Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = upper thermal contrast

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 22195 KiB  
Article
Investigating Attributes of Oil Source Rocks by Combining Geochemical Approaches and Basin Modelling (Central Gulf of Suez, Egypt)
by Moataz Barakat, Mohamed Reda, Dimitra E. Gamvroula, Robert Ondrak and Dimitrios E. Alexakis
Resources 2025, 14(7), 114; https://doi.org/10.3390/resources14070114 - 16 Jul 2025
Viewed by 606
Abstract
The present study focused on the Upper Cretaceous to Middle Miocene sequence in the Central Gulf of Suez, Egypt. The Upper Cretaceous to Middle Miocene sequence in the October field is thick and deeply buried, consisting mainly of brown limestone, chalk limestone, and [...] Read more.
The present study focused on the Upper Cretaceous to Middle Miocene sequence in the Central Gulf of Suez, Egypt. The Upper Cretaceous to Middle Miocene sequence in the October field is thick and deeply buried, consisting mainly of brown limestone, chalk limestone, and reefal limestone intercalated with clastic shale. This study integrated various datasets, including total organic carbon (TOC), Rock-Eval pyrolysis, visual kerogen examination, vitrinite reflectance (%Ro), and bottom-hole temperature measurements. The main objective of this study is to delineate the source rock characteristics of these strata regarding organic richness, thermal maturity, kerogen type, timing of hydrocarbon transformation and generation. The Upper Cretaceous Brown Limestone Formation is represented by 135 samples from four wells and is considered to be a fair to excellent source rock, primarily containing type I and II kerogen. It is immature to early mature, generating oil with a low to intermediate level of hydrocarbon conversion. The Eocene Thebes Formation is represented by 105 samples from six wells and is considered to be a good to fair oil source rock with some potential for gas, primarily containing type II and II/III kerogen. Most samples are immature with a low level of hydrocarbon conversion while few are mature having an intermediate degree of hydrocarbon conversion. The Middle Miocene Lower Rudeis Formation is represented by 8 samples from two wells and considered to be a fair but immature source rock, primarily containing type III kerogen with a low level of conversion representing a potential source for gas. The Middle Miocene Belayim Formation is represented by 29 samples from three wells and is considered to be a poor to good source rock, primarily containing kerogen type II and III. Most samples are immature with a low level of hydrocarbon conversion while few are mature having an intermediate degree of hydrocarbon conversion. 1D basin model A-5 well shows that the Upper Cretaceous Brown Limestone source rock entered the early oil window at 39 Ma, progressed to the main oil window by 13 Ma, and remains in this stage today. The Eocene Thebes source rock began generating hydrocarbons at 21.3 Ma, advanced to the main oil window at 11 Ma, and has been in the late oil window since 1.6 Ma. The Middle Miocene Lower Rudeis source rock entered the early oil window at 12.6 Ma, transitioned to the main oil window at 5.7 Ma, where it remains active. In contrast, the Middle Miocene Belayim source rock has not yet reached the early oil window and remains immature, with values ranging from 0.00 to 0.55 % Ro. The transformation ratio plot shows that the Brown Limestone Formation began transforming into the Upper Cretaceous (73 Ma), reaching 29.84% by the Miocene (14.3 Ma). The Thebes Formation initiated transformation in the Late Eocene (52.3 Ma) and reached 6.42% by 16.4 Ma. The Lower Rudeis Formation began in the Middle Miocene (18.7 Ma), reaching 3.59% by 9.2 Ma. The Belayim Formation started its transformation at 11.2 Ma, reaching 0.63% by 6.8 Ma. Full article
Show Figures

Figure 1

21 pages, 3527 KiB  
Article
Effects of Environmental Temperature Variation on the Spatio-Temporal Shoaling Behaviour of Adult Zebrafish (Danio rerio): A Two- and Three-Dimensional Analysis
by Mattia Toni, Flavia Frabetti, Gabriella Tedeschi and Enrico Alleva
Animals 2025, 15(14), 2006; https://doi.org/10.3390/ani15142006 - 8 Jul 2025
Viewed by 338
Abstract
Global warming is driving significant changes in aquatic ecosystems, where temperature fluctuations influence biological processes across multiple levels of organisation. As ectothermic organisms, fish are particularly susceptible, with even minor thermal shifts affecting their metabolism, behaviour, and overall fitness. Understanding these responses is [...] Read more.
Global warming is driving significant changes in aquatic ecosystems, where temperature fluctuations influence biological processes across multiple levels of organisation. As ectothermic organisms, fish are particularly susceptible, with even minor thermal shifts affecting their metabolism, behaviour, and overall fitness. Understanding these responses is essential for evaluating the ecological and evolutionary consequences of climate change. This study investigates the effects of acute (4-day) and chronic (21-day) exposure to three temperature regimes—18 °C (low), 26 °C (control), and 34 °C (high)—on the spatio-temporal shoaling behaviour of adult zebrafish (Danio rerio). Groups of four fish were tested for six minutes in water maintained at the same temperature as their prior acclimation. Shoaling behaviour was assessed by analysing shoal structure—encompassing shoal dimensions and cohesion—as well as spatial positioning. Parameters measured included inter-fish distance, shoal volume, shoal area, homogeneity index, distance to the centroid, and the shoal’s vertical and horizontal distribution. Results revealed complex behavioural changes influenced by both temperature and duration of exposure. At 18 °C, zebrafish showed a marked preference for the bottom zone and exhibited no significant temporal modulation in exploratory behaviour—patterns indicative of heightened anxiety-like responses. In contrast, exposure to 34 °C resulted in increased shoal cohesion, particularly under chronic conditions, and a progressive increase in environmental exploration over the six-minute test period. This enhancement in exploratory activity was especially evident when compared to the first minute of the test and was characterised by greater vertical movement—reflected in the increased use of the upper zone—and broader horizontal exploration, including more frequent occupation of peripheral areas. These findings align with previous research linking thermal variation to neurobiological and proteomic alterations in zebrafish. By elucidating how temperature modulates social behaviour in ectotherms, this study offers valuable insights into the potential behavioural impacts of climate change on aquatic ecosystems. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

17 pages, 23135 KiB  
Article
The Pore Evolution and Pattern of Sweet-Spot Reservoir Development of the Ultra-Tight Sandstone in the Second Member of the Xujiahe Formation in the Eastern Slope of the Western Sichuan Depression
by Bingjie Cheng, Xin Luo, Zhiqiang Qiu, Cheng Xie, Yuanhua Qing, Zhengxiang Lv, Zheyuan Liao, Yanjun Liu and Feng Li
Minerals 2025, 15(7), 681; https://doi.org/10.3390/min15070681 - 25 Jun 2025
Viewed by 249
Abstract
In order to clarify the pore evolution and coupling characteristics with hydrocarbon charging in the deep-buried ultra-tight sandstone reservoirs of the second member of Xujiahe Formation (hereinafter referred to as the Xu 2 Member) on the eastern slope of the Western Sichuan Depression, [...] Read more.
In order to clarify the pore evolution and coupling characteristics with hydrocarbon charging in the deep-buried ultra-tight sandstone reservoirs of the second member of Xujiahe Formation (hereinafter referred to as the Xu 2 Member) on the eastern slope of the Western Sichuan Depression, this study integrates burial history and thermal history with analytical methods including core observation, cast thin section analysis, scanning electron microscopy, carbon-oxygen isotope analysis, and fluid inclusion homogenization temperature measurements. The Xu 2 Member reservoirs are predominantly composed of lithic sandstones and quartz-rich sandstones, with authigenic quartz and carbonates as the main cementing materials. The reservoir spaces are dominated by intragranular dissolution pores. The timing of reservoir densification varies among different submembers. The upper submember underwent compaction during the Middle-Late Jurassic period due to the high ductility of mudstone clasts and other compaction-resistant components. The middle-lower submembers experienced densification in the Late Jurassic period. Late Cretaceous tectonic uplift induced fracture development, which enhanced dissolution in the middle-lower submembers, increasing reservoir porosity to approximately 5%. Two distinct phases of hydrocarbon charging are identified in the Xu 2 Member. The earlier densification of the upper submember created unfavorable conditions for hydrocarbon accumulation. In contrast, the middle-lower submembers received hydrocarbon charging prior to reservoir densification, providing favorable conditions for natural gas enrichment and reservoir formation. Three sweet-spot reservoir development patterns are recognized: paleo-structural trap + (internal source rock) + source-connected fracture assemblage type, paleo-structural trap + internal source rock + late-stage fracture assemblage type, and paleo-structural trap + (internal source rock) + source-connected fracture + late-stage fracture assemblage type. Full article
(This article belongs to the Special Issue Deep Sandstone Reservoirs Characterization)
Show Figures

Figure 1

21 pages, 3797 KiB  
Article
Infrared Thermography and Physiological Variables as Methods for Recognizing Fear in Domestic Cats (Felis catus) Using Three Pharmacological Models: Cannabidiol, Gabapentin, and Synthetic Facial Pheromones
by Fabiola Torres-Bernal, Julio Martínez-Burnes, Ismael Hernández-Avalos, Adriana Olmos-Hernández, Adriana Domínguez-OIiva, Brenda Reyes-Sotelo, Cynthia González-López, Diana Villanueva-Pereyra and Daniel Mota-Rojas
Vet. Sci. 2025, 12(6), 523; https://doi.org/10.3390/vetsci12060523 - 27 May 2025
Viewed by 811
Abstract
This study aimed to assess changes in the surface temperature and physiological parameters of cats exposed to a fear model involving negative dog–cat interactions, receiving three pharmacological options: a single dose of cannabidiol, gabapentin, or synthetic facial pheromones. The surface temperature of the [...] Read more.
This study aimed to assess changes in the surface temperature and physiological parameters of cats exposed to a fear model involving negative dog–cat interactions, receiving three pharmacological options: a single dose of cannabidiol, gabapentin, or synthetic facial pheromones. The surface temperature of the upper and lower limbs, facial, dorsal, and appendicular thermal windows was assessed through infrared thermography. Additionally, heart rate, respiratory rate, and rectal temperature were recorded. Eighty male and female domestic cats were included in the study and randomly divided into four groups: CONTROL (placebo, 2 mL/cat orally), CBD (cannabidiol, 2 mg/kg orally), GABA (gabapentin, 100 mg/cat orally), and SFP (synthetic facial pheromone, two sprays/carrier). All cats underwent six experimental phases: Tbasal−, T1stfear, T1strecovery, Tbasal+, T2ndfear, and T2ndrecovery. Drug administration was carried out at the end of T1strecovery; the time between drug administration and Tbasal+ differed according to each drug’s nature. Statistical differences were obtained between experimental groups and times in the average surface temperature of thermal windows and cardiorespiratory parameters. In particular, the CBD, GABA, and SFP groups exhibited differences during T2ndfear, in contrast to the control and T1stfear groups. In conclusion, the results suggest a pharmacological effect of CBD, GABA, and SFP on cats’ physiological alterations in response to fear. Full article
(This article belongs to the Special Issue Biomarkers in Veterinary Medicine)
Show Figures

Figure 1

24 pages, 9947 KiB  
Article
Detection and Spatiotemporal Distribution Analysis of Vertically Developing Convective Clouds over the Tibetan Plateau and East Asia Using GEO-KOMPSAT-2A Observations
by Haokai Kang, Hongqing Wang, Qiong Wu and Yan Zhang
Remote Sens. 2025, 17(8), 1427; https://doi.org/10.3390/rs17081427 - 17 Apr 2025
Viewed by 521
Abstract
Vertically developing convective clouds (VDCCs), characterized by cloud-top ascent and cooling, are critical precursors to severe convective weather due to their association with intense updrafts. However, existing studies are constrained by limited spatiotemporal resolution of data and tracking methodologies, hindering real-time and pixel-level [...] Read more.
Vertically developing convective clouds (VDCCs), characterized by cloud-top ascent and cooling, are critical precursors to severe convective weather due to their association with intense updrafts. However, existing studies are constrained by limited spatiotemporal resolution of data and tracking methodologies, hindering real-time and pixel-level capture of VDCC evolution. Furthermore, large-scale statistical analyses of VDCC spatiotemporal distribution remain scarce compared with mature convective systems, particularly in topographically complex regions like the Tibetan Plateau (TP). To address these challenges, we integrated an optical flow algorithm (for dense atmospheric motion vector (AMV) retrieval) with cloud-top cooling rates (CTCRs, as indicators of vertical development), leveraging the high spatiotemporal resolution and multispectral capabilities of the GEO-KOMPSAT-2A (GK2A) satellite. This approach achieved pixel-level VDCC detection at 10 min intervals across diurnal cycles, enabling comprehensive statistical analysis. Based on this technical foundation, the most important finding in the study was the distinct convective spatiotemporal distribution over the TP and East Asia (EA) by analyzing VDCC detection data in three summers (2021–2023). Specifically, VDCC diurnal peaks preceded precipitation by 2–3 h, confirming their precursor roles in both study regions. Regional comparisons revealed that topographic and thermal forcing strongly influenced VDCC distribution patterns. The TP exhibited earlier and more frequent daytime convection at middle-to-low levels than EA, driven by intense thermal forcing, yet vertical development was limited by moisture scarcity. In contrast, EA’s monsoonal moisture sustained deeper convection, with more VDCCs penetrating the upper troposphere. The detection and statistical studies of VDCCs offer new insights into convective processes over the TP and surrounding regions, offering potential improvements in severe weather monitoring and early warning systems. Full article
(This article belongs to the Special Issue Remote Sensing for High Impact Weather and Extremes (2nd Edition))
Show Figures

Graphical abstract

22 pages, 9526 KiB  
Article
Tensile Properties of Granite Under Cyclic Thermal Shock and Loading
by Yiming Zhang, Fan Zhang, ShengYuan Liu, Congcong Lv and Siming Xu
Appl. Sci. 2025, 15(8), 4385; https://doi.org/10.3390/app15084385 - 16 Apr 2025
Viewed by 463
Abstract
This study investigates the tensile properties of granite subjected to cyclic thermal treatment under cyclic loading-unloading conditions, which is of great significance for the modification of hot dry rock reservoirs. Brazilian splitting tests under cyclic loading-unloading were conducted on granite samples exposed to [...] Read more.
This study investigates the tensile properties of granite subjected to cyclic thermal treatment under cyclic loading-unloading conditions, which is of great significance for the modification of hot dry rock reservoirs. Brazilian splitting tests under cyclic loading-unloading were conducted on granite samples exposed to 400 °C cyclic water-cooling shock (applied for 1, 3, 5, and 7 cycles) at different preset load upper limits (65%, 70%, 75%, and 80% of the peak load). The experimental results reveal the evolution of the tensile properties of granite under the combined effects of 400 °C cyclic water-cooling shock and cyclic loading-unloading. The findings indicate that the tensile strength of granite decreases with an increasing number of cyclic water-cooling shocks and further declines as the preset load upper limit decreases. Under typical conditions, the peak displacement of granite exhibits three distinct stages with increasing loading-unloading cycles: rapid increase, slow increase, and eventual failure. During the slow increase stage, peak displacement decreases due to an increase in elastic stiffness. Initially, elastic stiffness increases with the number of cycles, followed by a stabilization phase, and subsequently declines. After granite failure, macroscopic failure cracks gradually deviate from the center as additional cyclic water-cooling shocks are applied. In contrast, cyclic loading-unloading has a minimal effect on macroscopic cracks. Furthermore, as the number of cycles increases, microcrack evolution transitions from intergranular to transgranular cracking. Under cyclic loading-unloading conditions, these cracks continue to propagate, ultimately forming a fracture network. The findings of this study provide a theoretical foundation for the fracturing and modification of hot dry rock reservoirs. Full article
(This article belongs to the Special Issue Advances and Challenges in Rock Mechanics and Rock Engineering)
Show Figures

Figure 1

23 pages, 18319 KiB  
Article
Low-Altitude, Overcooled Scree Slope: Insights into Temperature Distribution Using High-Resolution Thermal Imagery in the Romanian Carpathians
by Andrei Ioniță, Iosif Lopătiță, Petru Urdea, Oana Berzescu and Alexandru Onaca
Land 2025, 14(3), 607; https://doi.org/10.3390/land14030607 - 13 Mar 2025
Viewed by 657
Abstract
Advective heat fluxes (chimney effect) in porous debris facilitate ground cooling on scree slopes, even at low altitudes, and promote the occurrence of sporadic permafrost. The spatial distribution of ground surface temperature on an overcooled, low-altitude scree slope in the Romanian Carpathians was [...] Read more.
Advective heat fluxes (chimney effect) in porous debris facilitate ground cooling on scree slopes, even at low altitudes, and promote the occurrence of sporadic permafrost. The spatial distribution of ground surface temperature on an overcooled, low-altitude scree slope in the Romanian Carpathians was analyzed using UAV-based infrared thermography in different seasons. The analysis revealed significant temperature gradients within the scree slope, with colder, forest-insulated lower sections contrasting with warmer, solar-exposed upper regions. Across all surveyed seasons, this pattern remained evident, with the strongest temperature contrasts in December and April. February exhibited the most stable temperatures, with thermal readings primarily corresponding to snow surfaces rather than exposed rock. Rock surfaces displayed greater temperature variation than vent holes. Vent holes were generally cooler than rock surfaces, particularly in warmer periods. The persistent presence of ice and low temperatures at the end of the warm season suggested the potential existence of isolated permafrost. The results confirm the chimney effect, where cold air infiltrates the lower talus, gradually warms as it ascends, and outflows at higher elevations. UAV-based thermal imagery proved effective in detecting microclimatic variability and elucidating thermal processes governing talus slopes. This study provides valuable insights into extrazonal permafrost behavior, particularly in the context of global climate change. Full article
(This article belongs to the Special Issue Integration of Remote Sensing and GIS for Land Use Change Assessment)
Show Figures

Figure 1

19 pages, 7807 KiB  
Article
Computational-Fluid-Dynamics-Based Optimization of Wavy-Slit Fin Geometry in Indoor Units of Air Conditioners Using Low-Global-Warming-Potential Refrigerants
by Jaewon Roh, Youngseo Kim and Joon Ahn
Appl. Sci. 2025, 15(3), 1196; https://doi.org/10.3390/app15031196 - 24 Jan 2025
Cited by 1 | Viewed by 1117
Abstract
This study explores the optimization of wavy-slit fins in the indoor units of air conditioners that use low-global-warming-potential refrigerants, with a focus on the interactions between slit length, width, and height. A response surface method was employed to analyze the trade-offs between thermal [...] Read more.
This study explores the optimization of wavy-slit fins in the indoor units of air conditioners that use low-global-warming-potential refrigerants, with a focus on the interactions between slit length, width, and height. A response surface method was employed to analyze the trade-offs between thermal performance and pressure loss, and numerical optimization was performed using two objective functions: pumping power and volume goodness factor (Gv). The results demonstrated that optimizing the slits’ geometry significantly enhanced overall performance. For pumping power, a minimum point was observed near the design boundaries, which underscores the critical role of geometric interactions. The flow and temperature field analysis under fixed heat-duty conditions revealed substantial flow separation caused by the slits, enhanced mixing between the upper and lower surfaces, and a reduction of up to 2.05% in pumping power. In contrast, the Gv optimization model exhibited a more uniform flow, reducing flow separation beyond the pipe and improving the Gv by 1.85%, although it led to an increase in pumping power. These findings highlight the potential that tailored slit fin designs have to achieve a balanced enhancement in heat transfer and aerodynamic performance, offering valuable insights for the development of efficient, low-environmental-impact air conditioning systems. Full article
(This article belongs to the Section Fluid Science and Technology)
Show Figures

Figure 1

18 pages, 20146 KiB  
Article
Changed Relationship between the Spring North Atlantic Tripole Sea Surface Temperature Anomalies and the Summer Meridional Shift of the Asian Westerly Jet
by Lin Chen, Gen Li and Jiaqi Duan
Atmosphere 2024, 15(8), 922; https://doi.org/10.3390/atmos15080922 - 1 Aug 2024
Viewed by 1251
Abstract
The summer Asian westerly jet (AWJ)’s shifting in latitudes is one important characteristic of its variability and has great impact on the East Asian summer climate. Based on the observed and reanalyzed datasets from the Hadley Center Sea Ice and Sea Surface Temperature [...] Read more.
The summer Asian westerly jet (AWJ)’s shifting in latitudes is one important characteristic of its variability and has great impact on the East Asian summer climate. Based on the observed and reanalyzed datasets from the Hadley Center Sea Ice and Sea Surface Temperature dataset (HadISST), the Japanese 55-year reanalysis (JRA-55), and the fifth generation of the European Centre for Medium-Range Weather Forecasts atmospheric reanalysis (ERA5), this study investigates the relationship between the spring tripole North Atlantic SST (TNAT) anomalies and the summer meridional shift of the AWJ (MSJ) for the period of 1958–2020. Through the method of correlation analysis and regression analysis, we show that the ‘+ - +’ TNAT anomalies in spring could induce a northward shift of the AWJ in the following summer. However, such a climatic effect of the spring TNAT anomalies on the MSJ is unstable, exhibiting an evident interdecadal strengthening since the early 1990s. Further analysis reveals that this is related to a strengthened intensity of the spring TNAT anomalies in the most recent three decades. Compared to the early epoch (1958–1993), the stronger spring TNAT anomalies in the post epoch (1994–2020) could cause a stronger pan-tropical climate response until the following summer through a series of ocean–atmosphere interactions. Through Gill responses, the resultant more prominent cooling in the central Pacific in response to the ‘+ - +’ TNAT anomalies induces a pan-tropical cooling in the upper troposphere, which weakens the poleward gradient of the tropospheric temperature over subtropical Asia. As a result, the AWJ shifts northward via a thermal wind effect. By contrast, in the early epoch, the spring TNAT anomalies are relatively weaker, inducing weaker pan-tropical ocean–atmosphere interactions and thus less change in the meridional shit of the summer AWJ. Our results highlight a strengthened lagged effect of the spring TNAT anomalies on the following summer MSJ and have important implications for the seasonal climate predictability over Asia. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

25 pages, 12172 KiB  
Article
Contrast Enhancement Method Using Region-Based Dynamic Clipping Technique for LWIR-Based Thermal Camera of Night Vision Systems
by Cheol-Ho Choi, Joonhwan Han, Jeongwoo Cha, Hyunmin Choi, Jungho Shin, Taehyun Kim and Hyun Woo Oh
Sensors 2024, 24(12), 3829; https://doi.org/10.3390/s24123829 - 13 Jun 2024
Cited by 5 | Viewed by 4253
Abstract
In the autonomous driving industry, there is a growing trend to employ long-wave infrared (LWIR)-based uncooled thermal-imaging cameras, capable of robustly collecting data even in extreme environments. Consequently, both industry and academia are actively researching contrast-enhancement techniques to improve the quality of LWIR-based [...] Read more.
In the autonomous driving industry, there is a growing trend to employ long-wave infrared (LWIR)-based uncooled thermal-imaging cameras, capable of robustly collecting data even in extreme environments. Consequently, both industry and academia are actively researching contrast-enhancement techniques to improve the quality of LWIR-based thermal-imaging cameras. However, most research results only showcase experimental outcomes using mass-produced products that already incorporate contrast-enhancement techniques. Put differently, there is a lack of experimental data on contrast enhancement post-non-uniformity (NUC) and temperature compensation (TC) processes, which generate the images seen in the final products. To bridge this gap, we propose a histogram equalization (HE)-based contrast enhancement method that incorporates a region-based clipping technique. Furthermore, we present experimental results on the images obtained after applying NUC and TC processes. We simultaneously conducted visual and qualitative performance evaluations on images acquired after NUC and TC processes. In the visual evaluation, it was confirmed that the proposed method improves image clarity and contrast ratio compared to conventional HE-based methods, even in challenging driving scenarios such as tunnels. In the qualitative evaluation, the proposed method demonstrated upper-middle-class rankings in both image quality and processing speed metrics. Therefore, our proposed method proves to be effective for the essential contrast enhancement process in LWIR-based uncooled thermal-imaging cameras intended for autonomous driving platforms. Full article
(This article belongs to the Special Issue Infrared Sensing and Target Detection)
Show Figures

Figure 1

12 pages, 4522 KiB  
Article
The Lower Atmospheric Characteristics of Dust Storms Using Ground-Based Sensor Data: A Comparative Analysis of Two Cases in Jinan, China
by Tian Li, Chenghao Tan, Zilong Zhao and Wenjiao Yao
Atmosphere 2024, 15(3), 282; https://doi.org/10.3390/atmos15030282 - 26 Feb 2024
Cited by 1 | Viewed by 1461
Abstract
Two severe dust storm (DS) events (15–17 March and 28–29 March) hit northern China in 2021 consecutively. The lower atmospheric vertical dynamic and thermal structures during the two cases were compared using the ground-based sensor data from the microwave radiometer and radar wind [...] Read more.
Two severe dust storm (DS) events (15–17 March and 28–29 March) hit northern China in 2021 consecutively. The lower atmospheric vertical dynamic and thermal structures during the two cases were compared using the ground-based sensor data from the microwave radiometer and radar wind profiler, combined with the environmental and meteorological observations data in Jinan, China. It was found that both cases occurred under the background of cold vortexes over northeastern China. The dust was transported through the cold air on the northwest route. During the dust period, 2–3 km was the west or northwest airflow, and below 2 km was the northeast wind. The variation in the dynamic structure determined the duration of the DS. During the DS maintenance phase, the vertical wind shear (VWS) below 3 km measured approximately 10 m∙(s∙km)−1. The increased VWS during the dust intrusion period facilitated the transportation of dust. In contrast, the more significant VWS was not conducive to the maintenance of DS, and the shift to south wind control in the upper middle layer indicated the weakening of DS. In both cases, we observed a cliff-like decrease in relative humidity as a prominent indicator of dust outbreaks, occurring approximately 2–5 h beforehand. The diurnal difference between the vertical temperature and relative humidity during the dust maintenance period was found to be insignificant. Full article
(This article belongs to the Special Issue Study of Air Pollution Based on Remote Sensing)
Show Figures

Figure 1

20 pages, 12915 KiB  
Article
Discussion of the W-Sn-REE Metallogenic Background in the Nanling Region of South China: Evidence from Satellite Gravity and Magnetic Data
by Fan Luo, Jiayong Yan, Sheng Zhang, Jian Liang, Guangming Fu, Dehai Wu and Guogang Reng
Minerals 2024, 14(3), 215; https://doi.org/10.3390/min14030215 - 20 Feb 2024
Cited by 3 | Viewed by 1493
Abstract
The Nanling region is located at the intersection of the Yangtze Block and Cathaysia Block and is characterized by complex geological and tectonic processes, as well as distinct W-Sn-REE mineralization. Despite extensive research on the mineralization of W-Sn and REE deposits in the [...] Read more.
The Nanling region is located at the intersection of the Yangtze Block and Cathaysia Block and is characterized by complex geological and tectonic processes, as well as distinct W-Sn-REE mineralization. Despite extensive research on the mineralization of W-Sn and REE deposits in the Nanling region, the factors impacting the distribution pattern of eastern tungsten and western tin deposits, as well as the mechanism of REE enrichment in the parent rocks, remain uncertain. Deep structural and tectonic variability plays a crucial role in the formation of mineral deposits in the upper crust. Information on deep structural and tectonic variability is contained in the Moho depth, Curie depth, effective elastic thickness, lithospheric density, and thermal structure derived from the processing and inversion of satellite gravity and magnetic data. In this paper, we comprehensively analyse satellite gravity and magnetic data from the Nanling region, integrating the processing and inversion results with the tectonic evolution of this region and relevant geological information. It is hypothesized that the Chenzhou–Linwu fault serves as a channel for mineral and thermal transfer in the Sn ore aggregation zone, facilitating the material transport from the deep mantle to the surface and ultimately leading to the formation of Sn-enriched granite. The collection area of tungsten ore is more weakly associated with the Chenzhou–Linwu fault, and through deep heat transfer, tungsten components are primarily concentrated in the Earth’s crust to produce W-enriched granite. The primary source of REE enrichment in the parent rocks associated with REE mineralization is predominantly derived from the felsic crust, and the rapid intrusion of deep magma resulting from the subduction and retraction of the Palaeo-Pacific Plate is a contributing factor to the contrasting enrichment of light and heavy rare-earth elements. Mineral crystalline differentiation is relatively high, leading to the formation of ore-forming parent rocks with high heavy rare-earth element contents. Full article
(This article belongs to the Special Issue Recent Advances in Deep Ore Prospecting)
Show Figures

Graphical abstract

21 pages, 5142 KiB  
Article
On the Role of ZrN Particles in the Microstructural Development in a Beta Titanium Alloy Processed by Laser Powder Bed Fusion
by Xu Chen and Chunlei Qiu
Micromachines 2024, 15(1), 104; https://doi.org/10.3390/mi15010104 - 5 Jan 2024
Viewed by 1555
Abstract
Additive manufacturing of titanium alloys usually ends up with large columnar grains due to the steep thermal gradients within melt pools during solidification. In this study, ZrN particles were added into a beta titanium alloy, Ti-10V-2Fe-3Al, with the aim of promoting columnar-to-equiaxed grain [...] Read more.
Additive manufacturing of titanium alloys usually ends up with large columnar grains due to the steep thermal gradients within melt pools during solidification. In this study, ZrN particles were added into a beta titanium alloy, Ti-10V-2Fe-3Al, with the aim of promoting columnar-to-equiaxed grain transition during laser bed powder fusion (L-PBF). It was found that the addition of ZrN leads to the development of alternate layers of equiaxed grains and refined columnar grains, which is in sharp contrast to the dominant large columnar grains formed in the pure L-PBF-processed titanium alloy. An investigation on single laser melted tracks revealed that the sample with added ZrN showed fine equiaxed grains in the upper regions of solidified melt pools and columnar grains in the lower regions, whereas the solidified melt pools of the pure titanium alloy were dominated by large columnar grains due to epitaxial growth from the previous layer. The formation of equiaxed grains in the former sample is attributed to multiple factors including an increased gradient of liquidus temperature due to the solution of N and a reduced actual melt temperature gradient due to the melting of high-melting-point ZrN particles, which would have expanded constitutional undercooling, a grain growth restriction effect induced by the segregation of N along grain boundaries and the accumulation of unmelted ZrN particles in the upper regions of melt pools. The addition of ZrN also resulted in significant α precipitation, which showed strong variant selection and was found to be driven by laser reheating and the N solution in the matrix. Full article
(This article belongs to the Special Issue Laser Additive Manufacturing of Metallic Materials, 2nd Edition)
Show Figures

Figure 1

15 pages, 5110 KiB  
Article
Thermal Treatment of Trichloroethene by Electrical Resistance Heating: Visualization of Gas Production in Coarse Layers
by Ariel Nunez Garcia, Pengjie Wang, Paul R. Hegele and Kevin G. Mumford
Water 2023, 15(11), 1976; https://doi.org/10.3390/w15111976 - 23 May 2023
Cited by 1 | Viewed by 2211
Abstract
The effective implementation of in situ thermal treatment (ISTT) technologies requires understanding of gas production and migration in heterogenous media. However, investigations of the effects of high permeability contrast on gas formation, accumulation, and migration, as well as its potential effect on the [...] Read more.
The effective implementation of in situ thermal treatment (ISTT) technologies requires understanding of gas production and migration in heterogenous media. However, investigations of the effects of high permeability contrast on gas formation, accumulation, and migration, as well as its potential effect on the redistribution of dense non-aqueous phase liquid (DNAPL), are relatively rare. In this study, electrical resistance heating (ERH) experiments were conducted in a thin sand-packed cell to simulate common yet not well-studied scenarios encountered during ISTT applications, such as coarse lenses surrounded by finer material. Two packing configurations were employed: 2 mm glass beads surrounded by 20/30 silica sand and 20/30 silica sand overlaying 40/50 silica sand. Each experiment contained an emplaced pool of trichloroethene (TCE) within the coarse material. If permeable material or pathways were present between the coarse lens and the upper cell boundary, the gas migrated along these pathways, and local DNAPL redistribution was limited to near the top of the pool before it vaporized. In contrast, if the coarse material was surrounded by finer material and contained a sufficient volume of DNAPL, the gas accumulated inside the coarse lens leading to DNAPL displacement from the lens. For five selected DNAPLs, this volume was estimated to be 0.1% to 0.5% of the total pore volume of the coarse material. The conceptual model developed in this study improves our understanding of this common geological scenario, demonstrating the importance of considering both lower- and higher-permeability material and their effects on multiphase flow during co-boiling, as well as the design of gas extraction systems during ISTT applications. Full article
Show Figures

Figure 1

5 pages, 828 KiB  
Proceeding Paper
Optimizing the Thermal Processing of Honey by Studying the Physicochemical Properties and Its Hydroxymethylfurfural Content
by Sepidar Seyyedi-Mansour, Pauline Donn, Paula Garcia-Oliveira, Javier Echave, Franklin Chamorro, Antia Gonzalez Pereira, Aurora Silva, Ana Perez-Vazquez, Jesus Simal-Gandara, Miguel A. Prieto and Leila Roufegarinejad
Eng. Proc. 2023, 37(1), 108; https://doi.org/10.3390/ECP2023-14713 - 19 May 2023
Cited by 1 | Viewed by 1346
Abstract
Hydroxymethylfurfural (HMF) is a naturally occurring compound that arises because of the thermal processing and storage of honey. The Codex Alimentarius Commission has established a threshold of 40 ppm as the upper limit for the HMF content in honey. This research aimed to [...] Read more.
Hydroxymethylfurfural (HMF) is a naturally occurring compound that arises because of the thermal processing and storage of honey. The Codex Alimentarius Commission has established a threshold of 40 ppm as the upper limit for the HMF content in honey. This research aimed to investigate the impacts of varying heating temperatures (55, 65, and 75 °C) and heating times (10, 20, and 30 min), as well as storage temperatures (25 and 40 °C), over a period of three months. The study employed the response surface methodology (RSM) to evaluate the outcomes. The impacts of the variables mentioned above on the physicochemical properties, including the Lab color factors, pH, and moisture, were determined. Additionally, the concentration of HMF in the samples was analyzed. The prediction model of each treatment was computed. Analyses of the results obtained after the storage periods of 45 and 90 days were conducted. The findings indicated that pH, moisture content, and color were not significantly influenced by temperature, the duration of heat treatment, or the storage time. However, storage temperature considerably impacted both L* and a*. Furthermore, it was observed that all the variables significantly influenced the HMF content, and its concentration increased with the escalation of thermal processing and storage duration. Within the examined samples, the HMF content surpassed the standard limit in the model subjected to heating at 75 °C for 20 min and maintained at 40 °C for 90 days. In contrast, heating at 55 °C for 10 min, followed by storage at 25 °C for 45 days, produced the optimal HMF level. Full article
Show Figures

Figure 1

Back to TopTop