Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (404)

Search Parameters:
Keywords = atmospheric soundings

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 6001 KiB  
Article
Distinct Regional and Seasonal Patterns of Atmospheric NH3 Observed from Satellite over East Asia
by Haklim Choi, Mi Eun Park and Jeong-Ho Bae
Remote Sens. 2025, 17(15), 2587; https://doi.org/10.3390/rs17152587 - 24 Jul 2025
Viewed by 213
Abstract
Ammonia (NH3), as a vital component of the nitrogen cycle, exerts significant influence on the biosphere, air quality, and climate by contributing to secondary aerosol formation through its reactions with sulfur dioxide (SO2) and nitrogen oxides (NOx). [...] Read more.
Ammonia (NH3), as a vital component of the nitrogen cycle, exerts significant influence on the biosphere, air quality, and climate by contributing to secondary aerosol formation through its reactions with sulfur dioxide (SO2) and nitrogen oxides (NOx). Despite its critical environmental role, NH3’s transient atmospheric lifetime and the variability in spatial and temporal distributions pose challenges for effective global monitoring and comprehensive impact assessment. Recognizing the inadequacies in current in situ measurement capabilities, this study embarked on an extensive analysis of NH3’s temporal and spatial characteristics over East Asia, using the Infrared Atmospheric Sounding Interferometer (IASI) onboard the MetOp-B satellite from 2013 to 2024. The atmospheric NH3 concentrations exhibit clear seasonality, beginning to rise in spring, peaking in summer, and then decreasing in winter. Overall, atmospheric NH3 shows an annual increasing trend, with significant increases particularly evident in Eastern China, especially in June. The regional NH3 trends within China have varied, with steady increases across most regions, while the Northeastern China Plain remained stable until a recent rapid rise. South Korea continues to show consistent and accelerating growth. East Asia demonstrates similar NH3 emission characteristics, driven by farmland and livestock. The spatial and temporal inconsistencies between satellite data and global chemical transport models underscore the importance of establishing accurate NH3 emission inventories in East Asia. Full article
Show Figures

Graphical abstract

16 pages, 4557 KiB  
Article
A Dual-Wavelength Lidar Boundary Layer Height Detection Fusion Method and Case Analysis
by Zhiyuan Fang, Shu Li, Hao Yang and Zhiqiang Kuang
Photonics 2025, 12(8), 741; https://doi.org/10.3390/photonics12080741 - 22 Jul 2025
Viewed by 334
Abstract
Accurate detection of the atmospheric boundary layer (ABL) is important for weather forecasting, urban air quality monitoring, and agricultural and ecological protection. In this study, we propose a new method for enhancing ABL height detection accuracy by integrating multi-channel polarized lidar signals at [...] Read more.
Accurate detection of the atmospheric boundary layer (ABL) is important for weather forecasting, urban air quality monitoring, and agricultural and ecological protection. In this study, we propose a new method for enhancing ABL height detection accuracy by integrating multi-channel polarized lidar signals at 355 nm and 532 nm wavelengths. Radiosonde observations and ERA5 reanalysis are used to validate the lidar-derived results. By calculating the gradients of signals of different wavelengths and weighted fusion, the position of the top of the boundary layer is identified, and corresponding weights are assigned to signals of different wavelengths according to the signal-to-noise ratio of the signals to obtain a more accurate atmospheric boundary layer height. This method can effectively mitigate the influence of noise and provides more stable and accurate ABL height estimates, particularly under complex aerosol conditions. Three case studies of ABL height detection over the Beijing region demonstrate the effectiveness and reliability of the proposed method. The fused ABLHs were found to be consistent with the sounding data and ERA5. This research offers a robust approach to enhancing ABL height detection and provides valuable data support for meteorological studies, pollution monitoring, and environmental protection. Full article
(This article belongs to the Special Issue Optical Sensing Technologies, Devices and Their Data Applications)
Show Figures

Figure 1

19 pages, 5180 KiB  
Article
In-Flight Calibration of Geostationary Meteorological Imagers Using Alternative Methods: MTG-I1 FCI Case Study
by Ali Mousivand, Christoph Straif, Alessandro Burini, Mounir Lekouara, Vincent Debaecker, Tim Hewison, Stephan Stock and Bojan Bojkov
Remote Sens. 2025, 17(14), 2369; https://doi.org/10.3390/rs17142369 - 10 Jul 2025
Viewed by 476
Abstract
The Flexible Combined Imager (FCI), developed as the next-generation imager for the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Meteosat Third Generation (MTG) satellite series, represents a significant advancement over its predecessor, SEVIRI, on the Meteosat Second Generation (MSG) satellites. FCI [...] Read more.
The Flexible Combined Imager (FCI), developed as the next-generation imager for the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Meteosat Third Generation (MTG) satellite series, represents a significant advancement over its predecessor, SEVIRI, on the Meteosat Second Generation (MSG) satellites. FCI offers more spectral bands, higher spatial resolution, and faster imaging capabilities, supporting a wide range of applications in weather forecasting, climate monitoring, and environmental analysis. On 13 January 2024, the FCI onboard MTG-I1 (renamed Meteosat-12 in December 2024) experienced a critical anomaly involving the failure of its onboard Calibration and Obturation Mechanism (COM). As a result, the use of the COM was discontinued to preserve operational safety, leaving the instrument dependent on alternative calibration methods. This loss of onboard calibration presents immediate challenges, particularly for the infrared channels, including image artifacts (e.g., striping), reduced radiometric accuracy, and diminished stability. To address these issues, EUMETSAT implemented an external calibration approach leveraging algorithms from the Global Space-based Inter-Calibration System (GSICS). The inter-calibration algorithm transfers stable and accurate calibration from the Infrared Atmospheric Sounding Interferometer (IASI) hyperspectral instrument aboard Metop-B and Metop-C satellites to FCI’s infrared channels daily, ensuring continued data quality. Comparisons with Cross-track Infrared Sounder (CrIS) data from NOAA-20 and NOAA-21 satellites using a similar algorithm is then used to validate the radiometric performance of the calibration. This confirms that the external calibration method effectively compensates for the absence of onboard blackbody calibration for the infrared channels. For the visible and near-infrared channels, slower degradation rates and pre-anomaly calibration ensure continued accuracy, with vicarious calibration expected to become the primary source. This adaptive calibration strategy introduces a novel paradigm for in-flight calibration of geostationary instruments and offers valuable insights for satellite missions lacking onboard calibration devices. This paper details the COM anomaly, the external calibration process, and the broader implications for future geostationary satellite missions. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

21 pages, 4831 KiB  
Article
Aerodynamic Optimization and Thermal Deformation Effects on Mid-Altitude Sounding Rockets: A Computational and Structural Analysis
by Aslam Abdullah, Mohd Fadhli Zulkafli, Muhammad Akmal Abdul Halim, Ramanathan Ashwin Thanneermalai and Bambang Basuno
Dynamics 2025, 5(3), 28; https://doi.org/10.3390/dynamics5030028 - 9 Jul 2025
Viewed by 271
Abstract
Mid-altitude sounding rockets are essential for atmospheric research and suborbital experimentation, where aerodynamic optimization and structural integrity are crucial for achieving targeted apogees. This study uses OpenRocket v23.09 for preliminary flight performance prediction and SolidWorks 2024 to integrate aerodynamic and structural analyses through [...] Read more.
Mid-altitude sounding rockets are essential for atmospheric research and suborbital experimentation, where aerodynamic optimization and structural integrity are crucial for achieving targeted apogees. This study uses OpenRocket v23.09 for preliminary flight performance prediction and SolidWorks 2024 to integrate aerodynamic and structural analyses through Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA). SolidWorks Flow Simulation and SolidWorks Simulation are used to assess how nose cone and fin geometries, as well as thermal deformation, influence flight performance. Among nine tested configurations, the ogive nose cone with trapezoidal fins achieved the highest simulated apogee of 2639 m, with drag coefficients of 0.480 (OpenRocket) and 0.401 (SolidWorks Flow Simulation). Thermal–structural analysis revealed a maximum nose tip displacement of 0.7249 mm for the rocket with the ogive nose cone, leading to an increasing drag coefficient of 0.404. However, thermal deformation of the ellipsoid nose cone led to a reduction in the drag coefficient from 0.419 to 0.399, even though it exhibited a slightly higher maximum displacement of 0.7443 mm. Mesh independence was confirmed with outlet velocity deviations below 1% across refinements. These results highlight the importance of integrated CFD–FEA approaches, geometric optimization, and material resilience for enhancing the aerodynamic performance of subsonic sounding rockets. Full article
Show Figures

Figure 1

25 pages, 5080 KiB  
Article
Study on 2007–2021 Drought Trends in Basilicata Region Based on the AMSU-Based Soil Wetness Index
by Raffaele Albano, Meriam Lahsaini, Arianna Mazzariello, Binh Pham-Duc and Teodosio Lacava
Land 2025, 14(6), 1239; https://doi.org/10.3390/land14061239 - 9 Jun 2025
Viewed by 496
Abstract
Soil moisture (SM) plays a fundamental role in the water cycle and is an important variable for all processes occurring at the lithosphere–atmosphere interface, which are strongly affected by climate change. Among the different fields of application, accurate SM measurements are becoming more [...] Read more.
Soil moisture (SM) plays a fundamental role in the water cycle and is an important variable for all processes occurring at the lithosphere–atmosphere interface, which are strongly affected by climate change. Among the different fields of application, accurate SM measurements are becoming more relevant for all studies related to extreme event (e.g., floods, droughts, and landslides) mitigation and assessment. In this study, data acquired by the advanced microwave sounding unit (AMSU) onboard the European Meteorological Operational Satellite Program (MetOP) satellites were used for the first time to extract information on the variability of SM by implementing the original soil wetness index (SWI). Long-term monthly SWI time series collected for the Basilicata region (southern Italy) were analyzed for drought assessment during the period 2007–2021. The accuracy of the SWI product was tested through a comparison with SM products derived by the Advanced SCATterometer (ASCAT) over the 2013–2016 period, while the Standardized Precipitation-Evapotranspiration Index (SPEI) was used to assess the relevance of the long-term achievements in terms of drought analysis. The results indicate a satisfactory accuracy of the SWI, with the mean correlation coefficient values with ASCAT higher than 0.7 and a mean normalized root mean square error less than 0.155. A negative trend in SWI during the 15-year period was found using both the original and deseasonalized series (linear and Sen’s slope ~−0.00525), confirmed by SPEI (linear and Sen’s slope ~−0.00293), suggesting the occurrence of a marginal long-term dry phase in the region. Although further investigations are needed to better assess the intensity and main causes of the phenomena, this result indicates the contribution that satellite data/products can offer in supporting drought assessment. Full article
(This article belongs to the Section Land – Observation and Monitoring)
Show Figures

Figure 1

24 pages, 51676 KiB  
Article
Acoustic Tomography of the Atmosphere: A Large-Eddy Simulation Sensitivity Study
by Emina Maric, Bumseok Lee, Regis Thedin, Eliot Quon and Nicholas Hamilton
Remote Sens. 2025, 17(11), 1892; https://doi.org/10.3390/rs17111892 - 29 May 2025
Viewed by 486
Abstract
Accurate measurement of atmospheric turbulent fluctuations is critical for understanding environmental dynamics and improving models in applications such as wind energy. Advanced remote sensing technologies are essential for capturing instantaneous velocity and temperature fluctuations. Acoustic tomography (AT) offers a promising approach that utilizes [...] Read more.
Accurate measurement of atmospheric turbulent fluctuations is critical for understanding environmental dynamics and improving models in applications such as wind energy. Advanced remote sensing technologies are essential for capturing instantaneous velocity and temperature fluctuations. Acoustic tomography (AT) offers a promising approach that utilizes sound travel times between an array of transducers to reconstruct turbulence fields. This study presents a systematic evaluation of the time-dependent stochastic inversion (TDSI) algorithm for AT using synthetic travel-time measurements derived from large-eddy simulation (LES) fields under both neutral and convective atmospheric boundary-layer conditions. Unlike prior work that relied on field observations or idealized fields, the LES framework provides a ground-truth atmospheric state, enabling quantitative assessment of TDSI retrieval reliability, sensitivity to travel-time measurement noise, and dependence on covariance model parameters and temporal data integration. A detailed sensitivity analysis was conducted to determine the best-fit model parameters, identify the tolerance thresholds for parameter mismatch, and establish a maximum spatial resolution. The TDSI algorithm successfully reconstructed large-scale velocity and temperature fluctuations with root mean square errors (RMSEs) below 0.35 m/s and 0.12 K, respectively. Spectral analysis established a maximum spatial resolution of approximately 1.4 m, and reconstructions remained robust for travel-time measurement uncertainties up to 0.002 s. These findings provide critical insights into the operational limits of TDSI and inform future applications of AT for atmospheric turbulence characterization and system design. Full article
(This article belongs to the Special Issue New Insights from Wind Remote Sensing)
Show Figures

Figure 1

21 pages, 4519 KiB  
Article
Parsimonious Model of Groundwater Recharge Potential as Seen Related with Two Topographic Indices and the Leaf Area Index
by Rodríguez-Moreno Victor Manuel and Kretzschmar Thomas Gunter
Hydrology 2025, 12(6), 127; https://doi.org/10.3390/hydrology12060127 - 22 May 2025
Viewed by 650
Abstract
A concise model, utilizing the threshold values of closed depressions, the convergence index, and the leaf area index (LAI) that play a significant role in modeling vegetation–atmosphere interactions and understanding the impact of vegetation on the hydrological cycle, was employed to pinpoint potential [...] Read more.
A concise model, utilizing the threshold values of closed depressions, the convergence index, and the leaf area index (LAI) that play a significant role in modeling vegetation–atmosphere interactions and understanding the impact of vegetation on the hydrological cycle, was employed to pinpoint potential aquifer recharge centroids. The LAI index served as a geographic mask, linking centroid locations to soil vegetation cover. Analyzing a paired subsample of 500 centroids for each strata (true and false), we observed that maximum values of true centroids, indicating potential groundwater recharge, correlated with the presence of abundant vegetation (0.074 < LAI < 0.639). Conversely, lower LAI values were associated with sparse vegetation in false centroids (0.01 < LAI < 0.590). The study’s findings hold promising implications for aquifer management, biodiversity conservation, hydric planning, and land use protection, making a substantial contribution to the field. The recharge hypothesis is theoretically sound and empirically supported to propose that areas of high topographic convergence and closed depressions are potential water recharge zones, and these locations may exhibit permanent or denser vegetation, reflected as higher LAI values. This happens because water accumulates or lingers in these zones, soil moisture is maintained more consistently, and plant roots access water for longer periods, even during dry seasons. Vegetation becomes more resilient and persistent (possibly even forming phreatophytes—plants accessing groundwater). Additionally, there is potential for expanding the research by incorporating field observations, including tracking the routes of surface and subsurface runoff and determining arrival times to the aquifer. Such studies are increasingly vital for addressing contemporary environmental and water resource challenges. Full article
Show Figures

Figure 1

21 pages, 5602 KiB  
Article
Retrieval of Cloud Ice Water Path from FY-3F MWTS and MWHS
by Fuxiang Chen, Hao Hu, Fuzhong Weng, Changjiao Dong, Xiang Fang and Jun Yang
Remote Sens. 2025, 17(10), 1798; https://doi.org/10.3390/rs17101798 - 21 May 2025
Viewed by 289
Abstract
Microwave sounding observations obtained from the National Oceanic and Atmospheric Administration (NOAA) and the European Meteorological Operational Satellite Program (METOP) satellites have been used for retrieving the cloud ice water path (IWP). However, the IWP algorithms developed in the past cannot be applied [...] Read more.
Microwave sounding observations obtained from the National Oceanic and Atmospheric Administration (NOAA) and the European Meteorological Operational Satellite Program (METOP) satellites have been used for retrieving the cloud ice water path (IWP). However, the IWP algorithms developed in the past cannot be applied to the Fengyun-3F (FY-3F) microwave radiometers due to the differences in frequency of the primary channels and the fields of view. In this study, the IWP algorithm was tailored for the FY-3F satellite, and the retrieved IWP was compared with the fifth generation of reanalysis data from the European Centre for Medium-Range Weather Forecasts (ERA5) and the Meteorological Operational Satellite-C (METOP-C) products. The results indicate that the IWP distribution retrieved from FY-3F observations demonstrates strong consistency with the cloud ice distributions in ERA5 data and METOP-C products in low-latitude regions. However, discrepancies are observed among the three datasets in mid- to high-latitude regions. ERA5 data underestimate the frequency of high IWP values and overestimate the frequency of low IWP values. The IWP retrieval results from satellite datasets demonstrate a high level of consistency. Furthermore, an analysis of the IWP time series reveals that the retrieval algorithm used in this study better captures variability and seasonal characteristics of IWP compared to ERA5 data. Additionally, a comparison of FY-3F retrieval results with METOP-C products shows a high correlation and generally consistent distribution characteristics across latitude bands. These findings confirm the high accuracy of IWP retrieval from FY-3F data, which holds significant value for advancing IWP research in China. Full article
Show Figures

Figure 1

18 pages, 3381 KiB  
Article
Sea Breeze-Driven Variations in Planetary Boundary Layer Height over Barrow: Insights from Meteorological and Lidar Observations
by Hui Li, Wei Gong, Boming Liu, Yingying Ma, Shikuan Jin, Weiyan Wang, Ruonan Fan, Shuailong Jiang, Yujie Wang and Zhe Tong
Remote Sens. 2025, 17(9), 1633; https://doi.org/10.3390/rs17091633 - 5 May 2025
Viewed by 656
Abstract
The planetary boundary layer height (PBLH) in coastal Arctic regions is influenced by sea breeze circulation. However, the specific mechanisms through which sea breeze affects PBLH evolution remain insufficiently explored. This study uses meteorological data, micro-pulse lidar (MPL) data, and sounding profiles from [...] Read more.
The planetary boundary layer height (PBLH) in coastal Arctic regions is influenced by sea breeze circulation. However, the specific mechanisms through which sea breeze affects PBLH evolution remain insufficiently explored. This study uses meteorological data, micro-pulse lidar (MPL) data, and sounding profiles from 2014 to 2021 to investigate the annual and polar day PBLH evolution driven by sea breezes in the Barrow region of Alaska, as well as the specific mechanisms. The results show that sea breeze events significantly suppress PBLH, especially during the polar day, when prolonged solar radiation intensifies the thermal contrast between land and ocean. The cold, moist sea breeze stabilizes the atmospheric conditions, reducing net radiation and sensible heat flux. All these factors inhibit turbulent mixing and PBLH development. Lidar and sounding analyses further reveal that PBLH is lower during sea breeze events compared to non-sea-breeze conditions, with the peak of its probability density distribution occurring at a lower PBLH range. The variable importance in projection (VIP) analysis identifies relative humidity (VIP = 1.95) and temperature (VIP = 1.1) as the primary factors controlling PBLH, highlighting the influence of atmospheric stability in regulating PBLH. These findings emphasize the crucial role of sea breeze in modulating PBL dynamics in the Arctic, with significant implications for improving climate models and studies on pollutant dispersion in polar regions. Full article
Show Figures

Figure 1

39 pages, 4380 KiB  
Article
Power Density and Thermochemical Properties of Hydrogen Magnetohydrodynamic (H2MHD) Generators at Different Pressures, Seed Types, Seed Levels, and Oxidizers
by Osama A. Marzouk
Hydrogen 2025, 6(2), 31; https://doi.org/10.3390/hydrogen6020031 - 2 May 2025
Cited by 3 | Viewed by 1615
Abstract
Hydrogen and some of its derivatives (such as e-methanol, e-methane, and e-ammonia) are promising energy carriers that have the potential to replace conventional fuels, thereby eliminating their harmful environmental impacts. An innovative use of hydrogen as a zero-emission fuel is forming weakly ionized [...] Read more.
Hydrogen and some of its derivatives (such as e-methanol, e-methane, and e-ammonia) are promising energy carriers that have the potential to replace conventional fuels, thereby eliminating their harmful environmental impacts. An innovative use of hydrogen as a zero-emission fuel is forming weakly ionized plasma by seeding the combustion products of hydrogen with a small amount of an alkali metal vapor (cesium or potassium). This formed plasma can be used as a working fluid in supersonic open-cycle magnetohydrodynamic (OCMHD) power generators. In these OCMHD generators, direct-current (DC) electricity is generated straightforwardly without rotary turbogenerators. In the current study, we quantitatively and qualitatively explore the levels of electric conductivity and the resultant volumetric electric output power density in a typical OCMHD supersonic channel, where thermal equilibrium plasma is accelerated at a Mach number of two (Mach 2) while being subject to a strong applied magnetic field (applied magnetic-field flux density) of five teslas (5 T), and a temperature of 2300 K (2026.85 °C). We varied the total pressure of the pre-ionization seeded gas mixture between 1/16 atm and 16 atm. We also varied the seed level between 0.0625% and 16% (pre-ionization mole fraction). We also varied the seed type between cesium and potassium. We also varied the oxidizer type between air (oxygen–nitrogen mixture, 21–79% by mole) and pure oxygen. Our results suggest that the ideal power density can reach exceptional levels beyond 1000 MW/m3 (or 1 kW/cm3) provided that the total absolute pressure can be reduced to about 0.1 atm only and cesium is used for seeding rather than potassium. Under atmospheric air–hydrogen combustion (1 atm total absolute pressure) and 1% mole fraction of seed alkali metal vapor, the theoretical volumetric power density is 410.828 MW/m3 in the case of cesium and 104.486 MW/m3 in the case of potassium. The power density can be enhanced using any of the following techniques: (1) reducing the total pressure, (2) using cesium instead of potassium for seeding, and (3) using air instead of oxygen as an oxidizer (if the temperature is unchanged). A seed level between 1% and 4% (pre-ionization mole fraction) is recommended. Much lower or much higher seed levels may harm the OCMHD performance. The seed level that maximizes the electric power is not necessarily the same seed level that maximizes the electric conductivity, and this is due to additional thermochemical changes caused by the additive seed. For example, in the case of potassium seeding and air combustion, the electric conductivity is maximized with about 6% seed mole fraction, while the output power is maximized at a lower potassium level of about 5%. We also present a comprehensive set of computed thermochemical properties of the seeded combustion gases, such as the molecular weight and the speed of sound. Full article
Show Figures

Figure 1

10 pages, 183 KiB  
Proceeding Paper
Design Factors of Water Mist in the Mystery of Landscapes
by Wu-Po-Cheng Lee and Sheng-Jung Ou
Eng. Proc. 2025, 91(1), 14; https://doi.org/10.3390/engproc2025091014 - 22 Apr 2025
Viewed by 254
Abstract
Water mist enhances the sense of mystery with visual and sensory effects, depending on its atmospheric creation and varying mist heights. Key factors influencing this mystery are the combination of mist with plants, increased air humidity, and sound effects. We identified important elements [...] Read more.
Water mist enhances the sense of mystery with visual and sensory effects, depending on its atmospheric creation and varying mist heights. Key factors influencing this mystery are the combination of mist with plants, increased air humidity, and sound effects. We identified important elements in the landscape at different times of day: in the morning, plant combinations and terrain; during the day, humidity and obscuring effects; in the evening, imaginative space; and at night, mist with plants. It is necessary to enhance visual effects and terrain variation in mist design to offer guidelines for future exploration. Full article
43 pages, 46730 KiB  
Article
Research on the Multi-Sensory Experience Design of Interior Spaces from the Perspective of Spatial Perception: A Case Study of Suzhou Coffee Roasting Factory
by Haochen Xu, Jinxiang Zhao, Changjiang Jin, Ning Zhu and Ye Chai
Buildings 2025, 15(8), 1393; https://doi.org/10.3390/buildings15081393 - 21 Apr 2025
Cited by 1 | Viewed by 3910
Abstract
With globalization and the transformation of socio-cultural structures, the focus of spatial design has shifted from functionality to perceptual experience and atmospheric creation. This study draws on the spatial perception theory and the phenomenology of perception to examine how sensory subjects perceive and [...] Read more.
With globalization and the transformation of socio-cultural structures, the focus of spatial design has shifted from functionality to perceptual experience and atmospheric creation. This study draws on the spatial perception theory and the phenomenology of perception to examine how sensory subjects perceive and respond to the physical attributes of space. It explores key elements that shape spatial experiences, including lighting, color, spatial form, sound, material, and scent, all of which contribute to the construction of emotional ambiance and the perceptual character of interior environments. Based on this foundation, this study proposes multi-sensory design strategies for interior spaces, including the following: (1) visual perception: modifying color and lighting to establish emotional ambiance and enhance spatial depth; (2) auditory perception: crafting soundscapes that deepen immersion; (3) tactile perception: designing both direct and indirect tactile experiences; and (4) olfactory and gustatory perception: incorporating scent design to evoke memory and forge emotional connections. To demonstrate the practical potential of these strategies, this study presents a conceptual design case of a coffee roasting factory in Suzhou. The design integrates visual, auditory, tactile, olfactory, and gustatory elements to enhance users’ overall spatial perception through multi-sensory coordination. This study ultimately seeks to provide theoretical insights into practical design strategies, highlighting the importance of perceptual experience in improving spatial quality and guiding future interior design practice. Full article
(This article belongs to the Special Issue Art and Design for Healing and Wellness in the Built Environment)
Show Figures

Figure 1

21 pages, 5918 KiB  
Article
Surface Ozone Variability in Two Contrasting Megacities, Cairo and Paris, and Its Observation from Satellites
by Amira N. Mostafa, Stephane Alfaro, Juan Cuesta, Ibrahim A. Hassan and M. M. Abdel Wahab
Atmosphere 2025, 16(4), 475; https://doi.org/10.3390/atmos16040475 - 18 Apr 2025
Viewed by 409
Abstract
With recognized adverse effects on human health and the environment, surface ozone constitutes a major problem within and downwind of urbanized areas. In this work, we first analyzed 5 years of hourly concentrations of ozone measured in two megacities with contrasting climates: Paris [...] Read more.
With recognized adverse effects on human health and the environment, surface ozone constitutes a major problem within and downwind of urbanized areas. In this work, we first analyzed 5 years of hourly concentrations of ozone measured in two megacities with contrasting climates: Paris and Cairo. In both cases, the maximal daily concentrations were observed in summer and they exceeded the 35 ppb threshold recommended by the World Health Organization in 45% and 69% of the days, respectively. During periods of forced reduced activities, these concentrations decreased in Cairo but not in Paris. This indicates that low-emission zones are not necessarily effective to help curb the ozone problem. In a second stage, the ozone retrievals of two satellite-based atmospheric sounding methods (AIRS, and the multispectral approach IASI+GOME2) were compared to the surface measurements. A systematic overestimation, larger for AIRS than IASI+GOME2, was observed. This is likely linked to the fact that satellite approaches retrieve ozone concentrations at higher atmospheric levels than the surface. However, a significantly high linear correlation was obtained at the monthly temporal resolution. Therefore, shift adjustments of the satellite measurements provide efficient proxies of surface observations with significant monthly correlations. This may help complete lacunar surface measurements. Full article
(This article belongs to the Special Issue Ozone Evolution in the Past and Future (2nd Edition))
Show Figures

Figure 1

22 pages, 19397 KiB  
Article
An Evaluation of the Applicability of a Microwave Radiometer Under Different Weather Conditions at the Southern Edge of the Taklimakan Desert
by Jiawei Guo, Meiqi Song, Ali Mamtimin, Yayong Xue, Jian Peng, Hajigul Sayit, Yu Wang, Junjian Liu, Jiacheng Gao, Ailiyaer Aihaiti, Cong Wen, Fan Yang, Wen Huo and Chenglong Zhou
Remote Sens. 2025, 17(7), 1171; https://doi.org/10.3390/rs17071171 - 26 Mar 2025
Viewed by 443
Abstract
As an important means to monitor atmospheric vertical temperature and humidity, the ground-based microwave radiometer has been widely used in environmental monitoring, climate prediction, and other fields, but its application in desert areas is particularly limited. At Minfeng Station on the southern edge [...] Read more.
As an important means to monitor atmospheric vertical temperature and humidity, the ground-based microwave radiometer has been widely used in environmental monitoring, climate prediction, and other fields, but its application in desert areas is particularly limited. At Minfeng Station on the southern edge of the Taklimakan Desert, Global Telecommunications System (GTS) detection technology was used to evaluate the microwave radiometer observations under different weather conditions and at different altitudes. The planetary boundary layer height (PBLH) was calculated using the potential temperature gradient method, and the planetary boundary layer results were calculated by analyzing dust and rainfall events. The results show that the determination coefficients (R2) of the overall observed temperature (T), specific humidity (q), and water vapor density (ρv) of the microwave radiometer are all above 0.8 under different weather conditions. When the relative humidity is 0–10%, the temperature is the best, and the R2 is 0.9819. When the relative humidity is 70–80%, the R2 of q and ρv is the best, and the R2 is 0.9630 and 0.9777, respectively. This is in good agreement with the temperature observed by the FY–4A satellite; the observation effect is the best in May, and its R2 is 0.9142. Under the conditions of clear sky, precipitation day, and dusty weather, the R2 of the atmospheric boundary layer height calculated by the microwave radiometer is greater than 0.7 compared to the GTS sounding calculation results. These results demonstrate the reliability of microwave radiometry in extremely arid environments, providing valuable insights for boundary layer studies in desert regions. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

15 pages, 3984 KiB  
Article
Terpene-Based Biofuel Additives (Citral, Limonene, and Linalool) with Chloroform: Experimental and Modeling Study of Volumetric and Transport Properties
by Nikola Grozdanić, Mirjana Kijevčanin and Ivona Radović
Processes 2025, 13(4), 974; https://doi.org/10.3390/pr13040974 - 25 Mar 2025
Viewed by 631
Abstract
In this paper, the thermodynamic properties of terpene mixtures were investigated because they represent a promising group of compounds, usually extracted from biomass, with their most notable application as fuel performance enhancers. The densities, viscosities, refractive indices, and ultrasonic speeds of sound were [...] Read more.
In this paper, the thermodynamic properties of terpene mixtures were investigated because they represent a promising group of compounds, usually extracted from biomass, with their most notable application as fuel performance enhancers. The densities, viscosities, refractive indices, and ultrasonic speeds of sound were measured for three binary mixtures, citral + chloroform, limonene + chloroform, and linalool + chloroform, across the full composition range at temperatures between 288.15 K and 323.15 K under atmospheric pressure. Using experimental data, excess molar volumes, viscosity deviations, refractive index deviations, and isentropic compressibility, deviations were calculated. Additionally, properties such as partial molar volumes, excess partial molar volumes, partial molar volumes at infinite dilution, and apparent molar volumes were derived. The excess and deviation properties were analyzed using the Redlich–Kister equation. A single mathematical model, the Heric–Brewer–Jouyban–Acree model, was used to represent densities, viscosities, refractive indices, and ultrasonic speeds of sound. The results obtained in this work suggest that dispersive interactions dominate in the limonene and linalool binary mixtures, while hydrogen bonding plays a significant role in the citral + chloroform system. In summary, dispersive interactions are dominant in nonpolar systems like limonene and linalool, while hydrogen bonding significantly affects the citral-chloroform mixture, where the polar groups in citral interact with chloroform molecules. These differences in intermolecular forces help explain the distinct behavior of each mixture. The modeling outcomes demonstrated that the Heric–Brewer–Jouyban–Acree model accurately correlated the experimental thermodynamic properties, with average percent deviations below 1% for all three systems. Full article
Show Figures

Figure 1

Back to TopTop