Changing Convection in Central Asia during the Seasonal Transitional Period and Region to Its West before and after 1999: Role of Upper Vertical Thermal Contrast
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, W.; Chen, F.H.; Feng, S.; Chen, J.H.; Zhang, X.J. Interannual Precipitation Variations in the Mid-Latitude Asia and Their Association with Large-Scale Atmospheric Circulation. Chin. Sci. Bull. 2013, 58, 3962–3968. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, C.; Hu, Q.; Tian, H. Temperature Changes in Central Asia from 1979 to 2011 Based on Multiple Datasets. J. Clim. 2014, 27, 1143–1167. [Google Scholar] [CrossRef]
- Huang, W.; Chen, J.; Zhang, X.; Feng, S.; Chen, F. Definition of the Core Zone of the “Westerlies-Dominated Climatic Regime”, and Its Controlling Factors during the Instrumental Period. Sci. China Earth Sci. 2015, 58, 676–684. [Google Scholar] [CrossRef]
- Xu, L.; Zhou, H.; Du, L.; Yao, H.; Wang, H. Precipitation Trends and Variability from 1950 to 2000 in Arid Lands of Central Asia. J. Arid Land 2015, 7, 514–526. [Google Scholar] [CrossRef]
- Hu, Z.; Zhou, Q.; Chen, X.; Qian, C.; Wang, S.; Li, J. Variations and Changes of Annual Precipitation in Central Asia over the Last Century. Int. J. Climatol. 2017, 37, 157–170. [Google Scholar] [CrossRef]
- Jiang, J.; Zhou, T.; Chen, X.; Zhang, L. Future Changes in Precipitation over Central Asia Based on CMIP6 Projections. Environ. Res. Lett. 2020, 15, 054009. [Google Scholar] [CrossRef]
- Zhang, M.; Yu, H.; King, A.D.; Wei, Y.; Huang, J.; Ren, Y. Correction to: Greater Probability of Extreme Precipitation under 1.5 °C and 2 °C Warming Limits over East-Central Asia. Clim. Chang. 2020, 162, 621. [Google Scholar] [CrossRef]
- Chen, X.; Wang, S.; Hu, Z.; Zhou, Q.; Hu, Q. Spatiotemporal Characteristics of Seasonal Precipitation and Their Relationships with ENSO in Central Asia during 1901–2013. J. Geogr. Sci. 2018, 28, 1341–1368. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, H. Impacts of SST Warming in Tropical Indian Ocean on CMIP5 Model-Projected Summer Rainfall Changes over Central Asia. Clim. Dyn. 2016, 46, 3223–3238. [Google Scholar] [CrossRef]
- Bothe, O.; Fraedrich, K.; Zhu, X. Precipitation Climate of Central Asia and the Large-Scale Atmospheric Circulation. Theor. Appl. Climatol. 2012, 108, 345–354. [Google Scholar] [CrossRef]
- Peng, D.; Zhou, T.; Zhang, L.; Wu, B. Human Contribution to the Increasing Summer Precipitation in Central Asia from 1961 to 2013. J. Clim. 2018, 31, 8005–8021. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, X.; Lu, H.; Jin, L.; Du, Y.; Chen, F. Increasing Summer Precipitation in Arid Central Asia Linked to the Weakening of the East Asian Summer Monsoon in the Recent Decades. Int. J. Climatol. 2021, 41, 1024–1038. [Google Scholar] [CrossRef]
- Wei, W.; Zhang, R.; Wen, M.; Yang, S. Relationship between the Asian Westerly Jet Stream and Summer Rainfall over Central Asia and North China. J. Clim. 2017, 30, 537–552. [Google Scholar] [CrossRef]
- Chen, F.H.; Huang, W.; Jin, L.Y.; Chen, J.H.; Wang, J.S. Spatiotemporal Precipitation Variations in the Arid Central Asia in the Context of Global Warming. Sci. China Earth Sci. 2011, 54, 1812–1821. [Google Scholar] [CrossRef]
- Yang, K.; Wang, C.; Bao, H. Contribution of Soil Moisture Variability to Summer Precipitation in the Northern Hemisphere. J. Geophys. Res. Atmos. 2016, 121, 12,108–112,124. [Google Scholar] [CrossRef]
- Vaid, B.H.; San Liang, X. Tropospheric Temperature Gradient and Its Relation to the South and East Asian Precipitation Variability. Meteorol. Atmos. Phys. 2015, 127, 579–585. [Google Scholar] [CrossRef]
- Vaid, B.H.; Liang, X.S. The Changing Relationship between the Convection over the Western Tibetan Plateau and the Sea Surface Temperature in the Northern Bay of Bengal. Tellus Ser. A Dyn. Meteorol. Oceanogr. 2018, 70, 1–9. [Google Scholar] [CrossRef]
- Vaid, B.H.; Liang, X.S. An Abrupt Change in Tropospheric Temperature Gradient and Moisture Transport Over East Asia in the Late 1990s. Atmos.-Ocean 2018, 56, 268–276. [Google Scholar] [CrossRef]
- Vaid, B.H.; Liang, X.S. The Out-of-Phase Variation in Vertical Thermal Contrast Over the Western and Eastern Sides of the Northern Tibetan Plateau. Pure Appl. Geophys. 2019, 176, 5337–5348. [Google Scholar] [CrossRef]
- Vaid, B.H.; Liang, X.S. Influence of Tropospheric Temperature Gradient on the Boreal Wintertime Precipitation over East Asia. Terr. Atmos. Ocean. Sci. 2019, 30, 161–170. [Google Scholar] [CrossRef]
- Vaid, B.H.; Liang, X.S. Effect of Upper Tropospheric Vertical Thermal Contrast Over the Mediterranean Region on Convection over the Western Tibetan Plateau during ENSO Years. Atmos. Ocean 2020, 58, 98–109. [Google Scholar] [CrossRef]
- Vaid, B.H.; Kripalani, R.H. Monsoon 2020: An Interaction of Upper Tropospheric Thermodynamics and Dynamics Over the Tibetan Plateau and the Western Pacific. Pure Appl. Geophys. 2021, 178, 3645–3654. [Google Scholar] [CrossRef]
- Vaid, B.H.; Kripalani, R.H. Strikingly Contrasting Indian Monsoon Progressions during 2013 and 2014: Role of Western Tibetan Plateau and the South China Sea. Theor. Appl. Climatol. 2021, 144, 1131–1140. [Google Scholar] [CrossRef]
- Vaid, B.H.; Kripalani, R.H. Upper Vertical Thermal Contrast Over Western North Pacific and Its Impact on the East Side of Tibetan Plateau During ENSO Years. Atmos. Ocean 2022, 60, 13–22. [Google Scholar] [CrossRef]
- Vaid, B.H.; Kripalani, R.H. Upper Vertical Thermal Contrast over the Western Tibetan Plateau and Its Impact on Convection over the Mediterranean Region during ENSO Events. Meteorol. Atmos. Phys. 2022, 134, 1–10. [Google Scholar] [CrossRef]
- Hansen, J.; Sato, M.; Nazarenko, L.; Ruedy, R.; Lacis, A.; Koch, D.; Tegen, I.; Hall, T.; Shindell, D.; Santer, B.; et al. Climate Forcings in Goddard Institute for Space Studies SI2000 Simulations. J. Geophys. Res. Atmos. 2002, 107, ACL 2-1–ACL 2-37. [Google Scholar] [CrossRef]
- Liu, X.; Yanai, M. Relationship between the Indian Monsoon Rainfall and the Tropospheric Temperature over the Eurasian Continent. Q. J. R. Meteorol. Soc. 2001, 127, 909–937. [Google Scholar] [CrossRef]
- Zhou, B.; Zhao, P. Influence of the Asian-Pacific Oscillation on Spring Precipitation over Central Eastern China. Adv. Atmos. Sci. 2010, 27, 575–582. [Google Scholar] [CrossRef]
- Zuo, Z.; Yang, S.; Kumar, A.; Zhang, R.; Xue, Y.; Jha, B. Role of Thermal Condition over Asia in the Weakening Asian Summer Monsoon under Global Warming Background. J. Clim. 2012, 25, 3431–3436. [Google Scholar] [CrossRef]
- Colman, R. On the Vertical Extent of Atmospheric Feedback. Clim. Dyn. 2001, 17, 391–405. [Google Scholar] [CrossRef]
- Hartmann, D.L.; Larson, K. An Important Constraint on Tropical Cloud—Climate Feedback. Geophys. Res. Lett. 2002, 29, 12–14. [Google Scholar] [CrossRef]
- Bony, S.; Colman, R.; Kattsov, V.M.; Allan, R.P.; Bretherton, C.S.; Dufresne, J.L.; Hall, A.; Hallegatte, S.; Holland, M.M.; Ingram, W.; et al. How Well Do We Understand and Evaluate Climate Change Feedback Processes? J. Clim. 2006, 19, 3445–3482. [Google Scholar] [CrossRef]
- Udelhofen, P.M.; Hartmann, D.L. Influence of Tropical Cloud Systems on the Relative Humidity in the Upper Troposphere. J. Geophys. Res. Atmos. 1995, 100, 7423–7440. [Google Scholar] [CrossRef]
- Fu, R.; Dickinson, R.E.; Newkirk, B. Response of the Upper Tropospheric Humidity and Moisture Transport to Changes of Tropical Convection. A Comparison between Observations and a GCM over an ENSO Cycle. Geophys. Res. Lett. 1997, 24, 2371–2374. [Google Scholar] [CrossRef]
- Hirasawal, N.; Kato, K.; Takeda, T. Abrupt Change in the Characteristics of the Cloud Zone in Subtropical East Asia around the Middle of May. J. Meteorol. Soc. Japan 1995, 73, 221–239. [Google Scholar] [CrossRef][Green Version]
- Chen, T.-C.; Chen, J. An Observational Study of the South China Sea Monsoon during the 1979 Summer: Onset and Life Cycle. Mon. Weather Rev. 1995, 123, 2295–2318. [Google Scholar] [CrossRef]
- Cannon, A.J.; McKendry, I.G. Forecasting All-India Summer Monsoon Rainfall Using Regional Circulation Principal Components: A Comparison between Neural Network and Multiple Regression Models. Int. J. Climatol. 1999, 19, 1561–1578. [Google Scholar] [CrossRef]
- Parthasarathy, B.; Diaz, H.F.; Eischeid, J.K. Prediction of All-India Summer Monsoon Rainfall with Regional and Large-Scale Parameters. J. Geophys. Res. Atmos. 1988, 93, 5341–5350. [Google Scholar] [CrossRef]
- Kanamitsu, M.; Ebisuzaki, W.; Woollen, J.; Yang, S.K.; Hnilo, J.J.; Fiorino, M.; Potter, G.L. NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Am. Meteorol. Soc. 2002, 83, 1631–1643. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 1996, 77, 437–472. [Google Scholar] [CrossRef]
- Liléo, S.; Petrik, O. Investigation on the Use of NCEP/NCAR, MERRA and NCEP/CFSR Reanalysis Data in Wind Resource Analysis. In Proceedings of the European Wind Energy Conference & Exhibition 2011 (EWEC 2011), Brussels, Belgium, 14–17 March 2011; pp. 181–185. [Google Scholar]
- Lu, C.; Zhou, B.; Ding, Y. Decadal Variation of the Northern Hemisphere Annular Mode and Its Influence on the East Asian Trough. J. Meteorol. Res. 2016, 30, 584–597. [Google Scholar] [CrossRef]
- Zhou, T.; Song, F.; Ha, K.; Chen, X. Decadal Change of East Asian Summer Monsoon: Contributions of Internal Variability and External Forcing. In The Global Monsoon System: Research and Forecast; World Scientific: Singapore, 2017. [Google Scholar]
- Li, S.; Gong, Z.; Zhang, S.; Yang, J.; Qiao, S.; Feng, G. Decadal Variation of the Precipitation Relationship between June and August over South China and Its Mechanism. Clim. Dyn. 2022, 59, 1863–1882. [Google Scholar] [CrossRef]
- Zhao, T.; Fu, C. Comparison of Products from ERA-40, NCEP-2, and CRU with Station Data for Summer Precipitation over China. Adv. Atmos. Sci. 2006, 23, 593–604. [Google Scholar] [CrossRef]
- Rienecker, M.M.; Suarez, M.J.; Gelaro, R.; Todling, R.; Bacmeister, J.; Liu, E.; Bosilovich, M.G.; Schubert, S.D.; Takacs, L.; Kim, G.K.; et al. MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Clim. 2011, 24, 3624–3648. [Google Scholar] [CrossRef]
- Liang, X.S. Unraveling the Cause-Effect Relation between Time Series. Phys. Rev. E—Stat. Nonlinear Soft Matter Phys. 2014, 90, 052150. [Google Scholar] [CrossRef]
- Liang, X.S. Causation and Information Flow with Respect to Relative Entropy. Chaos An Interdiscip. J. Nonlinear Sci. 2018, 28, 75311. [Google Scholar] [CrossRef]
- Liang, X.S. Information Flow and Causality as Rigorous Notions Ab Initio. Phys. Rev. E 2016, 94, 052201. [Google Scholar] [CrossRef]
- Liang, X.S. Normalizing the Causality between Time Series. Phys. Rev. E—Stat. Nonlinear Soft Matter Phys. 2015, 92, 022126. [Google Scholar] [CrossRef]
- England, M.H.; McGregor, S.; Spence, P.; Meehl, G.A.; Timmermann, A.; Cai, W.; Gupta, A.S.; McPhaden, M.J.; Purich, A.; Santoso, A. Recent Intensification of Wind-Driven Circulation in the Pacific and the Ongoing Warming Hiatus. Nat. Clim. Chang. 2014, 4, 222–227. [Google Scholar] [CrossRef]
- Ying, L.; Shen, Z.; Piao, S. The Recent Hiatus in Global Warming of the Land Surface: Scale-Dependent Breakpoint Occurrences in Space and Time. Geophys. Res. Lett. 2015, 42, 6471–6478. [Google Scholar] [CrossRef]
- Shangguan, M.; Wang, W.; Jin, S. Variability of Temperature and Ozone in the Upper Troposphere and Lower Stratosphere from Multi-Satellite Observations and Reanalysis Data. Atmos. Chem. Phys. 2019, 19, 6659–6679. [Google Scholar] [CrossRef]
- Steiner, A.K.; Ladstädter, F.; Randel, W.J.; Maycock, A.C.; Fu, Q.; Claud, C.; Gleisner, H.; Haimberger, L.; Ho, S.P.; Keckhut, P.; et al. Observed Temperature Changes in the Troposphere and Stratosphere from 1979 to 2018. J. Clim. 2020, 33, 8165–8194. [Google Scholar] [CrossRef]
- Webster, P.J.; Magaña, V.O.; Palmer, T.N.; Shukla, J.; Tomas, R.A.; Yanai, M.; Yasunari, T. Monsoons: Processes, Predictability, and the Prospects for Prediction. J. Geophys. Res. Ocean. 1998, 103, 14451–14510. [Google Scholar] [CrossRef]
- Holton, J.R.; Hakim, G.J. An Introduction to Dynamic Meteorology, 5th ed.; Elsevier: Amsterdam, The Nethelrands, 2012; Volume 88, ISBN 9780123848666. [Google Scholar]
- Anber, U.; Wang, S.; Sobel, A. Response of Atmospheric Convection to Vertical Wind Shear: Cloud-System-Resolving Simulations with Parameterized Large-Scale Circulation: Part I: Specified Radiative Cooling. J. Atmos. Sci. 2014, 71, 2976–2993. [Google Scholar] [CrossRef]
- Wu, W.; Liu, Y.; Jensen, M.P.; Toto, T.; Foster, M.J.; Long, C.N. A Comparison of Multiscale Variations of Decade-Long Cloud Fractions from Six Different Platforms over the Southern Great Plains in the United States. J. Geophys. Res. Atmos. 2014, 119, 3438–3459. [Google Scholar] [CrossRef]
- Branstator, G. Circumglobal Teleconnections, the Jet Stream Waveguide, and the North Atlantic Oscillation. J. Clim. 2002, 15, 1893–1910. [Google Scholar] [CrossRef]
- Li, J.; Yu, R.; Zhou, T. Teleconnection between NAO and Climate Downstream of the Tibetan Plateau. J. Clim. 2008, 21, 4680–4690. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaid, B.H. Changing Convection in Central Asia during the Seasonal Transitional Period and Region to Its West before and after 1999: Role of Upper Vertical Thermal Contrast. Atmosphere 2023, 14, 59. https://doi.org/10.3390/atmos14010059
Vaid BH. Changing Convection in Central Asia during the Seasonal Transitional Period and Region to Its West before and after 1999: Role of Upper Vertical Thermal Contrast. Atmosphere. 2023; 14(1):59. https://doi.org/10.3390/atmos14010059
Chicago/Turabian StyleVaid, Bakshi Hardeep. 2023. "Changing Convection in Central Asia during the Seasonal Transitional Period and Region to Its West before and after 1999: Role of Upper Vertical Thermal Contrast" Atmosphere 14, no. 1: 59. https://doi.org/10.3390/atmos14010059
APA StyleVaid, B. H. (2023). Changing Convection in Central Asia during the Seasonal Transitional Period and Region to Its West before and after 1999: Role of Upper Vertical Thermal Contrast. Atmosphere, 14(1), 59. https://doi.org/10.3390/atmos14010059