A Comparative Analysis of Two Mediterranean Tornado Hotspots
Abstract
:1. Introduction
2. Data and Methods
2.1. Tornadoes in Italy
2.2. Tornado Reports
- -
- events classified with category 1 or higher on the Enhanced Fujita scale (EF1+);
- -
- tornadoes over land (thus including waterspouts making landfall, but excluding waterspouts remaining over sea);
- -
- reports with a time accuracy of 3 h (−1.5 h/+1.5 h) or less, and location accuracy smaller than 3 km.
2.3. Upper Air Observations
2.4. ERA5 ReAnalysis
3. Results and Discussion
3.1. Climatology of Intense Tornadoes from 1990 to 2021 in the CT and SE Regions
3.2. Composite Hodographs and Sounding-Derived Parameters in the CT and SE Sounding Sites
3.3. Large-Scale Meteorological and Convective Environments
- -
- For both CT and SE, a deeper-than-average upper-level trough is observed over the western Mediterranean Sea (elongated further south and shifted southeast for the SE cases) (Figure 4a,b). The tornado-spawning cells occur on the southeastern/eastern side of the trough, driven by a southwesterly steering flow.
- -
- The mean sea level pressure fields exhibit lower-than-average values for both regions (Figure 4c,d), centered about 400 km (northwest for CT and west for SE) from the center of the tornado hotspots. Maximum negative anomalies of about 8 hPa (6 hPa) were found for the CT (SE) cases.
- -
- Positive low-level temperature anomalies are present in both CT and SE (up to 2 K for CT and 3 K for SE; Figure 4e,f) surrounding regions, while negative anomalies are evident west of the areas with lower-than-average MSLP. However, for the CT cases, the tornado locations are at the border between the cold and warm air (slightly on the colder side); conversely, in the SE regions, the tornadoes occur in the warm anomaly, as the cold front is still over the Tyrrhenian Sea.
- -
- For both CT and SE, positive SST anomalies are found (Figure 4g,h) in the sea sectors near the areas affected by the tornadoes in the central Tyrrhenian and Ionian Sea, respectively. However, for CT cases, the anomalies are of a few tenths of K near the Tyrrhenian coast, while averaged values up to 0.8 K are visible in the SE cases (however, much higher peaks of positive anomalies were found in single events, as discussed in the next section). These results are consistent with previous works [19].
- -
- For the CT regions (Figure 5a), colder air is advected toward the western Mediterranean Basin by higher-than-average (anomaly not shown) surface (mistral) winds (10 m wind speed locally greater than 9 m s−1). This is a typical configuration associated with Atlantic perturbations penetrating the Mediterranean basin through the Rhone Valley/Gulf of Lion. The CT regions, Lazio in particular, are affected by southwesterly surface currents, flowing on the southeastern side of the low-pressure area (Figure 4c). For the SE regions (Figure 5b), the mistral wind is still present in the western Mediterranean, while stronger-than-average (anomaly not shown) southerly surface winds (10 m wind speed locally greater than 6 m s−1) blow on average from North Africa to the Ionian Sea, transporting warm air over warm sea sectors (Figure 4f,h) that further increase the instability of the air mass.
- -
- Moderate-to-high values of the composite MUCAPE are present in the sea sectors near the tornado areas, for both hotspots (maximum values of composite MUCAPE up to 850/1000 J kg−1 for CT/SE, respectively; Figure 5c,d). However, while the area of maximum instability reaches the Tyrrhenian coast in CT cases, it is located some hundreds of km further south from the position of the tornadoes in SE events, which explains the higher values of MUCAPE in the tornado locations in CT (ERA5 values in Table 1).
- -
- Nearby the tornado hotspots, both average DLS and SRH03 exhibit moderate-to-high values. DLS (Figure 5e,f) is stronger on the southern side of the corresponding tornado hotspot areas, in the southern Mediterranean, close to the northern African coasts. For the CT regions, directly exposed to the prevailing westerly currents, the highest SRH values are near the coastlines adjacent to the tornado areas (Figure 5g), while, for the SE regions, the highest SRH values are in the Balkan regions that are affected by the intense southerly flow over the Ionian Sea.
3.3.1. Maximum-Values Approach
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Parameter Equation | Long Name | Units | References |
---|---|---|---|
DLS = |v500-v1000/10m| | Deep Level Shear | m s−1 | [49] |
MLS = |v700-v1000/10m| | Mid Level Shear | “ ” | “ ” |
LLS = |v900-v10m| (*) ERA5 maps only | Low Level Shear | “ ” | “ ” |
CAPE = g | Convective Available Potential Energy | J kg−1 | [50] |
SRH03/SRH01 = − | Storm Relative Helicity (0–3/0–1 km) | m2 s−2 | [51] |
KI = (T850-T500) + Td850-(T700-Td700) | K index | K | [52] |
TT = (T850-T500) + (Td850- T500) | Total Totals index | K | [53] |
References
- Antonescu, B.; Schultz, D.M.; Lomas, F.; Kühne, T. Tornadoes in Europe: Synthesis of the observational datasets. Mon. Weather Rev. 2016, 144, 2445–2480. [Google Scholar] [CrossRef]
- Antonescu, B.; Schultz, D.M.; Holzer, A.; Groenemeijer, P. Tornadoes in Europe: An underestimated threat. Bull. Am. Meteorol. Soc. 2017, 98, 713–728. [Google Scholar] [CrossRef]
- Grieser, J.; Haines, P. Tornado risk climatology in Europe. Atmosphere 2020, 11, 768. [Google Scholar] [CrossRef]
- Dotzek, N. An updated estimate of tornado occurrence in Europe. Atmos. Res. 2003, 67, 153–161. [Google Scholar] [CrossRef]
- Taszarek, M.; Allen, J.T.; Groenemeijer, P.; Edwards, R.; Brooks, H.E.; Chmielewski, V.; Enno, S.E. Severe convective storms across Europe and the United States. Part I: Climatology of lightning, large hail, severe wind, and tornadoes. J. Clim. 2020, 33, 10239–10261. [Google Scholar] [CrossRef]
- Groenemeijer, P.; Kühne, T. A climatology of Tornadoes in Europe: Results from the European Severe Weather Database. Mon. Weather Rev. 2014, 142, 4775–4790. [Google Scholar] [CrossRef]
- Groenemeijer, P.; Van Delden, A. Sounding-derived parameters associated with large hail and tornadoes in the Netherlands. Atmos. Res. 2007, 83, 473–487. [Google Scholar] [CrossRef]
- Taszarek, M.; Kolendowicz, L. Sounding-derived parameters associated with tornado occurrence in Poland and universal tornadic index. Atmos. Res. 2013, 134, 186–197. [Google Scholar] [CrossRef]
- Rodríguez, O.; Bech, J. Sounding-derived parameters associated with tornadic storms in Catalonia. Int. J. Climatol. 2018, 38, 2400–2414. [Google Scholar] [CrossRef] [Green Version]
- Coffer, B.E.; Taszarek, M.; Parker, M.D. Near-ground wind profiles of tornadic and nontornadic environments in the United States and Europe from ERA5 reanalyses. Weather. Forecast. 2020, 35, 2621–2638. [Google Scholar] [CrossRef]
- Taszarek, M.; Allen, J.T.; Púčik, T.; Hoogewind, K.A.; Brooks, H.E. Severe convective storms across Europe and the United States. Part 2: ERA5 environments associated with lightning, large hail, severe wind and tornadoes. J. Clim. 2020, 33, 10263–10286. [Google Scholar] [CrossRef]
- Rodríguez, O.; Bech, J. Tornadic environments in the Iberian Peninsula and the Balearic Islands based on ERA5 reanalysis. Int. J. Climatol. 2020, 41, S1. [Google Scholar] [CrossRef]
- Taszarek, M.; Pilguj, N.; Allen, J.T.; Gensini, V.A.; Brooks, H.E.; Szuster, P. Comparison of convective parameters derived from ERA5 and MERRA2 with sounding data over Europe and North America. J. Clim. 2021, 34, 3211–3255. [Google Scholar] [CrossRef]
- Pilguj, N.; Taszarek, M.; Allen, J.T.; Hoogewind, K.A. Are trends in convective parameters over the United States and Europe consistent between reanalyses and observations? J. Clim. 2022, 35, 3605–3626. [Google Scholar] [CrossRef]
- Tuel, A.; Eltahir, E.A.B. Why Is the Mediterranean a Climate Change Hot Spot? J. Clim. 2020, 33, 15. [Google Scholar] [CrossRef]
- Miglietta, M.M.; Mazon, J.; Rotunno, R. Numerical simulations of a tornadic supercell over the Mediterranean. Weather. Forecast. 2017, 32, 1209–1226. [Google Scholar] [CrossRef]
- Avolio, E.; Miglietta, M.M. Tornadoes in the Tyrrhenian regions of the Italian peninsula: The case study of 28 July 2019. Atmos. Res. 2022, 278, 106285. [Google Scholar] [CrossRef]
- Miglietta, M.M.; Matsangouras, I.T. An updated climatology of tornadoes and waterspout in Italy. Int. J. Climatol. 2018, 38, 3667–3683. [Google Scholar] [CrossRef] [Green Version]
- Bagaglini, L.; Ingrosso, R.; Miglietta, M.M. Synoptic patterns and mesoscale precursors of Italian tornadoes. Atmos. Res. 2021, 253, 105503. [Google Scholar] [CrossRef]
- Palmieri, S.; Pulcini, A. Trombe d’aria sull’Italia. Riv. Meteorol. Aeronaut. 1978, 4, 263–277. [Google Scholar]
- Gianfreda, F.; Miglietta, M.M.; Sansò, P. Tornadoes in southern Apulia (Italy). Nat. Hazards 2005, 34, 71–89. [Google Scholar] [CrossRef]
- Giaiotti, D.B.; Giovannoni, M.; Pucillo, A.; Stel, F. The climatology of tornadoes and waterspouts in Italy. Atmos. Res. 2007, 83, 534–541. [Google Scholar] [CrossRef]
- Bertato, M.; Giaiotti, D.B.; Manzato, A.; Stel, F. An interesting case of tornado in Friuli-Northeastern Italy. Atmos. Res. 2003, 67, 3–21. [Google Scholar] [CrossRef]
- Pipinato, A. Recent northeast Italian tornado events: Lesson learned for improving structures. Nat. Hazards 2018. [Google Scholar] [CrossRef]
- Zanini, M.A.; Hofer, L.; Faleschini, F.; Pellegrino, C. Building damage assessment after the Riviera del Brenta tornado, northeast Italy. Nat. Hazards 2017, 86, 1247–1273. [Google Scholar] [CrossRef]
- Ingrosso, R.; Lionello, P.; Miglietta, M.M.; Salvadori, G. A statistical investigation of mesoscale precursors of significant tornadoes: The Italian case study. Atmosphere 2020, 11, 301. [Google Scholar] [CrossRef] [Green Version]
- Miglietta, M.M.; Manzato, A.; Rotunno, R. Characteristics and Predictability of a Supercell during HyMeX SOP1, Q.J. Roy. Meteor. Soc. 2016, 142, 2839–2853. [Google Scholar] [CrossRef]
- Miglietta, M.M.; Rotunno, R. An EF3 Multivortex Tornado over the Ionian Region: Is it time for a dedicated warning system over Italy? Bull. Am. Meteorol. Soc. 2016, 97, 337–344. [Google Scholar] [CrossRef]
- Avolio, E.; Miglietta, M.M. Multiple tornadoes in the Italian Ionian regions: Observations, sensitivity tests and mesoscale analysis of convective storm environmental parameters. Atmos. Res. 2021, 263, 105800. [Google Scholar] [CrossRef]
- Doswell, C.; Brooks, H.E.; Dotzek, N. On the implementation of the enhanced Fujita scale in the USA. Atmos. Res. 2009, 93, 554–563. [Google Scholar] [CrossRef] [Green Version]
- Dotzek, N.; Groenemeijer, P.; Feuerstein, B.; Holzer, A.M. Overview of ESSL’s severe convective storms research using the European Severe Weather Database ESWD. Atmos. Res. 2009, 93, 575–586. [Google Scholar] [CrossRef]
- Rasmussen, E.N.; Blanchard, D.O. A baseline climatology of sounding-derived supercell and tornado forecast parameters. Wea. Forecast. 1998, 13, 1148–1164. [Google Scholar] [CrossRef]
- Renko, T.; Kuzmić, J.; Šoljan, V.; Mahović, N.S. Waterspouts in the Eastern Adriatic from 2001 to 2013. Nat. Hazards 2016, 82, 441–470. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Single Levels from 1959 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2018. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview (accessed on 1 July 2022).
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Pressure Levels from 1959 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2018. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=overview (accessed on 1 July 2022).
- Miglietta, M.; Mazon, J.; Motola, V.; Pasini, A. Effect of a positive sea surface temperature anomaly on a Mediterranean tornadic supercell. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corfidi, S.F. Cold pools and MCS propagation: Forecasting the motion of downwind-developing MCSs. Weather Forecast. 2003, 18, 997–1017. [Google Scholar] [CrossRef]
- Chisholm, A.J.; Renick, J.H. The kinematics of multi-cell and supercell Alberta hailstorms. Res. Council Alberta Hail Stud. Rep. 1972, 72, 24–31. [Google Scholar]
- Weisman, M.L.; Klemp, J.B. The structure and classification of numerically simulated convective storms in directionally varying wind shears. Mon. Weather Rev. 1984, 112, 2479–2498. [Google Scholar] [CrossRef]
- Bunkers, M.J.; Klimowski, B.A.; Zeitler, J.W.; Thompson, R.L.; Weisman, M.L. Predicting supercell motion using a new hodograph technique. Weather Forecast. 2000, 15, 61–79. [Google Scholar] [CrossRef]
- Weisman, M.L.; Rotunno, R. The use of vertical wind shear versus helicity in interpreting supercell dynamics. J. Atmos. Sci. 2000, 57, 1452–1472. [Google Scholar] [CrossRef]
- Chernokulsky, A.; Shikhov, A.; Bykov, A.; Azhigov, I. Satellite-based study and numerical forecasting of two Tornado outbreaks in the Ural region in June 2017. Atmosphere 2000, 11, 1146. [Google Scholar] [CrossRef]
- Weisman, M.L.; Davis, C.A. Mechanisms for the generation of mesoscale vortices within quasi-linear convective systems. J. Atmos. Sci. 1998, 55, 2603–2622. [Google Scholar] [CrossRef]
- Sherburn, K.D.; Parker, M.D. Climatology and ingredients of significant severe convection in high-shear, low-CAPE environments. Weather Forecast. 2014, 29, 854–877. [Google Scholar] [CrossRef]
- Sherburn, K.D.; Parker, M.D.; King, J.R.; Lackmann, G.M. Composite environments of severe and nonsevere high-shear, low-CAPE convective events. Weather Forecast. 2016, 31, 1899–1927. [Google Scholar] [CrossRef]
- Anderson-Frey, A.K.; Richardson, Y.P.; Dean, A.R.; Thompson, R.L.; Smith, B.T. Investigation of near-storm environments for tornado events and warnings. Weather Forecast. 2016, 31, 1771–1790. [Google Scholar] [CrossRef]
- Davis, J.M.; Parker, M.D. Radar climatology of tornadic and nontornadic vortices in high-shear, low-CAPE environments in the mid-Atlantic and southeastern United States. Weather Forecast. 2014, 29, 828–853. [Google Scholar] [CrossRef]
- Šinger, M.; Púčik, T. A challenging tornado forecast in Slovakia. Atmosphere 2000, 11, 821. [Google Scholar] [CrossRef]
- Weisman, M.L.; Klemp, J.B. The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Weather Rev. 1982, 110, 504–520. [Google Scholar] [CrossRef]
- Moncrieff, M.W.; Miller, M.J. The dynamics and simulation of tropical cumulus and squall lines. Q. J. Roy. Meteor. Soc. 1976, 102, 373–394. [Google Scholar] [CrossRef]
- Davies-Jones, R.; Burgess, D.W.; Foster, M. Test of helicity as a forecast parameter. In Preprints Proceedings of the 16th Conference on Severe Local Storms, Kananaskis Park, AB, Canada, 22–26 October 1990; American Meteorological Society: Bostn, MA, USA, 1990; pp. 588–592. [Google Scholar]
- George, J.J. Weather Forecasting for Aeronautics; Academic Press: Cambridge, MA, USA, 1960; p. 673. [Google Scholar]
- Miller, R.C. Notes on Analysis and Severe Storm Forecasting Procedures of the Air Force Global Weather Center; Report 200 (Rev.); Air Weather Service, Scott Air Force Base: Belleville, IL, USA, 1972; p. 106. [Google Scholar]
TT [K] | MUCAPE [J kg−1] | DLS [m s−1] | MLS [m s−1] | SRH03 [m2 s−2] | SRH01 [m2 s−2] | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ERA5 | RAOB | ERA5 | RAOB | ERA5 | RAOB | ERA5 | RAOB | ERA5 | RAOB | ERA5 | RAOB | |
CT | 48 | 49 | 741 | 616 | 15 | 15 | 9 | 10 | 77 | 137 | 38 | 64 |
SE | 49 | 48 | 585 | 645 | 11 | 12 | 8 | 8 | 80 | 101 | 57 | 55 |
SST [K] | T850 [K] | KI [K] | TT [K] | WSP10 [m s−1] | MUCAPE [J kg−1] | DLS [m s−1] | MLS [m s−1] | LLS [m s−1] | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CT | SE | CT | SE | CT | SE | CT | SE | CT | SE | CT | SE | CT | SE | CT | SE | CT | SE | |
MEAN | 1.0 | 1.0 | 2.0 | 3.1 | 31 | 32 | 53 | 53 | 11.7 | 11.1 | 1824 | 1732 | 22 | 21 | 16 | 17 | 10 | 10 |
MAX | 3.1 | 2.4 | 8.9 | 7.0 | 40 | 41 | 61 | 58 | 19.3 | 19.5 | 5386 | 5512 | 38 | 36 | 32 | 30 | 20 | 19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avolio, E.; Miglietta, M.M. A Comparative Analysis of Two Mediterranean Tornado Hotspots. Atmosphere 2023, 14, 189. https://doi.org/10.3390/atmos14010189
Avolio E, Miglietta MM. A Comparative Analysis of Two Mediterranean Tornado Hotspots. Atmosphere. 2023; 14(1):189. https://doi.org/10.3390/atmos14010189
Chicago/Turabian StyleAvolio, Elenio, and Mario Marcello Miglietta. 2023. "A Comparative Analysis of Two Mediterranean Tornado Hotspots" Atmosphere 14, no. 1: 189. https://doi.org/10.3390/atmos14010189
APA StyleAvolio, E., & Miglietta, M. M. (2023). A Comparative Analysis of Two Mediterranean Tornado Hotspots. Atmosphere, 14(1), 189. https://doi.org/10.3390/atmos14010189