Optimization of a Do-It-Yourself Air Cleaner Design to Reduce Residential Air Pollution Exposure for a Community Experiencing Environmental Injustices
Abstract
:1. Introduction
2. Methods
2.1. Experimental Design
2.1.1. DIY Air Cleaner Prototypes
2.1.2. Setup and Testing Protocol
2.2. Data Analysis
2.2.1. Study Parameters
2.2.2. Survey Responses
3. Results and Discussions
3.1. Pollutant Removal Rates
3.2. Performance Comparison among Different Prototypes
3.3. Feedback from Occupants Regarding P9 Deployment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brook, R.D.; Rajagopalan, S.; Pope, C.A.; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.V.; Mittleman, M.A.; et al. Particulate Matter Air Pollution and Cardiovascular Disease. Circulation 2010, 121, 2331–2378. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.A., III; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung Cancer, Cardiopulmonary Mortality, and Long-Term Exposure to Fine Particulate Air Pollution. JAMA 2002, 287, 1132–1141. [Google Scholar] [CrossRef] [PubMed]
- Di, Q.; Wang, Y.; Zanobetti, A.; Wang, Y.; Koutrakis, P.; Choirat, C.; Dominici, F.; Schwartz, J.D. Air Pollution and Mortality in the Medicare Population. N. Engl. J. Med. 2017, 376, 2513–2522. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.A.; Burnett, R.T.; Turner, M.C.; Cohen, A.; Krewski, D.; Jerrett, M.; Gapstur, S.M.; Thun, M.J. Lung Cancer and Cardiovascular Disease Mortality Associated with Ambient Air Pollution and Cigarette Smoke: Shape of the Exposure–Response Relationships. Environ. Health Perspect. 2011, 119, 1616–1621. [Google Scholar] [CrossRef] [PubMed]
- Azimi, P.; Stephens, B. A Framework for Estimating the US Mortality Burden of Fine Particulate Matter Exposure Attributable to Indoor and Outdoor Microenvironments. J. Expo. Sci. Environ. Epidemiol. 2020, 30, 271–284. [Google Scholar] [CrossRef] [PubMed]
- Impacts on Your Health|State of Global Air. Available online: https://www.stateofglobalair.org/health (accessed on 6 November 2023).
- Atkinson, R.; Arey, J. Atmospheric Degradation of Volatile Organic Compounds. Chem. Rev. 2003, 103, 4605–4638. [Google Scholar] [CrossRef] [PubMed]
- Ji, W.; Zhao, B. Contribution of Outdoor-Originating Particles, Indoor-Emitted Particles and Indoor Secondary Organic Aerosol (SOA) to Residential Indoor PM2.5 Concentration: A Model-Based Estimation. Build. Environ. 2015, 90, 196–205. [Google Scholar] [CrossRef]
- Ware, J.H.; Spengler, J.D.; Neas, L.M.; Samet, J.M.; Wagner, G.R.; Coultas, D.; Ozkaynak, H.; Schwab, M. Respiratory and Irritant Health Effects of Ambient Volatile Organic Compounds: The Kanawha County Health Study. Am. J. Epidemiol. 1993, 137, 1287–1301. [Google Scholar] [CrossRef]
- Cheng, S.; Chang-Chien, G.-P.; Huang, Q.; Zhang, Y.-B.; Yan, P.; Zhang, J.; Wang, Y.; Zhang, D.; Teng, G. Global Research Trends in Health Effects of Volatile Organic Compounds during the Last 16 Years: A Bibliometric Analysis. Aerosol Air Qual. Res. 2019, 19, 1834–1843. [Google Scholar] [CrossRef]
- Morgan, B.; Hansgen, R.; Hawthorne, W.; Miller, S.L. Industrial Odor Sources and Air Pollutant Concentrations in Globeville, a Denver, Colorado Neighborhood. J. Air Waste Manag. Assoc. 2015, 65, 1127–1140. [Google Scholar] [CrossRef]
- Eltarkawe, M.A.; Miller, S.L. The Impact of Industrial Odors on the Subjective Well-Being of Communities in Colorado. Int. J. Environ. Res. Public Health 2018, 15, 1091. [Google Scholar] [CrossRef] [PubMed]
- Jbaily, A.; Zhou, X.; Liu, J.; Lee, T.-H.; Kamareddine, L.; Verguet, S.; Dominici, F. Air Pollution Exposure Disparities across US Population and Income Groups. Nature 2022, 601, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Bell, M.L.; Ebisu, K. Environmental Inequality in Exposures to Airborne Particulate Matter Components in the United States. Environ. Health Perspect. 2012, 120, 1699–1704. [Google Scholar] [CrossRef] [PubMed]
- Cushing, L.; Morello-Frosch, R.; Wander, M.; Pastor, M. The Haves, the Have-Nots, and the Health of Everyone: The Relationship Between Social Inequality and Environmental Quality. Annu. Rev. Public Health 2015, 36, 193–209. [Google Scholar] [CrossRef] [PubMed]
- Kolokotsa, D.; Santamouris, M. Review of the Indoor Environmental Quality and Energy Consumption Studies for Low Income Households in Europe. Sci. Total Environ. 2015, 536, 316–330. [Google Scholar] [CrossRef] [PubMed]
- Saha, P.K.; Presto, A.A.; Hankey, S.; Marshall, J.D.; Robinson, A.L. Racial-Ethnic Exposure Disparities to Airborne Ultrafine Particles in the United States. Environ. Res. Lett. 2022, 17, 104047. [Google Scholar] [CrossRef]
- Houston, D.; Wu, J.; Ong, P.; Winer, A. Structural Disparities of Urban Traffic in Southern California: Implications for Vehicle-Related Air Pollution Exposure in Minority and High-Poverty Neighborhoods. J. Urban. Aff. 2004, 26, 565–592. [Google Scholar] [CrossRef]
- Ferguson, L.; Taylor, J.; Davies, M.; Shrubsole, C.; Symonds, P.; Dimitroulopoulou, S. Exposure to Indoor Air Pollution across Socio-Economic Groups in High-Income Countries: A Scoping Review of the Literature and a Modelling Methodology. Environ. Int. 2020, 143, 105748. [Google Scholar] [CrossRef]
- Humphrey, J.L.; Lindstrom, M.; Barton, K.E.; Shrestha, P.M.; Carlton, E.J.; Adgate, J.L.; Miller, S.L.; Root, E.D. Social and Environmental Neighborhood Typologies and Lung Function in a Low-Income, Urban Population. Int. J. Environ. Res. Public Health 2019, 16, 1133. [Google Scholar] [CrossRef]
- Shrestha, P.M.; Humphrey, J.L.; Barton, K.E.; Carlton, E.J.; Adgate, J.L.; Root, E.D.; Miller, S.L. Impact of Low-Income Home Energy-Efficiency Retrofits on Building Air Tightness and Healthy Home Indicators. Sustainability 2019, 11, 2667. [Google Scholar] [CrossRef]
- US EPA. Environmental Justice and National Environmental Policy Act. Available online: https://www.epa.gov/environmentaljustice/environmental-justice-and-national-environmental-policy-act (accessed on 6 November 2023).
- Ahrentzen, S.; Erickson, J.; Fonseca, E. Thermal and Health Outcomes of Energy Efficiency Retrofits of Homes of Older Adults. Indoor Air 2016, 26, 582–593. [Google Scholar] [CrossRef]
- D’Alpaos, C.; Bragolusi, P. Prioritization of Energy Retrofit Strategies in Public Housing: An AHP Model. In New Metropolitan Perspectives; Calabrò, F., Della Spina, L., Bevilacqua, C., Smart Innovation Systems and Technologies, Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 534–541. [Google Scholar] [CrossRef]
- Monteiro, C.S.; Causone, F.; Cunha, S.; Pina, A.; Erba, S. Addressing the Challenges of Public Housing Retrofits. Energy Procedia 2017, 134, 442–451. [Google Scholar] [CrossRef]
- Broderick, Á.; Byrne, M.; Armstrong, S.; Sheahan, J.; Coggins, A.M. A Pre and Post Evaluation of Indoor Air Quality, Ventilation, and Thermal Comfort in Retrofitted Co-Operative Social Housing. Build. Environ. 2017, 122, 126–133. [Google Scholar] [CrossRef]
- Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hern, S.C.; Engelmann, W.H. The National Human Activity Pattern Survey (NHAPS): A Resource for Assessing Exposure to Environmental Pollutants. J. Expo. Sci. Env. Epidemiol. 2001, 11, 231–252. [Google Scholar] [CrossRef]
- Patel, S.; Rim, D.; Sankhyan, S.; Novoselac, A.; Vance, M.E. Aerosol Dynamics Modeling of Sub-500 Nm Particles during the HOMEChem Study. Environ. Sci. Process. Impacts 2021, 23, 1706–1717. [Google Scholar] [CrossRef]
- Derk, R.C.; Coyle, J.P.; Lindsley, W.G.; Blachere, F.M.; Lemons, A.R.; Service, S.K.; Martin, S.B.; Mead, K.R.; Fotta, S.A.; Reynolds, J.S.; et al. Efficacy of Do-It-Yourself Air Filtration Units in Reducing Exposure to Simulated Respiratory Aerosols. Build. Environ. 2023, 229, 109920. [Google Scholar] [CrossRef] [PubMed]
- Sankhyan, S.; Witteman, J.K.; Coyan, S.; Patel, S.; Vance, M.E. Assessment of PM 2.5 Concentrations, Transport, and Mitigation in Indoor Environments Using Low-Cost Air Quality Monitors and a Portable Air Cleaner. Environ. Sci. Atmos. 2022, 2, 647–658. [Google Scholar] [CrossRef]
- Zhu, Y.; Song, X.; Wu, R.; Fang, J.; Liu, L.; Wang, T.; Liu, S.; Xu, H.; Huang, W. A Review on Reducing Indoor Particulate Matter Concentrations from Personal-level Air Filtration Intervention under Real-world Exposure Situations. Indoor Air 2021, 31, 1707–1721. [Google Scholar] [CrossRef]
- Riederer, A.M.; Krenz, J.E.; Tchong-French, M.I.; Torres, E.; Perez, A.; Younglove, L.R.; Jansen, K.L.; Hardie, D.C.; Farquhar, S.A.; Sampson, P.D.; et al. Effectiveness of Portable HEPA Air Cleaners on Reducing Indoor Endotoxin, PM 10, and Coarse Particulate Matter in an Agricultural Cohort of Children with Asthma: A Randomized Intervention Trial. Indoor Air 2021, 31, 1926–1939. [Google Scholar] [CrossRef]
- Ciuzas, D.; Prasauskas, T.; Krugly, E.; Jurelionis, A.; Seduikyte, L.; Martuzevicius, D. Indoor Air Quality Management by Combined Ventilation and Air Cleaning: An Experimental Study. Aerosol Air Qual. Res. 2016, 16, 2550–2559. [Google Scholar] [CrossRef]
- Tran, P.T.M.; Adam, M.G.; Tham, K.W.; Schiavon, S.; Pantelic, J.; Linden, P.F.; Sofianopoulou, E.; Sekhar, S.C.; Cheong, D.K.W.; Balasubramanian, R. Assessment and Mitigation of Personal Exposure to Particulate Air Pollution in Cities: An Exploratory Study. Sustain. Cities Soc. 2021, 72, 103052. [Google Scholar] [CrossRef]
- Sharma, R.; Balasubramanian, R. Assessment and Mitigation of Indoor Human Exposure to Fine Particulate Matter (PM2.5) of Outdoor Origin in Naturally Ventilated Residential Apartments: A Case Study. Atmos. Environ. 2019, 212, 163–171. [Google Scholar] [CrossRef]
- Pei, J.; Dong, C.; Liu, J. Operating Behavior and Corresponding Performance of Portable Air Cleaners in Residential Buildings, China. Build. Environ. 2019, 147, 473–481. [Google Scholar] [CrossRef]
- Larson, C. Beijing’s DIY Clean Air Movement: If You Can’t Buy an Expensive Air Filter, Build One. Bloomberg.com. 16 May 2014. Available online: https://www.bloomberg.com/news/articles/2014-05-15/beijing-s-diy-clean-air-movement-if-you-can-t-buy-an-expensive-air-filter-build-one (accessed on 6 September 2023).
- Sun, L.H. After Three Years of Covering Covid, I Built My Own Air Filter. Washington Post. 14 January 2023. Available online: https://www.washingtonpost.com/health/2023/01/13/air-filter-diy-covid/ (accessed on 6 September 2023).
- CleanAirCrew. DIY Box Fan Filters—Corsi-Rosenthal Box—Clean Air Crew. Available online: https://cleanaircrew.org/box-fan-filters/ (accessed on 5 May 2023).
- Puget Sound Clean Air Agency. DIY Air Filter | Puget Sound Clean Air Agency, WA. Available online: https://www.pscleanair.gov/525/DIY-Air-Filter (accessed on 6 September 2023).
- Dal Porto, R.; Kunz, M.N.; Pistochini, T.; Corsi, R.L.; Cappa, C.D. Characterizing the Performance of a Do-It-Yourself (DIY) Box Fan Air Filter. Aerosol Sci. Technol. 2022, 56, 564–572. [Google Scholar] [CrossRef]
- Srikrishna, D. Can 10× Cheaper, Lower-Efficiency Particulate Air Filters and Box Fans Complement High-Efficiency Particulate Air (HEPA) Purifiers to Help Control the COVID-19 Pandemic? Sci. Total Environ. 2022, 838, 155884. [Google Scholar] [CrossRef]
- Angela Eykelbosh. Do-It-Yourself (DIY) Air Cleaners: Evidence on Effectiveness and Considerations for Safe Operation; National Collaborating Centre for Environmental Health. 2023. Available online: https://ccnse.ca/sites/default/files/DIY%20air%20cleaners%20evidence%20review%20Jan%2018%202023%20-%20FINAL%20ENGLISH.pdf (accessed on 9 May 2023).
- Dodson, R.E.; Manz, K.E.; Burks, S.R.; Gairola, R.; Lee, N.F.; Liu, Y.; Pennell, K.D.; Walker, E.D.; Braun, J.M. Does Using Corsi–Rosenthal Boxes to Mitigate COVID-19 Transmission Also Reduce Indoor Air Concentrations of PFAS and Phthalates? Environ. Sci. Technol. 2023, 57, 415–427. [Google Scholar] [CrossRef] [PubMed]
- Holder, A.L.; Halliday, H.S.; Virtaranta, L. Impact of Do-It-Yourself Air Cleaner Design on the Reduction of Simulated Wildfire Smoke in a Controlled Chamber Environment. Indoor Air 2022, 32, e13163. [Google Scholar] [CrossRef]
- Xiang, J.; Huang, C.-H.; Shirai, J.; Liu, Y.; Carmona, N.; Zuidema, C.; Austin, E.; Gould, T.; Larson, T.; Seto, E. Field Measurements of PM2.5 Infiltration Factor and Portable Air Cleaner Effectiveness during Wildfire Episodes in US Residences. Sci. Total Environ. 2021, 773, 145642. [Google Scholar] [CrossRef]
- (South Coast AQMD), South Coast Air Quality Management District. Atmotube—Pro. Sensor Detail. Available online: http://www.aqmd.gov/aq-spec/sensordetail/atmotube---pro (accessed on 28 April 2023).
- CDPHE, Colorado Department of Public Health. Colorado EnviroScreen Environmental Justice Mapping Tool. Available online: https://teeo-cdphe.shinyapps.io/COEnviroScreen_English/ (accessed on 28 April 2023).
- Lowther, S.D.; Deng, W.; Fang, Z.; Booker, D.; Whyatt, J.D.; Wild, O.; Wang, X.; Jones, K.C. Factors Affecting Real-World Applications of HEPA Purifiers in Improving Indoor Air Quality. Environ. Sci. Adv. 2023, 2, 235–246. [Google Scholar] [CrossRef]
Model | Number of Filters | Filter Depth (Inches) π | Shroud Included | Separator Type |
---|---|---|---|---|
P1 | 4 | 2 | Yes | NA |
P2 | 2 | 2 | Yes | NA |
P3 | 1 | 2 | Yes | DIY box |
P4 | 1 | 1 | Yes | DIY box |
P5 | 1 | 4 | Yes | DIY box |
P6 | 1 | 4 | Yes | Fan box |
P7 | 1 | 4 | No | DIY box |
P8 | 1 | 4 | No | Fan box |
P9 * | 1 | 4 | No | Fan box |
Parameters | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P9 |
---|---|---|---|---|---|---|---|---|---|
CADR (m3 h−1) ¥ | 709 ± 5 (n = 4) | 389 ± 10 (n = 3) | 213 ± 12 (n = 6) | 159 ± 30 (n = 5) | 300 ± 22 (n = 8) | 245 ± 29 (n = 6) | 242 ± 8 (n = 2) | 219 ± 20 (n = 6) | 124 ± 17 (n = 5) |
eACH (h−1) | 18.3 ± 0.1 | 10.0 ± 0.3 | 5.5 ± 0.3 | 4.1 ± 0.8 | 7.7 ± 0.6 | 6.3 ± 0.8 | 6.3 ± 0.2 | 5.7 ± 0.5 | 3.2 ± 0.4 |
Initial (Annual) Cost ($) | 113 (184) | 81 (64) | 65 (32) | 59 (20) | 72 (46) | 72 (46) | 72 (46) | 72 (46) | 75 (51) |
Average CADR/Initial Cost (m3 h−1 $−1) | 6.3 | 4.8 | 3.3 | 2.7 | 4.2 | 3.4 | 3.4 | 3.0 | 1.7 |
Average CADR/Annual Cost (m3 h−1 $−1) | 3.9 | 6.1 | 6.7 | 8.0 | 6.5 | 5.3 | 5.3 | 4.8 | 2.4 |
Size (m2) | 0.24 | 0.13 | 0.16 | 0.14 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 |
Ease of Build (Easiest = 1; Hardest = 7) | 6 | 7 | 5 | 5 | 5 | 3 | 4 | 1 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sankhyan, S.; Clements, N.; Heckman, A.; Hollo, A.K.; Gonzalez-Beltran, D.; Aumann, J.; Morency, C.; Leiden, L.; Miller, S.L. Optimization of a Do-It-Yourself Air Cleaner Design to Reduce Residential Air Pollution Exposure for a Community Experiencing Environmental Injustices. Atmosphere 2023, 14, 1734. https://doi.org/10.3390/atmos14121734
Sankhyan S, Clements N, Heckman A, Hollo AK, Gonzalez-Beltran D, Aumann J, Morency C, Leiden L, Miller SL. Optimization of a Do-It-Yourself Air Cleaner Design to Reduce Residential Air Pollution Exposure for a Community Experiencing Environmental Injustices. Atmosphere. 2023; 14(12):1734. https://doi.org/10.3390/atmos14121734
Chicago/Turabian StyleSankhyan, Sumit, Nicholas Clements, Allison Heckman, Aniya K. Hollo, Dulce Gonzalez-Beltran, Jonathan Aumann, Cora Morency, Luke Leiden, and Shelly L. Miller. 2023. "Optimization of a Do-It-Yourself Air Cleaner Design to Reduce Residential Air Pollution Exposure for a Community Experiencing Environmental Injustices" Atmosphere 14, no. 12: 1734. https://doi.org/10.3390/atmos14121734
APA StyleSankhyan, S., Clements, N., Heckman, A., Hollo, A. K., Gonzalez-Beltran, D., Aumann, J., Morency, C., Leiden, L., & Miller, S. L. (2023). Optimization of a Do-It-Yourself Air Cleaner Design to Reduce Residential Air Pollution Exposure for a Community Experiencing Environmental Injustices. Atmosphere, 14(12), 1734. https://doi.org/10.3390/atmos14121734