Resorts. Atmosphere. 2024; 15(10):1147. https://doi.org/10.3390/atmos15101147
Chicago/Turabian StyleMajewski, Grzegorz, Weronika Niezgoda, and Barbara Klik. 2024. "Is It Possible to Breathe Fresh Air in Health Resorts? A Five-Year Seasonal Evaluation of Benzo(a)pyrene Levels and Health Risk Assessment of Polish Resorts" Atmosphere 15, no. 10: 1147. https://doi.org/10.3390/atmos15101147
APA StyleMajewski, G., Niezgoda, W., & Klik, B. (2024). Is It Possible to Breathe Fresh Air in Health Resorts? A Five-Year Seasonal Evaluation of Benzo(a)pyrene Levels and Health Risk Assessment of Polish Resorts. Atmosphere, 15(10), 1147. https://doi.org/10.3390/atmos15101147