Characteristics and Source Identification for PM2.5 Using PMF Model: Comparison of Seoul Metropolitan Area with Baengnyeong Island
Abstract
:1. Introduction
2. Experimental Methods of Analysis
2.1. Sampling and Observations
2.2. PMF Receptor Models
2.3. Back-Trajectory Analysis
3. Results and Discussion
3.1. Concentrations of PM2.5 and Its Components
3.2. Pretreatment for Receptor Model
3.3. Source Apportionment of PMF Analysis
3.4. Backward Trajectory and Cluster Analysis
3.5. Discussion
4. Conclusions
- During the measurement period, the average PM2.5 mass concentrations were 19.8 ± 16.8 µg m−3 at BNI and 21.9 ± 16.4 µg m−3 in the SMA. This indicates that a wider variety of emission sources contributed to fine particle pollution in the urban region (SMA) compared to the background region (BNI).
- In both sites, sulfate and nitrate were the dominant components of PM2.5, and as the PM2.5 concentration increased, the relative proportion of nitrate also rose. It suggests that heterogeneous reactions between gaseous nitric acid and ammonia in the atmosphere were likely enhanced, leading to the formation of ammonium nitrate aerosols.
- The PMF model analysis of PM2.5 sources identified nine sources at BNI, and secondary sulfate (30%) and secondary nitrate (26%) were dominant sources. Similarly, nine sources were identified in the SMA, and secondary nitrate (27%), secondary sulfate (23%), and biomass burning (22%) were dominant contributors.
- A comparative analysis of BNI and the SMA in cases where air masses moved from BNI to the SMA revealed that the contributions of secondary pollutants (sulfate and nitrate), biomass burning, and vehicle emissions were higher in the SMA than in BNI. The increase in secondary pollutants is likely due to the HNO3 being transported via BNI and converted from NOx by local vehicles, which then reacted with additional NH3 from domestic sources.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Landrigan, P.J. Air Pollution and Health. Lancet Public Health 2017, 2, e4–e5. [Google Scholar] [CrossRef] [PubMed]
- Dockery, D.W.; Stone, P.H. Cardiovascular Risks from Fine Particulate Air Pollution. N. Engl. J. Med. 2007, 356, 511–513. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.-K.; Heo, J.-B.; Ban, S.-J.; Yi, S.-M.; Zoh, K.-D. Chemical Characteristics of PM2.5 Aerosol in Incheon, Korea. Atmos. Environ. 2012, 60, 583–592. [Google Scholar] [CrossRef]
- Glavas, S.D.; Nikolakis, P.; Ambatzoglou, D.; Mihalopoulos, N. Factors Affecting the Seasonal Variation of Mass and Ionic Composition of PM2.5 at a Central Mediterranean Coastal Site. Atmos. Environ. 2008, 42, 5365–5373. [Google Scholar] [CrossRef]
- Yao, X.; Chan, C.K.; Fang, M.; Cadle, S.; Chan, T.; Mulawa, P.; He, K.; Ye, B. The Water-Soluble Ionic Composition of PM2.5 in Shanghai and Beijing, China. Atmos. Environ. 2002, 36, 4223–4234. [Google Scholar] [CrossRef]
- Blifford, I.H.; Meeker, G.O. A Factor Analysis Model of Large Scale Pollution. Atmos. Environ. 1967, 1, 147–157. [Google Scholar] [CrossRef]
- Hwang, I.; Kim, D.-S. Research Trends of Receptor Models in Korea and Foreign Countries and Improvement Directions for Air Quality Management. J. Korean Soc. Atmos. Environ. 2013, 29, 459–476. [Google Scholar] [CrossRef]
- McMurry, P.H.; Shepherd, M.F.; Vickery, J.S. Particulate Matter Science for Policy Makers: A NARSTO Assessment; Cambridge University Press: Cambridge, UK, 2004; ISBN 978-0-521-84287-7. [Google Scholar]
- Paatero, P.; Tapper, U. Positive Matrix Factorization: A Non-Negative Factor Model with Optimal Utilization of Error Estimates of Data Values. Environmetrics 1994, 5, 111–126. [Google Scholar] [CrossRef]
- Anttila, P.; Paatero, P.; Tapper, U.; Järvinen, O. Source Identification of Bulk Wet Deposition in Finland by Positive Matrix Factorization. Atmos. Environ. 1995, 29, 1705–1718. [Google Scholar] [CrossRef]
- Polissar, A.V.; Hopke, P.K.; Paatero, P.; Malm, W.C.; Sisler, J.F. Atmospheric Aerosol over Alaska: 2. Elemental Composition and Sources. J. Geophys. Res. Atmos. 1998, 103, 19045–19057. [Google Scholar] [CrossRef]
- Ramadan, Z.; Song, X.-H.; Hopke, P.K. Identification of Sources of Phoenix Aerosol by Positive Matrix Factorization. J. Air Waste Manag. Assoc. 2000, 50, 1308–1320. [Google Scholar] [CrossRef] [PubMed]
- Han, J.S.; Moon, K.J.; Lee, S.J.; Kim, Y.J.; Ryu, S.Y.; Cliff, S.S.; Yi, S.M. Size-Resolved Source Apportionment of Ambient Particles by Positive Matrix Factorization at Gosan Background Site in East Asia. Atmos. Chem. Phys. 2006, 6, 211–223. [Google Scholar] [CrossRef]
- Han, S.; Joo, H.-S.; Song, H.-J.; Lee, S.-B.; Han, J.-S. Source Apportionment of PM2.5 in Daejeon Metropolitan Region during January and May to June 2021 in Korea Using a Hybrid Receptor Model. Atmosphere 2022, 13, 1902. [Google Scholar] [CrossRef]
- Han, S.; Joo, H.; Kim, K.; Cho, J.; Moon, K.; Han, J. Modification of Hybrid Receptor Model for Atmospheric Fine Particles (PM2.5) in 2020 Daejeon, Korea, Using an ACERWT Model. Atmosphere 2024, 15, 477. [Google Scholar] [CrossRef]
- Kang, S.; Choi, S.; Ban, J.; Kim, K.; Singh, R.; Park, G.; Kim, M.-B.; Yu, D.-G.; Kim, J.-A.; Kim, S.-W.; et al. Chemical Characteristics and Sources of PM2.5 in the Urban Environment of Seoul, Korea. Atmos. Pollut. Res. 2022, 13, 101568. [Google Scholar] [CrossRef]
- Yi, S.-M.; Hwang, I. Source Identification and Estimation of Source Apportionment for Ambient PM10 in Seoul, Korea. Asian J. Atmos. Environ. 2014, 8, 115–125. [Google Scholar] [CrossRef]
- Jo, H.-Y.; Kim, C.-H. Identification of Long-Range Transported Haze Phenomena and Their Meteorological Features over Northeast Asia. J. Appl. Meteorol. Climatol. 2013, 52, 1318–1328. [Google Scholar] [CrossRef]
- Park, H.-Y.; Ahn, J.-Y.; Hong, S.-C.; Lee, J.-B.; Cho, S.-Y. The Formation and Transport of HNO3 over the Yellow Sea and Its Impact on the January 2018 PM2.5 Episode in Seoul. Environ. Sci. Atmos. 2024, 4, 670–684. [Google Scholar] [CrossRef]
- Ju, S.; Yu, G.H.; Park, S.; Lee, J.Y.; Lee, S.; Jee, J.; Lee, K.; Lee, M. Pollution Characteristics of PM2.5 Measured during Fall at a Seosan Site in Chungcheong Province. J. Korean Soc. Atmos. Environ. 2020, 36, 329–345. [Google Scholar] [CrossRef]
- Park, T.; Ban, J.; Kang, S.; Ghim, Y.S.; Shin, H.-J.; Park, J.S.; Park, S.M.; Moon, K.J.; Lim, Y.-J.; Lee, M.-D.; et al. Chemical Characteristics of PM1 using Aerosol Mass Spectrometer at Baengnyeong Island and Seoul Metropolitan Area. KOSAE 2018, 34, 430–446. [Google Scholar] [CrossRef]
- Ju, H.; Kim, H.C.; Kim, B.-U.; Ghim, Y.S.; Shin, H.J.; Kim, S. Long-term Trend Analysis of Key Criteria Air Pollutants over Air Quality Control Regions in South Korea using Observation Data and Air Quality Simulation. KOSAE 2018, 34, 101–119. [Google Scholar] [CrossRef]
- Park, S.-Y.; Kim, C.-H. Identification of Long-Range Transported Air Pollution Indicators over Northeast Asia. J. Korean Soc. Atmos. Environ. 2013, 29, 38–55. [Google Scholar] [CrossRef]
- NIER Air Pollution Monitoring Network Installation and Operation Guidelines 2022. Available online: https://www.airkorea.or.kr/web/board/3/769/?pMENU_NO=145&page=+1 (accessed on 30 August 2024).
- NIER Establishment of Guidelines for the PMF Modeling and Applications 2021. Available online: https://books.google.co.kr/books/about/%EC%88%98%EC%9A%A9%EB%AA%A8%EB%8D%B8_%EC%9A%B4%EC%98%81%EB%B0%A9%EB%B2%95%EC%9D%98_%ED%91%9C%EC%A4%80%ED%99%94.html?id=PYenzwEACAAJ&redir_esc=y (accessed on 30 August 2024).
- Lee, H.; Kim, N.; Jo, M.; Lee, S.; Choi, J.; Kang, K.; Choi, S. Characteristics of PM2.5 Pollution and Long-range Atmospheric Transport in Background Areas (Baengnyeong and Jeju Islands). KOSAE 2022, 38, 524–541. [Google Scholar] [CrossRef]
- Lee, H. Jo Isotopic Characteristics of Nitrate Aerosols for Tracing PM2.5 Sources in South Korea. Ph.D. Thesis, Seoul National University, Seoul, Republic of Korea, 2019. [Google Scholar]
- Oh, H.-R.; Ho, C.-H.; Kim, J.; Chen, D.; Lee, S.; Choi, Y.-S.; Chang, L.-S.; Song, C.-K. Long-Range Transport of Air Pollutants Originating in China: A Possible Major Cause of Multi-Day High-PM10 Episodes during Cold Season in Seoul, Korea. Atmos. Environ. 2015, 109, 23–30. [Google Scholar] [CrossRef]
- Draxler, R.R.; Rolph, G.D. HYSPLIT (HYbrid Single-ParticleLagrangian Integrated Trajectory) Model Access via NOAA ARL READY Website. Available online: https://www.arl.noaa.gov/hysplit/ (accessed on 27 July 2024).
- Huang, X.; Liu, Z.; Zhang, J.; Wen, T.; Ji, D.; Wang, Y. Seasonal Variation and Secondary Formation of Size-Segregated Aerosol Water-Soluble Inorganic Ions during Pollution Episodes in Beijing. Atmos. Res. 2016, 168, 70–79. [Google Scholar] [CrossRef]
- Thorpe, A.; Harrison, R.M. Sources and Properties of Non-Exhaust Particulate Matter from Road Traffic: A Review. Sci. Total Environ. 2008, 400, 270–282. [Google Scholar] [CrossRef]
- Park, J.; Kim, H.; Kim, Y.; Heo, J.; Kim, S.-W.; Jeon, K.; Yi, S.-M.; Hopke, P.K. Source Apportionment of PM2.5 in Seoul, South Korea and Beijing, China Using Dispersion Normalized PMF. Sci. Total Environ. 2022, 833, 155056. [Google Scholar] [CrossRef]
- Viana, M.; Pandolfi, M.; Minguillón, M.C.; Querol, X.; Alastuey, A.; Monfort, E.; Celades, I. Inter-Comparison of Receptor Models for PM Source Apportionment: Case Study in an Industrial Area. Atmos. Environ. 2008, 42, 3820–3832. [Google Scholar] [CrossRef]
- Liu, T.; Hu, B.; Yang, Y.; Li, M.; Hong, Y.; Xu, X.; Xu, L.; Chen, N.; Chen, Y.; Xiao, H.; et al. Characteristics and Source Apportionment of PM2.5 on an Island in Southeast China: Impact of Sea-Salt and Monsoon. Atmos. Res. 2020, 235, 104786. [Google Scholar] [CrossRef]
- Helble, J.J. A Model for the Air Emissions of Trace Metallic Elements from Coal Combustors Equipped with Electrostatic Precipitators. Fuel Process. Technol. 2000, 63, 125–147. [Google Scholar] [CrossRef]
- Lee, J.H.; Yoshida, Y.; Turpin, B.J.; Hopke, P.K.; Poirot, R.L.; Lioy, P.J.; Oxley, J.C. Identification of Sources Contributing to Mid-Atlantic Regional Aerosol. J. Air Waste Manag. Assoc. 2002, 52, 1186–1205. [Google Scholar] [CrossRef] [PubMed]
- Hwang, K.-W.; Kim, D.-Y.; Jin, S.-J.; Kim, I.-H. A Study on the Factors Influencing Air Pollutions in the Islands of Korean Peninsula: Focusing on the Case of Ulleung, Jeju, and Baengnyong Island. J. Korea Acad. Ind. Coop. Soc. 2020, 21, 814–824. [Google Scholar] [CrossRef]
- Kang, E.; Lee, M.; Brune, W.H.; Lee, T.; Park, T.; Ahn, J.; Shang, X. Photochemical Aging of Aerosol Particles in Different Air Masses Arriving at Baengnyeong Island, Korea. Atmos. Chem. Phys. 2018, 18, 6661–6677. [Google Scholar] [CrossRef]
- Nojiri, R.; Osada, K.; Kurosaki, Y.; Matsuoka, M.; Sadanaga, Y. Variations in Gaseous Nitric Acid Concentrations at Tottori, Japan: Long-Range Transport from the Asian Continent and Local Production. Atmos. Environ. 2022, 274, 118988. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, B.; Liu, C.; Meng, X.; Jiang, J.; Herrmann, H.; Chen, J.; Li, X. Nitrate Pollution Deterioration in Winter Driven by Surface Ozone Increase. NPJ Clim. Atmos. Sci. 2024, 7, 160. [Google Scholar] [CrossRef]
- Kim, K.; Lee, C.; Choi, D.; Han, S.; Eom, J.; Han, J. A Study on the Formation Reactions and Conversion Mechanisms of HONO and HNO3 in the Atmosphere of Daejeon, Korea. Atmosphere 2024, 15, 267. [Google Scholar] [CrossRef]
- Lurmann, F.W.; Brown, S.G.; McCarthy, M.C.; Roberts, P.T. Processes Influencing Secondary Aerosol Formation in the San Joaquin Valley during Winter. J. Air Waste Manag. Assoc. 2006, 56, 1679–1693. [Google Scholar] [CrossRef]
Components | MDLs | Components | MDLs |
---|---|---|---|
PM2.5 | 5 | K | 0.00117 |
Ca | 0.00030 | ||
SO42− | 0.1 | Ti | 0.00016 |
Cr | 0.00012 | ||
NO3− | 0.1 | Mn | 0.00014 |
Fe | 0.00017 | ||
NH4+ | 0.1 | Cu | 0.00008 |
Zn | 0.00007 | ||
OC | 0.5 | As | 0.00006 |
Br | 0.00010 | ||
EC | 0.5 | Pb | 0.00013 |
PM2.5 | SO42− | NO3− | Cl− | Na+ | NH4+ | K+ | Mg2+ | Ca2+ | Cation | Anion | Ion | Ion/PM2.5 | OC | EC | Carbon | Carbon/PM2.5 | Metal | Metal/PM2.5 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BNI | n | 16,447 | 12,559 | 12,505 | 11,866 | 12,565 | 12,565 | 12,565 | 12,564 | 12,552 | 17,545 | 17,545 | 17,545 | 16,439 | 14,576 | 14,571 | 17,545 | 16,439 | 17,544 | 16,439 |
AVG | 19.8 | 3.9 | 4.8 | 0.3 | 0.1 | 2.9 | 0.1 | 0.0 | 0.0 | 3.2 | 9.0 | 12.2 | 0.61 | 1.9 | 0.4 | 2.3 | 0.12 | 2.1 | 0.11 | |
Max | 273 | 38.5 | 74.7 | 3.3 | 2.5 | 30.7 | 5.3 | 0.5 | 1.5 | 31.5 | 115 | 147 | 4.6 | 16.0 | 3.4 | 19.4 | 1.6 | 26.0 | 1.5 | |
Min | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
Median | 15.0 | 2.9 | 1.4 | 0.2 | 0.1 | 1.6 | 0.1 | 0.0 | 0.0 | 1.2 | 3.1 | 4.3 | 0.4 | 1.5 | 0.3 | 1.4 | 0.1 | 1.6 | 0.1 | |
SD | 16.8 | 3.6 | 8.3 | 0.4 | 0.2 | 3.5 | 0.2 | 0.0 | 0.1 | 3.4 | 10.4 | 13.7 | 0.3 | 1.6 | 0.4 | 2.0 | 0.1 | 2.1 | 0.1 | |
SMA | n | 16,847 | 15,452 | 15,458 | 15,456 | 15,458 | 15,460 | 15,037 | 15,454 | 15,387 | 17,545 | 17,545 | 17,545 | 16,835 | 15,631 | 15,631 | 17,545 | 16,835 | 17,545 | 16,835 |
AVG | 21.7 | 2.9 | 4.9 | 0.2 | 0.1 | 2.6 | 0.1 | 0.0 | 0.1 | 2.8 | 8.1 | 10.9 | 0.50 | 3.0 | 0.7 | 3.4 | 0.18 | 1.9 | 0.10 | |
Max | 152 | 22.0 | 52.5 | 8.0 | 1.1 | 18.6 | 0.6 | 0.2 | 2.5 | 19.4 | 65.0 | 84.3 | 4.8 | 16.9 | 11.0 | 19.9 | 2.1 | 12.0 | 1.8 | |
Min | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
Median | 18.0 | 2.1 | 2.2 | 0.1 | 0.0 | 1.6 | 0.0 | 0.0 | 0.0 | 1.5 | 4.3 | 5.8 | 0.4 | 2.7 | 0.6 | 3.0 | 0.2 | 1.6 | 0.1 | |
SD | 16.4 | 2.5 | 6.5 | 0.3 | 0.1 | 2.7 | 0.1 | 0.0 | 0.1 | 2.8 | 8.1 | 10.9 | 0.2 | 1.9 | 0.5 | 2.5 | 0.1 | 1.5 | 0.1 |
Source | Contribution | |
---|---|---|
BNI | SMA | |
Secondary sulfate | 30% | 23% |
Secondary nitrate | 26% | 27% |
Vehicle | 16% | 13% |
Biomass burning | 8% | 22% |
Industry | 5% | 7% |
Dust | 5% | 4% |
Sea salt | 4% | 4% |
Coal combustion | 3% | 0.1% |
Oil combustion | 3% | 0.1% |
Species | BNI (a) | SMA (b) | Variation (b−a) |
---|---|---|---|
PM2.5 | 16.2 | 26.5 | +10.3 |
SO42− | 2.91 | 3.21 | +0.30 |
NO3− | 3.05 | 7.14 | +4.09 |
Cl− | 0.28 | 0.30 | +0.02 |
Na+ | 0.11 | 0.06 | −0.05 |
NH4+ | 2.06 | 3.51 | +1.45 |
K+ | 0.07 | 0.07 | |
Mg2+ | 0.02 | 0.02 | |
Ca2+ | 0.03 | 0.06 | +0.03 |
OC | 1.54 | 3.32 | +1.78 |
EC | 0.32 | 0.78 | +0.46 |
S | 1.76 | 1.69 | −0.07 |
K | 0.16 | 0.21 | +0.05 |
Ca | 0.04 | 0.06 | +0.02 |
Ti | 0.00 | 0.01 | +0.01 |
V | 0.00 | 0.00 | |
Cr | 0.00 | 0.00 | |
Mn | 0.01 | 0.01 | |
Fe | 0.10 | 0.17 | +0.07 |
Ni | 0.00 | 0.00 | |
Cu | 0.00 | 0.01 | +0.01 |
Zn | 0.02 | 0.04 | +0.02 |
As | 0.01 | 0.01 | |
Se | 0.00 | 0.00 | |
Br | 0.00 | 0.01 | +0.01 |
Pb | 0.01 | 0.01 |
Sources | BNI (a) | SMA (b) | Variation (b−a) |
---|---|---|---|
Total (PM2.5) | 17.5 | 29.0 | +11.5 |
Secondary sulfate | 5.0 | 5.8 | +0.8 |
Secondary nitrate | 4.2 | 9.9 | +5.7 |
Vehicle | 2.6 | 3.3 | +0.7 |
Biomass burning | 1.7 | 5.7 | +4.0 |
Dust | 0.9 | 0.9 | |
Industry | 1.0 | 2.1 | +1.1 |
Sea salt | 0.7 | 1.2 | +0.4 |
Coal combustion | 0.8 | 0.2 | −0.6 |
Oil combustion | 0.5 | <0.1 | −0.4 |
Emission Source | Vehicle | Industry | Biomass Burning | |
---|---|---|---|---|
2020 year | NOx | 195,773 | 23,287 | 874 |
SOx | 1325 | 10,667 | 12 | |
PM2.5 | 5170 | 1091 | 1817 | |
NH3 | 866 | 6231 | 2 | |
BC | 3,35, | 243 | 276 | |
2021 year | NOx | 181,372 | 23,728 | 831 |
SOx | 584 | 9326 | 12 | |
PM2.5 | 4579 | 1217 | 1840 | |
NH3 | 702 | 6653 | 2 | |
BC | 2902 | 278 | 276 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.-C.; Song, H.-J.; Lee, C.-S.; Lim, Y.-J.; Ahn, J.-Y.; Seo, S.-J.; Han, J.-S. Characteristics and Source Identification for PM2.5 Using PMF Model: Comparison of Seoul Metropolitan Area with Baengnyeong Island. Atmosphere 2024, 15, 1146. https://doi.org/10.3390/atmos15101146
Kim K-C, Song H-J, Lee C-S, Lim Y-J, Ahn J-Y, Seo S-J, Han J-S. Characteristics and Source Identification for PM2.5 Using PMF Model: Comparison of Seoul Metropolitan Area with Baengnyeong Island. Atmosphere. 2024; 15(10):1146. https://doi.org/10.3390/atmos15101146
Chicago/Turabian StyleKim, Kyoung-Chan, Hui-Jun Song, Chun-Sang Lee, Yong-Jae Lim, Joon-Young Ahn, Seok-Jun Seo, and Jin-Seok Han. 2024. "Characteristics and Source Identification for PM2.5 Using PMF Model: Comparison of Seoul Metropolitan Area with Baengnyeong Island" Atmosphere 15, no. 10: 1146. https://doi.org/10.3390/atmos15101146
APA StyleKim, K. -C., Song, H. -J., Lee, C. -S., Lim, Y. -J., Ahn, J. -Y., Seo, S. -J., & Han, J. -S. (2024). Characteristics and Source Identification for PM2.5 Using PMF Model: Comparison of Seoul Metropolitan Area with Baengnyeong Island. Atmosphere, 15(10), 1146. https://doi.org/10.3390/atmos15101146