Modeling of Organic Aerosol in Seoul Using CMAQ with AERO7
Abstract
:1. Introduction
2. Materials and Methods
2.1. Monitoring of Carbonaceous Aerosol and Estimation of the Secondary Organic Aerosol Concentration
2.2. Model Simulation and Performance Evaluation
2.3. Atmospheric Aerosol Chemistry
2.4. Emissions
3. Results and Discussion
3.1. Model Evaluation on OC and EC Prediction
3.2. Model Evaluation on SOC Prediction
3.3. Modeling of the Seasonal Behavior of Organic Aerosol Compositions
3.4. Organic Matter to Organic Carbon Ratio
4. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dockery, D.W.; Pope, C.A.; Xu, X.; Spengler, J.D.; Ware, J.H.; Fay, M.E.; Ferris, B.G., Jr.; Speizer, F.E. An association between air pollution and mortality in six US cities. N. Engl. J. Med. 1993, 329, 1753–1759. [Google Scholar] [CrossRef]
- Pope, C.A.; Thun, M.J.; Namboodiri, M.M.; Dockery, D.W.; Evans, J.S.; Speizer, F.E.; Heath, C.W. Particulate air pollution as a predictor of mortality in a prospective study of US adults. Am. J. Respir. Crit. Care Med. 1995, 151, 669–674. [Google Scholar] [CrossRef] [PubMed]
- Pui, D.Y.; Chen, S.-C.; Zuo, Z. PM2.5 in China: Measurements, sources, visibility and health effects, and mitigation. Particuology 2014, 13, 1–26. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, R.; Yu, W. The effects of PM2.5 concentrations and relative humidity on atmospheric visibility in Beijing. J. Geophys. Res. Atmos. 2019, 124, 2235–2259. [Google Scholar] [CrossRef]
- Jimenez, J.L.; Canagaratna, M.; Donahue, N.; Prevot, A.; Zhang, Q.; Kroll, J.H.; DeCarlo, P.F.; Allan, J.D.; Coe, H.; Ng, N. Evolution of organic aerosols in the atmosphere. Science 2009, 326, 1525–1529. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Environmental Research (NIER). Analysis of Characteristics and Formation Mechanism of Fine Particulate Matter (PM2.5) Concentration by Province (I); NIER: Incheon, Republic of Korea, 2011. Available online: https://scienceon.kisti.re.kr/srch/selectPORSrchReport.do?cn=TRKO201300007595 (accessed on 28 March 2023).
- Shon, Z.-H.; Kim, K.-H.; Song, S.-K.; Jung, K.; Kim, N.-J.; Lee, J.-B. Relationship between water-soluble ions in PM2.5 and their precursor gases in Seoul megacity. Atmos. Environ. 2012, 59, 540–550. [Google Scholar] [CrossRef]
- Lee, Y.-J.; Park, M.-K.; Jung, S.-A.; Kim, S.-J.; Jo, M.-R.; Song, I.-H.; Lyu, Y.-S.; Lim, Y.-J.; Kim, J.-H.; Jung, H.-J.; et al. Characteristics of Particulate Carbon in the Ambient Air in the Korean Peninsula. J. Korean Soc. Atmos. Environ. 2015, 31, 330–344. [Google Scholar] [CrossRef]
- Cho, S.-H.; Kim, P.-R.; Han, Y.-J.; Kim, H.-W.; Yi, S.-M. Characteristics of Ionic and Carbonaceous Compounds in PM2.5 and High Concentration Events in Chuncheon, Korea. J. Korean Soc. Atmos. Environ. 2016, 32, 435–447. [Google Scholar] [CrossRef]
- Park, E.H.; Heo, J.; Kim, H.; Yi, S.M. The major chemical constituents of PM2.5 and airborne bacterial community phyla in Beijing, Seoul, and Nagasaki. Chemosphere 2020, 254, 126870. [Google Scholar] [CrossRef]
- Simon, H.; Bhave, P.V. Simulating the degree of oxidation in atmospheric organic particles. Environ. Sci. Technol. 2012, 46, 331–339. [Google Scholar] [CrossRef]
- Li, J.; Cleveland, M.; Ziemba, L.D.; Griffin, R.J.; Barsanti, K.C.; Pankow, J.F.; Ying, Q. Modeling regional secondary organic aerosol using the Master Chemical Mechanism. Atmos. Environ. 2015, 102, 52–61. [Google Scholar] [CrossRef]
- Ying, Q.; Li, J.; Kota, S.H. Significant contributions of isoprene to summertime secondary organic aerosol in eastern United States. Environ. Sci. Technol. 2015, 49, 7834–7842. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, M.; Tang, G.; Sun, Y.; Wu, F.; Xu, Y. Assessment of dicarbonyl contributions to secondary organic aerosols over China using RAMS-CMAQ. Atmos. Chem. Phys. 2019, 19, 6481–6495. [Google Scholar] [CrossRef]
- Lee, H.-J.; Jo, H.-Y.; Song, C.-K.; Jo, Y.-J.; Park, S.-Y.; Kim, C.-H. Sensitivity of Simulated PM2.5 Concentrations over Northeast Asia to Different Secondary Organic Aerosol Modules during the KORUS-AQ Campaign. Atmosphere 2020, 11, 1004. [Google Scholar] [CrossRef]
- Yu, Z.; Jang, M.; Kim, S.; Son, K.; Han, S.; Madhu, A.; Park, J. Secondary organic aerosol formation via multiphase reaction of hydrocarbons in urban atmospheres using CAMx integrated with the UNIPAR model. Atmos. Chem. Phys. 2022, 22, 9083–9098. [Google Scholar] [CrossRef]
- Oak, Y.J.; Park, R.J.; Jo, D.S.; Hodzic, A.; Jimenez, J.L.; Campuzano-Jost, P.; Nault, B.A.; Kim, H.; Kim, H.; Ha, E.S.; et al. Evaluation of Secondary Organic Aerosol (SOA) Simulations for Seoul, Korea. J. Adv. Model. Earth Syst. 2022, 14, e2021MS002760. [Google Scholar] [CrossRef]
- Byun, D.; Schere, K.L. Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) modeling system. Appl. Mech. Rev. 2006, 59, 51–77. [Google Scholar] [CrossRef]
- Binkowski, F.S.; Roselle, S.J. Models-3 Community Multiscale Air Quality (CMAQ) model aerosol component 1. Model description. J. Geophys. Res. Atmos. 2003, 108, 4183. [Google Scholar] [CrossRef]
- Bhave, P.V.; Roselle, S.J.; Binkowski, F.S.; Nolte, C.G.; Yu, S.; Gipson, G.L.; Schere, K.L. CMAQ aerosol module development: Recent enhancements and future plans. In Proceedings of the 2004 Models-3/CMAQ Conference, Chapel Hill, NC, USA, 18–20 October 2004; p. 20. [Google Scholar]
- Sakulyanontvittaya, T.; Guenther, A.; Helmig, D.; Milford, J.; Wiedinmyer, C. Secondary organic aerosol from sesquiterpene and monoterpene emissions in the United States. Environ. Sci. Technol. 2008, 42, 8784–8790. [Google Scholar] [CrossRef]
- Baek, J.; Hu, Y.; Odman, M.T.; Russell, A.G. Modeling secondary organic aerosol in CMAQ using multigenerational oxidation of semi-volatile organic compounds. J. Geophys. Res. Atmos. 2011, 116, D22204. [Google Scholar] [CrossRef]
- Edney, E.; Kleindienst, T.; Lewandowski, M.; Offenberg, J. Updated SOA Chemical Mechanism for the Community Multi-Scale Air Quality Model; US Environmental Protection Agency: Research Triangle Park, NC, USA, 2007.
- Carlton, A.G.; Turpin, B.J.; Altieri, K.E.; Seitzinger, S.P.; Mathur, R.; Roselle, S.J.; Weber, R.J. CMAQ model performance enhanced when in-cloud secondary organic aerosol is included: Comparisons of organic carbon predictions with measurements. Environ. Sci. Technol. 2008, 42, 8798–8802. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, G.; Hu, J.; Chen, S.-H.; Wiedinmyer, C.; Kleeman, M.; Ying, Q. Evaluation of a seven-year air quality simulation using the Weather Research and Forecasting (WRF)/Community Multiscale Air Quality (CMAQ) models in the eastern United States. Sci. Total Environ. 2014, 473, 275–285. [Google Scholar] [CrossRef] [PubMed]
- Appel, K.W.; Bash, J.O.; Fahey, K.M.; Foley, K.M.; Gilliam, R.C.; Hogrefe, C.; Hutzell, W.T.; Kang, D.; Mathur, R.; Murphy, B.N.; et al. The Community Multiscale Air Quality (CMAQ) model versions 5.3 and 5.3.1: System updates and evaluation. Geosci. Model Dev. 2021, 14, 2867–2897. [Google Scholar] [CrossRef] [PubMed]
- Murphy, B.N.; Woody, M.C.; Jimenez, J.L.; Carlton, A.M.G.; Hayes, P.L.; Liu, S.; Ng, N.L.; Russell, L.M.; Setyan, A.; Xu, L.; et al. Semivolatile POA and parameterized total combustion SOA in CMAQv5.2: Impacts on source strength and partitioning. Atmos. Chem. Phys. 2017, 17, 11107–11133. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Lv, Z.; Qi, L.; Zhao, B.; Deng, F.; Chang, X.; Wang, X.; Luo, Z.; Zhang, Z.; Xu, H. Comprehensive Assessment for the Impacts of S/IVOC Emissions from Mobile Sources on SOA Formation in China. Environ. Sci. Technol. 2022, 56, 16695–16706. [Google Scholar] [CrossRef]
- An, J.; Huang, C.; Huang, D.; Qin, M.; Liu, H.; Yan, R.; Qiao, L.; Zhou, M.; Li, Y.; Zhu, S. Sources of organic aerosols in eastern China: A modeling study with high-resolution intermediate-volatility and semivolatile organic compound emissions. Atmos. Chem. Phys. 2023, 23, 323–344. [Google Scholar] [CrossRef]
- Pennington, E.A.; Seltzer, K.M.; Murphy, B.N.; Qin, M.; Seinfeld, J.H.; Pye, H.O. Modeling secondary organic aerosol formation from volatile chemical products. Atmos. Chem. Phys. 2021, 21, 18247–18261. [Google Scholar] [CrossRef]
- Seltzer, K.M.; Murphy, B.N.; Pennington, E.A.; Allen, C.; Talgo, K.; Pye, H.O. Volatile chemical product enhancements to criteria pollutants in the United States. Environ. Sci. Technol. 2021, 56, 6905–6913. [Google Scholar] [CrossRef]
- Seltzer, K.M.; Pennington, E.; Rao, V.; Murphy, B.N.; Strum, M.; Isaacs, K.K.; Pye, H.O. Reactive organic carbon emissions from volatile chemical products. Atmos. Chem. Phys. 2021, 21, 5079–5100. [Google Scholar] [CrossRef]
- Turpin, B.J.; Huntzicker, J.J. Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS. Atmos. Environ. 1995, 29, 3527–3544. [Google Scholar] [CrossRef]
- Delfino, R.J.; Staimer, N.; Tjoa, T.; Arhami, M.; Polidori, A.; Gillen, D.L.; George, S.C.; Shafer, M.M.; Schauer, J.J.; Sioutas, C. Associations of primary and secondary organic aerosols with airway and systemic inflammation in an elderly panel cohort. Epidemiology 2010, 892–902. [Google Scholar] [CrossRef]
- Pio, C.; Cerqueira, M.; Harrison, R.M.; Nunes, T.; Mirante, F.; Alves, C.; Oliveira, C.; de la Campa, A.S.; Artíñano, B.; Matos, M. OC/EC ratio observations in Europe: Re-thinking the approach for apportionment between primary and secondary organic carbon. Atmos. Environ. 2011, 45, 6121–6132. [Google Scholar] [CrossRef]
- Park, S.-S.; Jung, S.-A.; Gong, B.-J.; Cho, S.-Y.; Lee, S.-J. Characteristics of PM2.5 haze episodes revealed by highly time-resolved measurements at an air pollution monitoring Supersite in Korea. Aerosol Air Qual. Res. 2013, 13, 957–976. [Google Scholar] [CrossRef]
- Lim, H.-J.; Turpin, B.J. Origins of primary and secondary organic aerosol in Atlanta: Results of time-resolved measurements during the Atlanta supersite experiment. Environ. Sci. Technol. 2002, 36, 4489–4496. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.; Park, H.; Son, J.; Chang, L. Development of the Global to Mesoscale Air Quality Forecast and Analysis System (GMAF) and Its Application to PM2.5 Forecast in Korea. Atmosphere 2021, 12, 411. [Google Scholar] [CrossRef]
- Rémy, S.; Kipling, Z.; Flemming, J.; Boucher, O.; Nabat, P.; Michou, M.; Bozzo, A.; Ades, M.; Huijnen, V.; Benedetti, A. Description and evaluation of the tropospheric aerosol scheme in the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS-AER, cycle 45R1). Geosci. Model Dev. 2019, 12, 4627–4659. [Google Scholar] [CrossRef]
- Emery, C.; Jung, J.; Koo, B.; Yarwood, G. Improvements to CAMx snow cover treatments and Carbon Bond chemical mechanism for winter ozone. In Final Report; Ramboll Environ: Novato, CA, USA, 2015. [Google Scholar]
- Emery, C.; Liu, Z.; Russell, A.G.; Odman, M.T.; Yarwood, G.; Kumar, N. Recommendations on statistics and benchmarks to assess photochemical model performance. J. Air Waste Manag. Assoc. 2017, 67, 582–598. [Google Scholar] [CrossRef]
- Donahue, N.M.; Robinson, A.; Stanier, C.; Pandis, S. Coupled partitioning, dilution, and chemical aging of semivolatile organics. Environ. Sci. Technol. 2006, 40, 2635–2643. [Google Scholar] [CrossRef]
- Murphy, B.N.; Donahue, N.M.; Robinson, A.L.; Pandis, S.N. A naming convention for atmospheric organic aerosol. Atmos. Chem. Phys. 2014, 14, 5825–5839. [Google Scholar] [CrossRef]
- Boy, M.; Karl, T.; Turnipseed, A.; Mauldin, R.L.; Kosciuch, E.; Greenberg, J.; Rathbone, J.; Smith, J.; Held, A.; Barsanti, K. New particle formation in the Front Range of the Colorado Rocky Mountains. Atmos. Chem. Phys. 2008, 8, 1577–1590. [Google Scholar] [CrossRef]
- Pye, H.O.; Luecken, D.J.; Xu, L.; Boyd, C.M.; Ng, N.L.; Baker, K.R.; Ayres, B.R.; Bash, J.O.; Baumann, K.; Carter, W.P. Modeling the current and future roles of particulate organic nitrates in the southeastern United States. Environ. Sci. Technol. 2015, 49, 14195–14203. [Google Scholar] [CrossRef] [PubMed]
- Guenther, A.; Jiang, X.; Heald, C.L.; Sakulyanontvittaya, T.; Duhl, T.A.; Emmons, L.; Wang, X. The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2. 1): An extended and updated framework for modeling biogenic emissions. Geosci. Model Dev. 2012, 5, 1471–1492. [Google Scholar] [CrossRef]
- Guenther, A.; Baugh, B.; Brasseur, G.; Greenberg, J.; Harley, P.; Klinger, L.; Serça, D.; Vierling, L. Isoprene emission estimates and uncertainties for the Central African EXPRESSO study domain. J. Geophys. Res. Atmos. 1999, 104, 30625–30639. [Google Scholar] [CrossRef]
- Vettikkat, L.; Miettinen, P.; Buchholz, A.; Rantala, P.; Yu, H.; Schallhart, S.; Petäjä, T.; Seco, R.; Männistö, E.; Kulmala, M. High emission rates and strong temperature response make boreal wetlands a large source of isoprene and terpenes. Atmos. Chem. Phys. 2023, 23, 2683–2698. [Google Scholar] [CrossRef]
- Lim, J.; Park, H.; Cho, S. Evaluation of the ammonia emission sensitivity of secondary inorganic aerosol concentrations measured by the national reference method. Atmos. Environ. 2022, 270, 118903. [Google Scholar] [CrossRef]
- Saylor, R.D.; Edgerton, E.S.; Hartsell, B.E. Linear regression techniques for use in the EC tracer method of secondary organic aerosol estimation. Atmos. Environ. 2006, 40, 7546–7556. [Google Scholar] [CrossRef]
- Pye, H.O.; Pinder, R.W.; Piletic, I.R.; Xie, Y.; Capps, S.L.; Lin, Y.-H.; Surratt, J.D.; Zhang, Z.; Gold, A.; Luecken, D.J. Epoxide pathways improve model predictions of isoprene markers and reveal key role of acidity in aerosol formation. Environ. Sci. Technol. 2013, 47, 11056–11064. [Google Scholar] [CrossRef]
- Worton, D.R.; Surratt, J.D.; LaFranchi, B.W.; Chan, A.W.; Zhao, Y.; Weber, R.J.; Park, J.-H.; Gilman, J.B.; De Gouw, J.; Park, C. Observational insights into aerosol formation from isoprene. Environ. Sci. Technol. 2013, 47, 11403–11413. [Google Scholar] [CrossRef]
- Mahilang, M.; Deb, M.K.; Pervez, S. Biogenic secondary organic aerosols: A review on formation mechanism, analytical challenges and environmental impacts. Chemosphere 2021, 262, 127771. [Google Scholar] [CrossRef]
- Fu, T.M.; Jacob, D.J.; Wittrock, F.; Burrows, J.P.; Vrekoussis, M.; Henze, D.K. Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols. J. Geophys. Res. Atmos. 2008, 113, D15303. [Google Scholar] [CrossRef]
- Griffin, R.J.; Cocker III, D.R.; Flagan, R.C.; Seinfeld, J.H. Organic aerosol formation from the oxidation of biogenic hydrocarbons. J. Geophys. Res. Atmos. 1999, 104, 3555–3567. [Google Scholar] [CrossRef]
- Kim, H.; Zhang, Q.; Heo, J. Influence of intense secondary aerosol formation and long-range transport on aerosol chemistry and properties in the Seoul Metropolitan Area during spring time: Results from KORUS-AQ. Atmos. Chem. Phys. 2018, 18, 7149–7168. [Google Scholar] [CrossRef]
- Crawford, J.H.; Ahn, J.-Y.; Al-Saadi, J.; Chang, L.; Emmons, L.K.; Kim, J.; Lee, G.; Park, J.-H.; Park, R.J.; Woo, J.H. The Korea–United States Air Quality (KORUS-AQ) field study. Elem. Sci. Anth. 2021, 9, 00163. [Google Scholar] [CrossRef] [PubMed]
Name | C* 5 (μg/m3) | O/C | OM/OC 6 | |
---|---|---|---|---|
EPOA | ALVPO1 1 | 0.1 | 0.185 | 1.39 |
ASVPO1 2 | 1 | 0.123 | 1.32 | |
ASVPO2 | 10 | 0.073 | 1.26 | |
ASVPO3 | 100 | 0.032 | 1.21 | |
AIVPO1 3 | 1000 | 0.000 | 1.17 | |
OPOA | ALVOO1 4 | 0.01 | 0.886 | 2.27 |
ALVOO2 | 0.1 | 0.711 | 2.06 | |
ASVOO1 | 1 | 0.567 | 1.88 | |
ASVOO2 | 10 | 0.447 | 1.73 | |
ASVOO3 | 100 | 0.345 | 1.60 |
Name | Formation Processes | C* (μg/m3) | O/C | OM/OC |
---|---|---|---|---|
AAVB1 | Oxidation products of anthropogenic VOCs | 0.01 | 1.227 | 2.70 |
AAVB2 | 1 | 0.947 | 2.35 | |
AAVB3 | 10 | 0.803 | 2.17 | |
AAVB4 | 100 | 0.659 | 1.99 | |
pcSOA | Oxidation products of pcVOCs | 10−5 | 0.667 | 2.00 |
AOLGA | Oligomer products of anthropogenic SOA compounds | 10−10 | 1.067 | 2.50 |
Name | Formation Processes | C* (μg/m3) | O/C | OM/OC |
---|---|---|---|---|
AMT1 | SOA product from monoterpene photo-oxidation | 0.01 | 0.400 | 1.67 |
AMT2 | 0.1 | 0.400 | 1.67 | |
AMT3 | 1 | 0.444 | 1.72 | |
AMT4 | 10 | 0.300 | 1.53 | |
AMT5 | 100 | 0.333 | 1.57 | |
AMT6 | 1000 | 0.200 | 1.40 | |
AMTNO3 | Semi-volatile organic nitrates from monoterpene oxidation | 12 | 0.587 | 1.90 |
AMTHYD | Non-volatile organic hydrolysis product of MTNO3 | 10−10 | 0.299 | 1.54 |
ASQT | Semi-volatile SOA product from sesquiterpene oxidation | 24.984 | 0.283 | 1.52 |
AISO1 | Semi-volatile SOA products from isoprene | 116.01 | 0.827 | 2.20 |
AISO2 | 0.617 | 0.851 | 2.23 | |
AISO3 | Acid-catalyzed isoprene SOA compounds | 10−10 | 1.307 | 2.80 |
AOLGB | Oligomer products of biogenic SOA compounds | 10−10 | 0.747 | 2.10 |
AGLY | SOA from the aerosol uptake of glyoxal and methylglyoxal | 10−10 | 0.771 | 2.13 |
AORGC | SOA from the cloud processing of glyoxal and methylglyoxal | 10−10 | 0.667 | 2.00 |
Number of Data | Average Observation (μg/m3) | Average Model (μg/m3) | R | NME (%) | NMB (%) | ||
---|---|---|---|---|---|---|---|
OC | BG | 7912 | 3.64 | 3.33 | 0.64 | 30.68 | −8.05 |
BN | 6502 | 3.12 | 3.25 | 0.76 | 39.45 | 12.75 | |
EC | BG | 7909 | 1.23 | 1.49 | 0.75 | 30.54 | 20.44 |
BN | 6461 | 0.85 | 0.90 | 0.56 | 44.10 | 11.30 | |
PM2.5 | BG | 8437 | 27.75 | 25.68 | 0.81 | 22.02 | −7.63 |
BN | 8225 | 21.80 | 20.77 | 0.75 | 29.81 | −4.49 |
BG | BN | |||||||
---|---|---|---|---|---|---|---|---|
Month | Slope | Intercept (μg/m3) | Standard Error (μg/m3) | R | Slope | Intercept (μg/m3) | Standard Error (μg/m3) | R |
Dec | 1.43 ± 0.10 | −0.21 ± 0.10 | 0.37 | 0.98 | 2.14 ± 0.27 | −0.05 ± 0.17 | 0.44 | 0.98 |
Jan | 1.66 ± 0.26 | −0.24 ± 0.43 | 0.72 | 0.89 | 1.63 ± 0.20 | −0.07 ± 0.11 | 0.20 | 0.94 |
Feb | 1.20 ± 0.25 | 0.02 ± 0.26 | 0.48 | 0.96 | 1.65 ± 0.10 | −0.13 ± 0.08 | 0.11 | 0.98 |
Mar | 1.14 ± 0.20 | −0.15 ± 0.38 | 0.51 | 0.90 | 1.36 ± 0.16 | 0.13 ± 0.12 | 0.24 | 0.97 |
Apr | 1.10 ± 0.07 | −0.02 ± 0.11 | 0.16 | 0.99 | 1.65 ± 0.17 | −0.11 ± 0.13 | 0.24 | 0.96 |
May | 0.78 ± 0.12 | 0.05 ± 0.13 | 0.35 | 0.93 | 1.73 ± 0.04 | 0.02 ± 0.06 | 0.13 | 0.99 |
Jun | 1.28 ± 0.24 | −0.17 ± 0.36 | 0.45 | 0.90 | 1.83 ± 0.37 | −0.16 ± 0.20 | 0.12 | 0.82 |
Jul | 0.82 ± 0.10 | −0.14 ± 0.05 | 0.10 | 0.95 | 0.83 ± 0.31 | 0.12 ± 0.10 | 0.17 | 0.79 |
Aug | 0.94 ± 0.09 | −0.16 ± 0.05 | 0.11 | 0.97 | No data | No data | No data | No data |
Sep | 1.05 ± 0.04 | −0.12 ± 0.06 | 0.13 | 0.98 | No data | No data | No data | No data |
Oct | 1.44 ± 0.17 | −0.27 ± 0.25 | 0.73 | 0.93 | 2.49 ± 0.30 | −0.10 ± 0.20 | 0.17 | 0.96 |
Nov | 2.02 ± 0.25 | −0.39 ± 0.50 | 0.29 | 0.93 | 2.07 ± 0.12 | 0.10 ± 0.09 | 0.11 | 0.99 |
Average Estimates (μg/m3) | Average Model (μg/m3) | R | NME (%) | NMB (%) | ||
---|---|---|---|---|---|---|
POC | BG | 1.39 | 1.03 | 0.68 | 39.77 | −26.22 |
BN | 1.45 | 1.16 | 0.54 | 48.88 | −20.44 | |
SOC | BG | 2.26 | 2.32 | 0.50 | 41.85 | 2.98 |
BN | 1.70 | 2.39 | 0.57 | 72.48 | 40.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, H.-Y.; Hong, S.-C.; Lee, J.-B.; Cho, S.-Y. Modeling of Organic Aerosol in Seoul Using CMAQ with AERO7. Atmosphere 2023, 14, 874. https://doi.org/10.3390/atmos14050874
Park H-Y, Hong S-C, Lee J-B, Cho S-Y. Modeling of Organic Aerosol in Seoul Using CMAQ with AERO7. Atmosphere. 2023; 14(5):874. https://doi.org/10.3390/atmos14050874
Chicago/Turabian StylePark, Hyeon-Yeong, Sung-Chul Hong, Jae-Bum Lee, and Seog-Yeon Cho. 2023. "Modeling of Organic Aerosol in Seoul Using CMAQ with AERO7" Atmosphere 14, no. 5: 874. https://doi.org/10.3390/atmos14050874
APA StylePark, H. -Y., Hong, S. -C., Lee, J. -B., & Cho, S. -Y. (2023). Modeling of Organic Aerosol in Seoul Using CMAQ with AERO7. Atmosphere, 14(5), 874. https://doi.org/10.3390/atmos14050874