Wavelet Analysis of Ozone Driving Factors Based on ~20 Years of Ozonesonde Measurements in Beijing
Abstract
:1. Introduction
2. Data and Methods
2.1. Ozonesonde Measurements and Ozone Columns
2.2. Climatic Indices
2.3. Methods
3. Results
3.1. CWT of Ozone Columns
3.2. XWT of Ozone Columns and Climatic Index
4. Conclusions and Discussions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shindell, D.; Rind, D.; Balachandran, N.; Lean, J.; Lonergan, P. Solar cycle variability, ozone, and climate. Science 1999, 284, 305–308. [Google Scholar] [CrossRef] [PubMed]
- Lefohn, A.S.; Malley, C.S.; Smith, L.; Wells, B.; Hazucha, M.; Simon, H.; Naik, V.; Mills, G.; Schultz, M.G.; Paoletti, E.; et al. Tropospheric ozone assessment report: Global ozone metrics for climate change, human health, and crop/ecosystem research. Elem. Sci. Anthr. 2018, 6, 27. [Google Scholar] [CrossRef] [PubMed]
- Ball, W.T.; Alsing, J.; Staehelin, J.; Davis, S.M.; Froidevaux, L.; Peter, T. Stratospheric ozone trends for 1985–2018: Sensitivity to recent large variability. Atmos. Chem. Phys. 2019, 19, 12731–12748. [Google Scholar] [CrossRef]
- Randel, W.J.; Stolarski, R.S.; Cunnold, D.M.; Logan, J.A.; Newchurch, M.; Zawodny, J.M. Trends in the vertical distribution of ozone. Science 1999, 285, 1689–1692. [Google Scholar] [CrossRef] [PubMed]
- Grewe, V. The origin of ozone. Atmos. Chem. Phys. 2006, 6, 1495–1511. [Google Scholar] [CrossRef]
- Zhang, J.; Li, D.; Bian, J.; Bai, Z. Deep stratospheric intrusion and Russian wildfire induce enhanced tropospheric ozone pollution over the northern Tibetan Plateau. Atmos. Res. 2021, 259, 105662. [Google Scholar] [CrossRef]
- Zhang, J.; Li, D.; Bian, J.; Xuan, Y.; Chen, H.; Bai, Z.; Wan, X.; Zheng, X.; Xia, X.; Lü, D. Long-term ozone variability in the vertical structure and integrated column over the North China Plain: Results based on ozonesonde and Dobson measurements during 2001–2019. Environ. Res. Lett. 2021, 16, 074053. [Google Scholar] [CrossRef]
- Krzyścin, J.W. On the interannual oscillations in the northern temperate total ozone. J. Geophys. Res. Atmos. 1994, 99, 14527–14534. [Google Scholar] [CrossRef]
- Chehade, W.; Weber, M.; Burrows, J. Total ozone trends and variability during 1979–2012 from merged data sets of various satellites. Atmos. Chem. Phys. 2014, 14, 7059–7074. [Google Scholar] [CrossRef]
- Baldwin, M.P.; Gray, L.J.; Dunkerton, T.J.; Hamilton, K.; Haynes, P.H.; Randel, W.J.; Holton, J.R.; Alexander, M.J.; Hirota, I.; Horinouchi, T.; et al. The quasi-biennial oscillation. Rev. Geophys. 2001, 39, 179–229. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, C.; Zhang, K.; Xu, M.; Duan, J.; Chipperfield, M.P.; Feng, W.; Zhao, S.; Xie, F. The role of chemical processes in the quasi-biennial oscillation (QBO) signal in stratospheric ozone. Atmos. Environ. 2021, 244, 117906. [Google Scholar] [CrossRef]
- Holton, J.R. Influence of the annual cycle in meridional transport on the quasi-biennial oscillation in total ozone. J. Atmos. Sci. 1989, 46, 1434–1439. [Google Scholar] [CrossRef]
- Randel, W.J.; Garcia, R.R.; Calvo, N.; Marsh, D. ENSO influence on zonal mean temperature and ozone in the tropical lower stratosphere. Geophys. Res. Lett. 2009, 36, 15. [Google Scholar] [CrossRef]
- Oman, L.D.; Douglass, A.R.; Ziemke, J.R.; Rodriguez, J.M.; Waugh, D.W.; Nielsen, J.E. The ozone response to ENSO in Aura satellite measurements and a chemistry-climate simulation. J. Geophys. Res. Atmos. 2013, 118, 965–976. [Google Scholar] [CrossRef]
- Cagnazzo, C.; Manzini, E.; Calvo, N.; Douglass, A.R.; Akiyoshi, H.; Bekki, S.; Chipperfield, M.; Dameris, M.; Deushi, M.; Fischer, A.; et al. Northern winter stratospheric temperature and ozone responses to ENSO inferred from an ensemble of Chemistry Climate Models. Atmos. Chem. Phys. 2009, 9, 8935–8948. [Google Scholar] [CrossRef]
- Lee, H.; Smith, A. Simulation of the combined effects of solar cycle, quasi-biennial oscillation, and volcanic forcing on stratospheric ozone changes in recent decades. J. Geophys. Res. Atmos. 2003, 108, D2. [Google Scholar] [CrossRef]
- Li, Y.; Chipperfield, M.P.; Feng, W.; Dhomse, S.S.; Pope, R.J.; Li, F.; Guo, D. Analysis and attribution of total column ozone changes over the Tibetan Plateau during 1979–2017. Atmos. Chem. Phys. 2020, 20, 8627–8639. [Google Scholar] [CrossRef]
- Xie, F.; Li, J.; Tian, W.; Zhang, J.; Sun, C. The relative impacts of El Niño Modoki, canonical El Niño, and QBO on tropical ozone changes since the 1980s. Environ. Res. Lett. 2014, 9, 064020. [Google Scholar] [CrossRef]
- Zhou, L.; Zou, H.; Ma, S.; Li, P. The Tibetan ozone low and its long-term variation during 1979–2010. Acta Meteorol. Sin. 2013, 27, 75–86. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Werner, R. The latitudinal ozone variability study using wavelet analysis. J. Atmos. Sol.-Terr. Phys. 2008, 70, 261–267. [Google Scholar] [CrossRef]
- Bencherif, H.; Toihir, A.M.; Mbatha, N.; Sivakumar, V.; du Preez, D.J.; Bègue, N.; Coetzee, G. Ozone Variability and Trend Estimates from 20-Years of Ground-Based and Satellite Observations at Irene Station, South Africa. Atmosphere 2020, 11, 1216. [Google Scholar] [CrossRef]
- Echer, E. Multi-resolution analysis of global total ozone column during 1979−1992 Nimbus-7 TOMS period. Ann. Geophys. 2004, 22, 1487–1493. [Google Scholar] [CrossRef]
- Fadnavis, S.; Beig, G. Spatiotemporal variation of the ozone QBO in MLS data by wavelet analysis. Ann. Geophys. 2008, 26, 3719–3730. [Google Scholar] [CrossRef]
- Fadnavis, S.; Beig, G. Quasi-biennial oscillation in ozone and temperature over tropics. J. Atmos. Sol.-Terr. Phys. 2009, 71, 257–263. [Google Scholar] [CrossRef]
- Okoro, E.C.; Yan, Y.-H.; Bisoi, S.K.; Zhang, Y. Response and periodic variation of total atmospheric ozone to solar activity over Mountain Waliguan. Adv. Space Res. 2021, 68, 2257–2271. [Google Scholar] [CrossRef]
- Yang, J. Driving Force of Total Ozone in the Northern Midlatitudes: An Analysis based on Data from Two Stations. In Proceedings of the IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 7813–7816. [Google Scholar] [CrossRef]
- Dufour, G.; Eremenko, M.; Beekmann, M.; Cuesta, J.; Foret, G.; Fortems-Cheiney, A.; Lachâtre, M.; Lin, W.; Liu, Y.; Xu, X.; et al. Lower tropospheric ozone over the North China Plain: Variability and trends revealed by IASI satellite observations for 2008–2016. Atmos. Chem. Phys. 2018, 18, 16439–16459. [Google Scholar] [CrossRef]
- Dufour, G.; Hauglustaine, D.; Zhang, Y.; Eremenko, M.; Cohen, Y.; Gaudel, A.; Siour, G.; Lachatre, M.; Bense, A.; Bessagnet, B.; et al. Recent ozone trends in the Chinese free troposphere: Role of the local emission reductions and meteorology. Atmos. Chem. Phys. 2021, 21, 16001–16025. [Google Scholar] [CrossRef]
- Zhang, J.; Xuan, Y.; Yan, X.; Liu, M.; Tian, H.; Xia, X.A.; Pang, L.; Zheng, X. Development and preliminary evaluation of a double-cell ozonesonde. Adv. Atmos. Sci. 2014, 31, 938–947. [Google Scholar] [CrossRef]
- Zhang, Y.; Tao, M.; Zhang, J.; Liu, Y.; Chen, H.; Cai, Z.; Konopka, P. Long-term variations in ozone levels in the troposphere and lower stratosphere over Beijing: Observations and model simulations. Atmos. Chem. Phys. 2020, 20, 13343–13354. [Google Scholar] [CrossRef]
- Tang, G.; Liu, Y.; Zhang, J.; Liu, B.; Li, Q.; Sun, J.; Wang, Y.; Xuan, Y.; Li, Y.; Pan, J.; et al. Bypassing the NOx titration trap in ozone pollution control in Beijing. Atmos. Res. 2021, 249, 105333. [Google Scholar] [CrossRef]
- Liao, Z.; Pan, Y.; Ma, P.; Jia, X.; Cheng, Z.; Wang, Q.; Dou, Y.; Zhao, X.; Zhang, J.; Quan, J. Meteorological and chemical controls on surface ozone diurnal variability in Beijing: A clustering-based perspective. Atmos. Environ. 2023, 295, 119566. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhang, J.; Li, D.; Liao, Z.; Bian, J.; Bai, Z.; Shi, H.; Xuan, Y.; Yao, Z.; Chen, H. Vertical distribution of tropospheric ozone and its sources of precursors over Beijing: Results from ~20 years of ozonesonde measurements based on clustering analysis. Atmos. Res. 2023, 284, 1066. [Google Scholar] [CrossRef]
- Kerr, J.B.; Fast, H.; McElroy, C.; Oltmans, S.; Lathrop, J.; Kyro, E.; Paukkunen, A.; Claude, H.; Köhler, U.; Sreedharan, C.; et al. The 1991 WMO international ozonesonde intercomparison at Vanscoy, Canada. Atmos.-Ocean 1994, 32, 685–716. [Google Scholar] [CrossRef]
- Florin, M.; Murariu, G.; Ionut, M.; Georgescu, L.P.; Ṭopa, C.M. Preliminary results on atmospheric monitoring be means of a high-altitude balloon. Ann. Univ. Dunarea Jos Galati Fascicle II Math. Phys. Theor. Mech. 2011, 34. [Google Scholar]
- McPeters, R.D.; Labow, G.J. Climatology 2011: An MLS and sonde derived ozone climatology for satellite retrieval algorithms. J. Geophys. Res. Atmos. 2012, 117, D10. [Google Scholar] [CrossRef]
- WMO. Meteorology—A three-dimensional science. WMO Bull. 1957, 6, 134–138. [Google Scholar]
- Andreas, E.L.; Treviño, G. Using Wavelets to Detect Trends. J. Atmos. Ocean. Technol. 1997, 14, 554–564. [Google Scholar] [CrossRef]
- Baddoo, T.; Guan, Y.; Zhang, D.; Andam-Akorful, S. Rainfall Variability in the Huangfuchuang Watershed and Its Relationship with ENSO. Water 2015, 7, 3243–3262. [Google Scholar] [CrossRef]
- Wolter, K.; Timlin, M.S. El Niño/Southern Oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext). Int. J. Climatol. 2011, 31, 1074–1087. [Google Scholar] [CrossRef]
- Wang, L.; Wang, L.; Chen, W.; Huangfu, J. Modulation of winter precipitation associated with tropical cyclone of the western North Pacific by the stratospheric Quasi-Biennial oscillation. Environ. Res. Lett. 2021, 16, 054004. [Google Scholar] [CrossRef]
- Tapping, K. The 10.7 cm solar radio flux (F10. 7). Space Weather 2013, 11, 394–406. [Google Scholar] [CrossRef]
- Londhe, A.; Bhosale, C.; Kulkarni, J.; Kumari, B.P.; Jadhav, D. Space-time variability of ozone over the Indian region for the period 1981–1998. J. Geophys. Res. Atmos. 2003, 108, D24. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Daubechies, I. The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inf. Theory 1990, 36, 961–1005. [Google Scholar] [CrossRef]
- Foufoula-Georgiou, E.; Kumar, P.; Chui, C. Wavelets in Geophysics; Academic Press: Cambridge, MA, USA, 1994. [Google Scholar]
- Ding, Y. Analysis of the process and mechanisms of genesis and development for 2014–2016 mega El Niño event. Trans. Atmos. Sci. 2016, 39, 722–734. [Google Scholar]
- Lin, J.; Qian, T. Impacts of the ENSO Lifecycle on Stratospheric Ozone and Temperature. Geophys. Res. Lett. 2019, 46, 10646–10658. [Google Scholar] [CrossRef]
- Ribera, P.; Peña-Ortiz, C.; Garcia-Herrera, R.; Gallego, D.; Gimeno, L.; Hernández, E. Detection of the secondary meridional circulation associated with the quasi-biennial oscillation. J. Geophys. Res. Atmos. 2004, 109, D18. [Google Scholar] [CrossRef]
- Ribera, P.; Peña-Ortiz, C.; Añel, J.A.; Gimeno, L.; de la Torre, L.; Gallego, D. Quasi-biennial modulation of the Northern Hemisphere tropopause height and temperature. J. Geophys. Res. Atmos. 2008, 113, D7. [Google Scholar] [CrossRef]
- Kinnersley, J.S.; Tung, K.K. Mechanisms for the extratropical QBO in circulation and ozone. J. Atmos. Sci. 1999, 56, 1942–1962. [Google Scholar] [CrossRef]
- Chandra, S.; McPeters, R. The solar cycle variation of ozone in the stratosphere inferred from Nimbus 7 and NOAA 11 satellites. J. Geophys. Res. Atmos. 1994, 99, 20665–20671. [Google Scholar] [CrossRef]
- Zerefos, C.; Tourpali, K.; Bojkov, B.; Balis, D.; Rognerund, B.; Isaksen, I. Solar activity-total column ozone relationships: Observations and model studies with heterogeneous chemistry. J. Geophys. Res. Atmos. 1997, 102, 1561–1569. [Google Scholar] [CrossRef]
- Hauchecorne, A.; Bertaux, J.-L.; Lallement, R. Impact of solar activity on stratospheric ozone and NO2 observed by GOMOS/ENVISAT. Sol. Var. Planet. Clim. 2007, 23, 393–402. [Google Scholar] [CrossRef]
- Abdi-Oskouei, M.; Carmichael, G.; Christiansen, M.; Ferrada, G.; Roozitalab, B.; Sobhani, N.; Wade, K.; Czarnetzki, A.; Pierce, R.B.; Wagner, T.; et al. Sensitivity of meteorological skill to selection of WRF-Chem physical parameterizations and impact on ozone prediction during the Lake Michigan Ozone Study (LMOS). J. Geophys. Res. Atmos. 2020, 125, e2019JD031971. [Google Scholar] [CrossRef]
- Sharma, A.; Ojha, N.; Pozzer, A.; Mar, K.A.; Beig, G.; Lelieveld, J.; Gunthe, S.S. WRF-Chem simulated surface ozone over south Asia during the pre-monsoon: Effects of emission inventories and chemical mechanisms. Atmos. Chem. Phys. 2017, 17, 14393–14413. [Google Scholar] [CrossRef]
- Mar, K.A.; Ojha, N.; Pozzer, A.; Butler, T.M. Ozone air quality simulations with WRF-Chem (v3. 5.1) over Europe: Model evaluation and chemical mechanism comparison. Geosci. Model Dev. 2016, 9, 3699–3728. [Google Scholar] [CrossRef]
- Wang, P.; Wang, P.; Chen, K.; Du, J.; Zhang, H. Ground-level ozone simulation using ensemble WRF/Chem predictions over the Southeast United States. Chemosphere 2022, 287, 132428. [Google Scholar] [CrossRef]
- Mak, H.W.L. Improved Remote Sensing Algorithms and Data Assimilation Approaches in Solving Environmental Retrieval Problems. Ph.D. Thesis, Hong Kong University of Science and Technology, Hong Kong, China, 2019. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, Y.; Zhang, J.; Li, Y.; Liu, S.; Chen, H. Wavelet Analysis of Ozone Driving Factors Based on ~20 Years of Ozonesonde Measurements in Beijing. Atmosphere 2023, 14, 1733. https://doi.org/10.3390/atmos14121733
Zeng Y, Zhang J, Li Y, Liu S, Chen H. Wavelet Analysis of Ozone Driving Factors Based on ~20 Years of Ozonesonde Measurements in Beijing. Atmosphere. 2023; 14(12):1733. https://doi.org/10.3390/atmos14121733
Chicago/Turabian StyleZeng, Yunshu, Jinqiang Zhang, Yajuan Li, Sichang Liu, and Hongbin Chen. 2023. "Wavelet Analysis of Ozone Driving Factors Based on ~20 Years of Ozonesonde Measurements in Beijing" Atmosphere 14, no. 12: 1733. https://doi.org/10.3390/atmos14121733
APA StyleZeng, Y., Zhang, J., Li, Y., Liu, S., & Chen, H. (2023). Wavelet Analysis of Ozone Driving Factors Based on ~20 Years of Ozonesonde Measurements in Beijing. Atmosphere, 14(12), 1733. https://doi.org/10.3390/atmos14121733