Driving Forces on the Distribution of Urban Ecosystem’s Non-Point Pollution Reduction Service
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Collection and Testing Methods of Soil Samples
2.3. Methods for Mapping Soil Properties
2.4. Methods for the Assessment of Surface Source Pollution Reduction Services
2.5. Methods for the Study of Drivers for Surface Source Pollution Reduction Services
- (1)
- Divergence and factor detection are used to detect the spatial heterogeneity of the dependent variable and to detect the extent to which an independent variable explains the spatial divergence of the dependent variable.
- (2)
- Interaction detection is used to assess the degree of influence from different driver factors combined on the dependent variable. There are five types of two-factor interactions. If the two-factor interaction q-value is less than any single-factor q-value, then it is nonlinearly attenuated; if the two-factor interaction q-value is between two single-factor q-values, then it is one-factor nonlinearly attenuated; if the two-factor interaction q-value is greater than any single-factor q-value, then it is two-factor enhanced; if the two-factor interaction q-value is equal to the sum of two single-factor q-values, then it is independent; and if the two-factor interaction q-value is greater than the sum of two single-factor q-values, then it is nonlinearly enhanced.
3. Results
3.1. Spatial Characteristics of Soil Properties
3.1.1. Accuracy Testing
3.1.2. Spatial Distribution Characteristics of Soil Particle Size and Organic Matter
3.1.3. Spatial Distribution Characteristics of Soil Contaminant Content
3.2. Results of Surface Source Pollution Reduction Services
3.3. Analysis of the Factors Influencing Surface Source Pollution Reduction Services
3.3.1. Forest Land
3.3.2. Industrial Land
3.3.3. Street and Town Residential Land
4. Discussion
4.1. Soil Attribute Mapping Based on Multipoint Monitoring Data Provides Better Data Support for Relevant Research and Management Applications
4.2. The Distribution Characteristics of the Different Properties of the Soil Show Significant Differences across the City
4.3. The Distribution Characteristics of Surface Source Pollution Reduction Services Show Significant Differences across the City
4.4. Spatial Distribution Characteristics of Surface Source Pollution Reduction Services Are Driven Mainly by Topography, Habitat Quality, and Ecosystem Type
4.5. Based on the Results of the Interaction Detection between Different Factors, Service-Enhancement-Oriented Optimization Solutions Can Be Developed
4.6. The Innovations and Limitations of This Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koomen, E.; van Bemmel, M.S.; van Huijstee, J.; Andrée, B.P.J.; Ferdinand, P.A.; van Rijn, F.J.A. An integrated global model of local urban development and population change. Comput. Environ. Urban Syst. 2023, 100, 101935. [Google Scholar] [CrossRef]
- UN-Habitat. World Cities Report 2022: Envisaging the Future of Cities; UN-Habitat: Nairobi, Kenya, 2022. [Google Scholar]
- Gui, H.; Yang, Q.; Lu, X.; Wang, H.; Gu, Q.; Martín, J.D. Spatial distribution, contamination characteristics and ecological-health risk assessment of toxic heavy metals in soils near a smelting area. Environ. Res. 2023, 222, 115328. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Yuan, R.; Wang, X.; Yan, Z. Soil tungsten contamination and health risk assessment of an abandoned tungsten mine site. Sci. Total Environ. 2022, 852, 158461. [Google Scholar] [CrossRef] [PubMed]
- Perović, V.; Čakmak, D.; Srbinović, O.S.; Mrvić, V.; Simić, S.B.; Matić, M.; Pavlović, D.; Jaramaz, D.; Mitrović, M.; Pavlović, P. A conceptual modelling framework for assessment multiple soil degradation: A case study in the region of Šumadija and Western Serbia. Ecol. Indic. 2023, 148, 110096. [Google Scholar] [CrossRef]
- Nascimento, C.M.; Demattê, J.A.M.; Mello, F.A.O.; Rosas, J.T.F.; Tayebi, M.; Bellinaso, H.; Greschuk, L.T.; Albarracín, H.S.R.; Ostovari, Y. Soil degradation detected by temporal satellite image in São Paulo state, Brazil. J. S. Am. Earth Sci. 2022, 120, 104036. [Google Scholar] [CrossRef]
- Zucca, C.; Fleiner, R.; Bonaiuti, E.; Kang, U. Land degradation drivers of anthropogenic sand and dust storms. Catena 2022, 219, 106575. [Google Scholar] [CrossRef]
- Zucca, C.; Middleton, N.; Kang, U.; Liniger, H. Shrinking water bodies as hotspots of sand and dust storms: The role of land degradation and sustainable soil and water management. Catena 2021, 207, 105669. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, H.; Wang, X.; Feng, Y.; Labzovskii, L. Challenging the land degradation in China’s Loess Plateau: Benefits, limitations, sustainability, and adaptive strategies of soil and water conservation. Ecol. Eng. 2019, 127, 135–150. [Google Scholar] [CrossRef]
- Han, Y.; Gu, X. Enrichment, contamination, ecological and health risks of toxic metals in agricultural soils of an industrial city, northwestern China. J. Trace Elem. Miner. 2023, 3, 100043. [Google Scholar] [CrossRef]
- Hu, W.; Wang, X.; Wang, X.; Xu, Y.; Li, R.; Zhao, L.; Ren, W.; Teng, Y. Enhancement of nitrogen fixation and diazotrophs by long-term polychlorinated biphenyl contamination in paddy soil. J. Hazard. Mater. 2023, 446, 130697. [Google Scholar] [CrossRef]
- Barroso, G.C.; Abril, G.; Machado, W.; Abuchacra, R.C.; Peixoto, R.B.; Bernardes, M.; Marques, G.S.; Sanders, C.J.; Oliveira, G.B.; Oliveira Filho, S.R.; et al. Linking eutrophication to carbon dioxide and methane emissions from exposed mangrove soils along an urban gradient. Sci. Total Environ. 2022, 850, 157988. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Muhammad, H.; Lv, X.; Wei, T.; Ren, X.; Jia, H.; Atif, S.; Hua, L. Prospects and applications of plant growth promoting rhizobacteria to mitigate soil metal contamination: A review. Chemosphere 2020, 246, 125823. [Google Scholar] [CrossRef] [PubMed]
- Brauman, K.A.; Garibaldi, L.A.; Polasky, S.; Aumeeruddy-Thomas, Y.; Brancalion, P.H.S.; DeClerck, F.; Jacob, U.; Mastrangelo, M.E.; Nkongolo, N.V.; Palang, H.; et al. Global trends in nature’s contributions to people. Proc. Natl. Acad. Sci. USA 2020, 117, 32799–32805. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Z.; Wang, X.; Miao, H. A primary study on Chinese terrestrial ecosystem services and their ecological-economic values. Acta Ecol. Sin. 1999, 19, 19–25. [Google Scholar]
- Ouyang, Z.; Song, C.; Zheng, H.; Polasky, S.; Xiao, Y.; Bateman, I.J.; Liu, J.; Ruckelshaus, M.; Shi, F.; Xiao, Y.; et al. Using gross ecosystem product (GEP) to value nature in decision making. Proc. Natl. Acad. Sci. USA 2020, 117, 14593–14601. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Z.; Zheng, H.; Xiao, Y.; Polasky, S.; Liu, J.; Xu, W.; Wang, Q.; Zhang, L.; Xiao, Y.; Rao, E.; et al. Improvements in ecosystem services from investments in natural capital. Science 2016, 352, 1455–1459. [Google Scholar] [CrossRef] [PubMed]
- Daily, G.C.; Matson, P.A. Ecosystem services: From theory to implementation. Proc. Natl. Acad. Sci. USA 2008, 105, 9455–9456. [Google Scholar] [CrossRef]
- Muhammad, S.; Wuyts, K.; Samson, R. Selection of Plant Species for Particulate Matter Removal in Urban Environments by Considering Multiple Ecosystem (Dis)Services and Environmental Suitability. Atmosphere 2022, 13, 1960. [Google Scholar] [CrossRef]
- Maragno, D.; Gaglio, M.; Robbi, M.; Appiotti, F.; Fano, E.A.; Gissi, E. Fine-scale analysis of urban flooding reduction from green infrastructure: An ecosystem services approach for the management of water flows. Ecol. Model. 2018, 386, 1–10. [Google Scholar] [CrossRef]
- Rizzo, A.; Bresciani, R.; Masi, F.; Boano, F.; Revelli, R.; Ridolfi, L. Flood reduction as an ecosystem service of constructed wetlands for combined sewer overflow. J. Hydrol. 2018, 560, 150–159. [Google Scholar] [CrossRef]
- Park, C.Y.; Park, Y.S.; Kim, H.G.; Yun, S.H.; Kim, C.-K. Quantifying and mapping cooling services of multiple ecosystems. Sustain. Cities Soc. 2021, 73, 103123. [Google Scholar] [CrossRef]
- Ferreira, C.S.S.; Seifollahi-Aghmiuni, S.; Destouni, G.; Ghajarnia, N.; Kalantari, Z. Soil degradation in the European Mediterranean region: Processes, status and consequences. Sci. Total Environ. 2022, 805, 150106. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Lu, P.; Valente, D.; Petrosillo, I.; Babu, S.; Xu, S.; Li, C.; Huang, D.; Liu, M. Analysis of soil erosion characteristics in small watershed of the loess tableland Plateau of China. Ecol. Indic. 2022, 137, 108765. [Google Scholar] [CrossRef]
- Luo, D.; Wang, M.; Xu, Y. Research on the impact of soil pollution on plant growth. J. Green Sci. Technol. 2017, 12, 120–122. [Google Scholar]
- Guerin, T.F. The effect of interactions between soil compaction and phenol contamination on plant growth characteristics: Implications for scaling bioremediation at industrial sites. J. Environ. Manag. 2022, 302, 114017. [Google Scholar] [CrossRef]
- Wang, S.; Roland, B.; Adhikari, K.; Zhuang, Q.; Jin, X.; Han, C.; Qian, F. Spatial-temporal variations and driving factors of soil organic carbon in forest ecosystems of Northeast China. For. Ecosyst. 2023, 10, 100101. [Google Scholar] [CrossRef]
- Hoeffner, K.; Santonja, M.; Monard, C.; Barbe, L.; Moing, M.L.E.; Cluzeau, D. Soil properties, grassland management, and landscape diversity drive the assembly of earthworm communities in temperate grasslands. Pedosphere 2021, 31, 375–383. [Google Scholar] [CrossRef]
- Zeng, S.; Ma, J.; Yang, Y.; Zhang, S.; Liu, G.-J.; Chen, F. Spatial assessment of farmland soil pollution and its potential human health risks in China. Sci. Total Environ. 2019, 687, 642–653. [Google Scholar] [CrossRef]
- Wang, W.; Wang, H.; Huang, J.; Yang, H.; Li, J.; Liu, Q.; Wang, Z. Causality and dynamic spillover effects of megacities on regional industrial pollution reduction. Heliyon 2023, 9, e14047. [Google Scholar] [CrossRef]
- Li, H.; Huang, W.; Qian, Y.; Klemeš, J.J. Air pollution risk assessment related to fossil fuel-driven vehicles in megacities in China by employing the Bayesian network coupled with the Fault Tree method. J. Clean. Prod. 2023, 383, 135458. [Google Scholar] [CrossRef]
- Huang, J.; Wu, Y.; Sun, J.; Li, X.; Geng, X.; Zhao, M.; Sun, T.; Fan, Z. Health risk assessment of heavy metal(loid)s in park soils of the largest megacity in China by using Monte Carlo simulation coupled with positive matrix factorization model. J. Hazard. Mater. 2021, 415, 125629. [Google Scholar] [CrossRef] [PubMed]
- Xie, T.; Hou, Y.; Chen, W.P.; Wang, M.E.; Lv, S.T.; Li, X.Z. Impact of urbanization on the soil ecological environment: A review. Acta Ecol. Sin. 2019, 39, 1154–1164. [Google Scholar]
- Chen, Q.; Su, Y.; Wang, S.; Zhao, L. Research and practice on the degradation and prevention technology of urban green space soil—Taking Tianjin Cultural Center as an example. Tianjin Agric. Sci. 2016, 22, 124–128. [Google Scholar]
- Othman, A.; El-Saoud, W.A.; Habeebullah, T.; Shaaban, F.; Abotalib, A.Z. Risk assessment of flash flood and soil erosion impacts on electrical infrastructures in overcrowded mountainous urban areas under climate change. Reliab. Eng. Syst. Saf. 2023, 236, 109302. [Google Scholar] [CrossRef]
- Xu, D.; Ouyang, Z.; Wu, T.; Han, B. Dynamic Trends of Urban Flooding Mitigation Services in Shenzhen, China. Sustainability 2020, 12, 4799. [Google Scholar] [CrossRef]
- Yu, T. A brief analysis of the development of soil safety in Shenzhen since the 13th Five-Year Plan. Guangdong Chem. Ind. 2022, 49, 112–113, 126. [Google Scholar]
- Sun, X.; Jia, L. Migration Characteristics of Heavy Metals in Rock-Soil-Plant System in Yangmeikeng Area, Shenzhen. South China Geol. 2020, 36, 270–279. [Google Scholar]
- Shu, C.; Cai, W.; Du, K.; Jinag, N.; Lin, L.; Li, X. Study on the flora and risk distribution of dominant invasive plants in Shenzhen. Acta Ecol. Sin. 2023, 43, 1113–1125. [Google Scholar]
- Zhang, X.; Chen, P.; Dai, S.; Han, Y. Analysis of non-point source nitrogen pollution in watersheds based on SWAT model. Ecol. Indic. 2022, 138, 108881. [Google Scholar] [CrossRef]
- National Forestry and Grassland Administration of the People’s Republic of China. Measurement of Forest Soil Particle Composition (Mechanical Composition) in the Forestry Industry Standard of the People’s Republic of China; National Forestry and Grassland Administration of the People’s Republic of China: Beijing, China, 1999.
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Soil Testing Part 6: Determination of Soil Organic Matter; Ministry of Agriculture and Rural Affairs of the People’s Republic of China: Beijing, China, 2006.
- Ministry of Ecology and Environment of the People’s Republic of China. Determination of Total Phosphorus in Soil by Alkali Fusion-Molybdenum Antimony Anti-Spectrophotometry; Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2011.
- Ministry of Ecology and Environment of the People’s Republic of China. Determination of Total Nitrogen in Soil Quality by Kjeldahl Method; Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2014.
- Agyeman, P.C.; Kingsley, J.; Kebonye, N.M.; Khosravi, V.; Borůvka, L.; Vašát, R. Prediction of the concentration of antimony in agricultural soil using data fusion, terrain attributes combined with regression Kriging. Environ. Pollut. 2023, 316, 120697. [Google Scholar] [CrossRef]
- Chen, B.; Yang, X.; Xu, J. Spatio-Temporal Variation and Influencing Factors of Ozone Pollution in Beijing. Atmosphere 2022, 13, 359. [Google Scholar] [CrossRef]
- Li, C.; Luo, Y.; Bao, A.; Zhang, Y.; Yang, C.; Cui, L. Study on Spatial Interpolation of Compositional Data Based on Log-Ratio Transformation. Sci. Agric. Sin. 2012, 45, 648–655. [Google Scholar]
- Shen, Z. Spatial Prediction of Topsoil Texture and Analysis of the Causes in Loess Region of Southern Ningxia at Different Scales; Chinese Academy of Agricultural Sciences: Beijing, China, 2020. [Google Scholar]
- Desmet, P.; Govers, G. A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. J. Soil Water Conserv. 1996, 51, 427–433. [Google Scholar]
- Kirkby, M.J.; Beven, K.J. A physically based, variable contributing area model of basin hydrology. Hydrol. Sci. J. 1979, 24, 43–69. [Google Scholar]
- Qin, C.-Z.; Zhu, A.X.; Pei, T.; Li, B.-L.; Scholten, T.; Behrens, T.; Zhou, C.-H. An approach to computing topographic wetness index based on maximum downslope gradient. Precis. Agric. 2011, 12, 32–43. [Google Scholar] [CrossRef]
- Zevenbergen, L.W.; Thorne, C.R. Quantitative analysis of land surface topography. Earth Surf. Process. Landf. 1987, 12, 47–56. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning; Department of Agriculture, Science and Education Administration: Washington, DC, USA, 1978. [Google Scholar]
- Shu, C.; Meng, H.; Han, B.; Yang, H.; Pan, X.; Lin, L.; Ouyang, Z. Impact of precipitation factors on gross ecosystem product. Acta Ecol. Sin. 2023, 43, 1054–1063. [Google Scholar]
- Wang, J.-F.; Li, X.-H.; Christakos, G.; Liao, Y.-L.; Zhang, T.; Gu, X.; Zheng, X.-Y. Geographical Detectors-Based Health Risk Assessment and its Application in the Neural Tube Defects Study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Chen, L.; Chen, L.; Shi, M. Spatial Distribution and Variability of Soil Fine Diameter in Suburbs of Tianjin. Environ. Sci. Technol. 2013, 36, 29–34, 63. [Google Scholar]
- Wan, H.; Qin, H.; Shang, S. Ordinary Kriging Interpolation and Smoothing Effect Correction for Soil Texture Mapping in Hetao Irrigation District. Trans. Chin. Soc. Agric. Mach. 2023, 54, 339–350. [Google Scholar]
- Zhang, H.; Zhu, G.; Wu, J.; Wu, X. Simulation of spatial distribution simulation of soil organic matter based on BP neural network and Kriging interpolation—Taking Hua’an County, Fujian Province as an example. Subtrop. Agric. Res. 2021, 17, 40–47. [Google Scholar]
- Tang, J.; Wang, C.; Li, Q.; Li, B.; YI, Y. Spatial variability of organic matter and total nitrogen in tobacco growing soil in the north part of Sichuan province. Acta Table Sin. 2014, 20, 66–72. [Google Scholar]
- Wang, Y.; Yang, X.; Hao, L. Spatio-Temporal Pattern and Influencing Factors of Vegetation NDVI in Western Sichuanplateau from 2001 to 2021; Remote Sensing for Natural Resources: Beijing, China, 2023; pp. 1–9. [Google Scholar]
- Chen, K.; Ding, Y.; Zhang, X. Analysis of Spatio-Temporal Dynamics and Driving Forces of Vegetation Cover in the Fuyang River Basin Based on the Geographic Detector. Front. Earth Sci. 2022, 1–15. [Google Scholar]
- Hang, L.; Chen, Q.; Feng, J.; Liu, R. Spatial-Temporal Characteristics and Driving Mechanisms Analysis of Habitat Quality in Shenfu Mining Area Based on Geodetector. J. Xi’an Univ. Technol. 2023, 1–14. [Google Scholar]
- Xue, L.; Li, H.; Shen, W.; Zhao, X.; Liu, Z.; Zheng, Z.; Hu, J.; Meng, S. Applying GeoDetector to disentangle the contributions of the 4-As evaluation indicators to the spatial differentiation of coal resource security. Energy Policy 2023, 173, 113418. [Google Scholar] [CrossRef]
- Qiao, Y.; Wang, X.; Han, Z.; Tian, M.; Wang, Q.; Wu, H.; Liu, F. GeoDetector based identification of influencing factors on spatial distribution patterns of heavy metals in soil: A case in the upper reaches of the Yangtze River, China. Appl. Geochem. 2022, 146, 105459. [Google Scholar] [CrossRef]
- Hao, Z.; Wu, D. Data Preprocessing of Soil Attributes for Ecohydrological Applications Using SWAT Model at Xin’anjiang Upstream Watershed, China. Ecohydrol. Hydrobiol. 2023, 23, 198–210. [Google Scholar] [CrossRef]
- Bouslihim, Y.; Rochdi, A.; El Amrani Paaza, N.; Liuzzo, L. Understanding the effects of soil data quality on SWAT model performance and hydrological processes in Tamedroust watershed (Morocco). J. Afr. Earth Sci. 2019, 160, 103616. [Google Scholar] [CrossRef]
- Deng, X.; Chen, X.; Ma, W.; Ren, Z.; Zhang, M.; Grieneisen, M.L.; Long, W.; Ni, Z.; Zhan, Y.; Lv, X. Baseline map of organic carbon stock in farmland topsoil in East China. Agric. Ecosyst. Environ. 2018, 254, 213–223. [Google Scholar] [CrossRef]
First-Level Indicators | Second-Level Indicators | General Information |
---|---|---|
Climate | X1: Annual precipitation | mm |
X2: Average annual temperature | °C | |
Soil properties | X3: Content of sand particles | g/kg |
X4: Content of clay particles | g/kg | |
X5: Content of silt particles | g/kg | |
X6: Content of organic matter | g/kg | |
Topography | X7: Elevation | m |
X8: Slope | Degree | |
Habitat quality | X9: Normalized difference vegetation index, NDVI | Dimensionless |
X10: Net primary productivity, NPP | t/hm2 | |
Ecosystem type | X11: Ecosystem type | Forests, grasslands, wetlands, impervious surfaces, farmlands, barren |
Soil Properties | ME | MSE | ASE | RMSE | RMSSE |
---|---|---|---|---|---|
Silt particles | 0.015 | 0.012 | 11.060 | 11.071 | 1.001 |
Clay particles | 0.011 | 0.009 | 11.100 | 11.080 | 1.003 |
Sand particles | 0.001 | 0.001 | 11.120 | 11.110 | 1.012 |
Organic matter | 0.016 | 0.013 | 11.090 | 11.080 | 1.011 |
Total nitrogen | 0.012 | 0.010 | 11.070 | 11.082 | 1.016 |
Total phosphorus | 0.003 | 0.002 | 11.113 | 11.102 | 1.108 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shu, C.; Du, K.; Han, B.; Chen, Z.; Wang, H.; Ouyang, Z. Driving Forces on the Distribution of Urban Ecosystem’s Non-Point Pollution Reduction Service. Atmosphere 2023, 14, 873. https://doi.org/10.3390/atmos14050873
Shu C, Du K, Han B, Chen Z, Wang H, Ouyang Z. Driving Forces on the Distribution of Urban Ecosystem’s Non-Point Pollution Reduction Service. Atmosphere. 2023; 14(5):873. https://doi.org/10.3390/atmos14050873
Chicago/Turabian StyleShu, Chengji, Kaiwei Du, Baolong Han, Zhiwen Chen, Haoqi Wang, and Zhiyun Ouyang. 2023. "Driving Forces on the Distribution of Urban Ecosystem’s Non-Point Pollution Reduction Service" Atmosphere 14, no. 5: 873. https://doi.org/10.3390/atmos14050873
APA StyleShu, C., Du, K., Han, B., Chen, Z., Wang, H., & Ouyang, Z. (2023). Driving Forces on the Distribution of Urban Ecosystem’s Non-Point Pollution Reduction Service. Atmosphere, 14(5), 873. https://doi.org/10.3390/atmos14050873