Source Attribution and Process Analysis of Summertime Ozone Pollution in Guanzhong Basin, Northwestern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Air Quality and Meteorological Data
2.2. Classification of Circulation Types
2.3. Model Setup and Approaches
2.4. Factor Separation Approach and Scenario Design
- (1)
- Local contribution (Flocal): air pollutants directly emitted by sources within target regions (or so-called local sources) and chemically produced from locally emitted precursors.
- (2)
- Direct transport contribution (Fdirect): air pollutants originating from emissions outside the target regions, including the directly transported portion as well as those formed through chemical reactions from outside precursors.
- (3)
- Indirect transport contribution (Findirect): air pollutants generated from chemical reactions between local and outside precursors.
- (4)
- Background contribution (F0): air pollutants derived from emissions in regions outside the modeling domain, which represent large-scale background levels.
- (1)
- Base case: emissions in the GZB and outside areas were both included.
- (2)
- All_zero case: emissions within D02 were all zeroed out.
- (3)
- Source_region cases: emissions outside the certain source region of the D02 were zeroed out.
- (4)
- Source_region_zero cases: emissions in the certain source region of the D02 were zeroed out.
2.5. Process Analysis
3. Results
3.1. Overview of the Study Period
3.2. The Source of O3 in the GZB
3.3. Process Analysis of O3 in the GZB
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Yin, P.; Brauer, M.; Cohen, A.J.; Wang, H.; Li, J.; Burnett, R.T.; Stanaway, J.D.; Causey, K.; Larson, S.; Godwin, W.; et al. The effect of air pollution on deaths, disease burden, and life expectancy across China and its provinces, 1990–2017: An analysis for the Global Burden of Disease Study 2017. Lancet Planet. Health 2020, 4, 386–398. [Google Scholar] [CrossRef] [PubMed]
- Dedoussi, I.C.; Eastham, S.D.; Monier, E.; Barrett, S.R.H. Premature mortality related to United States cross-state air pollution. Nature 2020, 578, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Cromar, K.; Gladson, L.; Jaimes Palomera, M.; Perlmutt, L. Development of a Health-Based Index to Identify the Association between Air Pollution and Health Effects in Mexico City. Atmosphere 2021, 12, 372. [Google Scholar] [CrossRef]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public. Health 2020, 8, 14. [Google Scholar] [CrossRef] [PubMed]
- Xue, L.; Wang, T.; Louie, P.K.; Luk, C.W.; Blake, D.R.; Xu, Z. Increasing external effects negate local efforts to control ozone air pollution: A case study of Hong Kong and implications for other Chinese cities. Environ. Sci. Technol. 2014, 48, 10769–10775. [Google Scholar] [CrossRef] [PubMed]
- Pfister, G.; Wang, C.-T.; Barth, M.; Flocke, F.; Vizuete, W.; Walters, S. Chemical characteristics and ozone production in the Northern Colorado Front Range. J. Geophys. Res. Atmos. 2019, 124, 13397–13419. [Google Scholar] [CrossRef]
- Nascimento, J.P.; Barbosa, H.M.J.; Banducci, A.L.; Rizzo, L.V.; Vara-Vela, A.L.; Meller, B.B.; Gomes, H.; Cezar, A.; Franco, M.A.; Ponczek, M.; et al. Major Regional-Scale Production of O3 and Secondary Organic Aerosol in Remote Amazon Regions from the Dynamics and Photochemistry of Urban and Forest Emissions. Environ. Sci. Technol. 2022, 56, 9924–9935. [Google Scholar] [CrossRef]
- Chen, T.F.; Chang, K.H.; Tsai, C.-Y. Modeling direct and indirect effect of long range transport on atmospheric PM2 5 levels. Atmos. Environ. 2014, 89, 1–9. [Google Scholar] [CrossRef]
- Faloona, I.C.; Chiao, S.; Eiserloh, A.J.; Alvarez, R.J.; Kirgis, G.; Langford, A.O.; Senff, C.J.; Caputi, D.; Hu, A.; Iraci, L.T.; et al. The California Baseline Ozone Transport Study (CABOTS). Bull. Am. Meteorol. Soc. 2020, 101, pp. E427–E445. Available online: https://journals.ametsoc.org/view/journals/bams/101/4/bams-d-18-0302.1.xml. (accessed on 5 May 2023).
- Andrés Hernández, M.D.; Hilboll, A.; Ziereis, H.; Förster, E.; Krüger, O.O.; Kaiser, K.; Schneider, J.; Barnaba, F.; Vrekoussis, M.; Schmidt, J.; et al. Overview: On the transport and transformation of pollutants in the outflow of major population centres—Observational data from the EMeRGe European intensive operational period in summer 2017. Atmos. Chem. Phys. 2022, 22, 5877–5924. [Google Scholar] [CrossRef]
- Aleksic, N.; Kent, J.; Walcek, C. On ground truth in cross-border ozone transport. J. Air Waste Manag. Assoc. 2019, 69, 977–987. [Google Scholar] [CrossRef]
- Gong, K.; Li, L.; Li, J.; Qin, M.; Wang, X.; Ying, Q.; Liao, H.; Guo, S.; Hu, M.; Zhang, Y.; et al. Quantifying the impacts of inter-city transport on air quality in the Yangtze River Delta urban agglomeration, China: Implications for regional cooperative controls of PMPM2.5 and O3. Sci. Total Environ. 2021, 779, 146619. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhang, M.; Han, X.; Li, J.; Chen, L. Episode analysis of regional contributions to tropospheric ozone in beijing using a regional air quality model. Atmos. Environ. 2019, 199, 299–312. [Google Scholar] [CrossRef]
- Wu, J.; Li, G.; Cao, J.; Bei, N.; Wang, Y.; Feng, T.; Huang, R.; Liu, S.; Zhang, Q.; Tie, X. Contributions of trans-boundary transport to summertime air quality in Beijing, China. Atmos. Chem. Phys. 2017, 17, 2035–2051. [Google Scholar] [CrossRef]
- Li, L.; Xie, F.; Li, J.; Gong, K.; Xie, X.; Qin, Y.; Qin, M.; Hu, J. Diagnostic analysis of regional ozone pollution in Yangtze River Delta, China: A case study in summer 2020. Sci. Total Environ. 2021, 812, 151511. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Jiang, F.; Feng, S.; Cai, Z.; Shen, Y.; Ying, C.; Wang, X.; Liu, Q. Long-range transport of ozone across the eastern China seas: A case study in coastal cities in southeastern China. Sci. Total Environ. 2021, 768, 144520. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Han, H.; Zhang, M.; Zhao, Y.; Huang, Y.; Zhou, M.; Wang, C.; He, G.; Huang, R.; Luo, B.; et al. Trends and variability of ozone pollution over the mountain-basin areas in Sichuan province during 2013–2020: Synoptic impacts and formation regimes. Atmosphere 2021, 12, 1557. [Google Scholar] [CrossRef]
- Gong, C.; Liao, H. A typical weather pattern for ozone pollution events in North China. Atmos. Chem. Phys. 2019, 19, 13725–13740. [Google Scholar] [CrossRef]
- Wang, H.; Wu, K.; Liu, Y.; Sheng, B.; Lu, X.; He, Y.; Xie, J.; Wang, H.; Fan, S. Role of Heat Wave-induced Biogenic VOC Enhancements in Persistent Ozone Episodes Formation in Pearl River Delta. J. Geophys. Res. Atmos. 2021, 126, e2020JD034317. [Google Scholar] [CrossRef]
- Lei, X.; Cheng, H.; Peng, J.; Jiang, H.; Lyu, X.; Zeng, P.; Wang, Z.; Guo, H. Impact of long-range atmospheric transport on volatile organic compounds and ozone photochemistry at a regional background site in central China. Atmos. Environ. 2021, 246, 118093. [Google Scholar] [CrossRef]
- Xu, L.; Crounse, J.D.; Vasquez, K.T.; Allen, H.; Wennberg, P.O.; Bourgeois, I.; Brown, S.S.; Campuzano-Jost, P.; Coggon, M.M.; Crawford, J.H.; et al. Ozone chemistry in Western U.S. wildfire plumes. Sci. Adv. 2021, 7, eabl3648. [Google Scholar] [CrossRef]
- Li, N.; He, Q.; Greenberg, J.; Guenther, A.; Li, J.; Cao, J.; Wang, J.; Liao, H.; Wang, Q.; Zhang, Q. Impacts of biogenic and anthropogenic emissions on summertime ozone formation in the Guanzhong Basin, China. Atmos. Chem. Phys. 2018, 18, 7489–7507. [Google Scholar] [CrossRef]
- The State Council of the People's Republic of China. Three-Year Action Plan to Fight Air Pollution, 2018. Available online: https://www.gov.cn/zhengce/content/2018-07/03/content_5303158.htm (accessed on 5 June 2023).
- Yan, Y.; Wang, X.; Qu, K.; Li, X.; Shi, W.; Peng, Z.; Zhang, Y. Impacts of synoptic circulations on summertime ozone pollution in Guanzhong Basin, northwestern China. Atmos. Environ. 2021, 262, 118660. [Google Scholar] [CrossRef]
- Bei, N.; Liang, J.; Li, X.; Wang, R. Worsening summertime ozone pollution in the Guanzhong Basin, China from 2014 to 2018: Impacts of synoptic conditions and anthropogenic emissions. Atmos. Environ. 2022, 274, 1352–2310. [Google Scholar] [CrossRef]
- Qu, K.; Wang, X.; Xiao, T.; Shen, J.; Lin, T.; Chen, D.; He, L.; Huang, X.; Zeng, L.; Lu, K.; et al. Cross-regional transport of PM2.5 nitrate in the Pearl River Delta, China: Contributions and mechanisms. Sci. Total Environ. 2021, 753, 142439. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Langstaff, J.E.; Jeffries, H.E. The Application of the Integrated Process Rate Analysis Method for Investigation of Urban Airshed Model (UAM) Sensitivity to Speciation in VOC Emissions Data. In Proceedings of the A And Wma Annual Meeting, San Antonio, TX, USA, 18–23 June 1995. [Google Scholar]
- Kim, Y.; Park, S.; Kang, J.; Song, S. Numerical Simulation and Process Analysis Using the MM5-CMAQ in Yangsan on High Ozone Days during Spring and Summer. J. Environ. Sci. 2010, 19, 269–279. [Google Scholar] [CrossRef]
- Jeffries, H.E.; Tonnesen, G.S. Comparison of two photochemical reaction mechanisms using a mass balance and process analysis. Atmos. Environ. 1994, 28, 2991–3003. [Google Scholar] [CrossRef]
- Kitayama, K.; Morino, Y.; Yamaji, K.; Chatani, S. Uncertainties in O3 concentrations simulated by CMAQ over Japan using four chemical mechanisms. Atmos. Environ. 2018, 198, 448–462. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Y.; Shi, W.; Wang, C.; Chen, Y. Source Attribution and Process Analysis of Summertime Ozone Pollution in Guanzhong Basin, Northwestern China. Atmosphere 2023, 14, 1742. https://doi.org/10.3390/atmos14121742
Yan Y, Shi W, Wang C, Chen Y. Source Attribution and Process Analysis of Summertime Ozone Pollution in Guanzhong Basin, Northwestern China. Atmosphere. 2023; 14(12):1742. https://doi.org/10.3390/atmos14121742
Chicago/Turabian StyleYan, Yu, Wenbin Shi, Cong Wang, and Youfan Chen. 2023. "Source Attribution and Process Analysis of Summertime Ozone Pollution in Guanzhong Basin, Northwestern China" Atmosphere 14, no. 12: 1742. https://doi.org/10.3390/atmos14121742
APA StyleYan, Y., Shi, W., Wang, C., & Chen, Y. (2023). Source Attribution and Process Analysis of Summertime Ozone Pollution in Guanzhong Basin, Northwestern China. Atmosphere, 14(12), 1742. https://doi.org/10.3390/atmos14121742