Air Quality at Ponta Delgada City (Azores) Is Unaffected so Far by Growing Cruise Ship Transit in Recent Years
Abstract
:1. Introduction
2. Methods
2.1. Setting
2.2. Datasets
2.3. Data Analysis
3. Results and Discussion
3.1. Cruise Ships
3.2. Compliance with Air Quality Monitoring Data
3.3. Cruise Ship Presence and Air Pollutants
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Borges, P.; Azevedo, E.; Borba, A.; Dinis, F.; Gabriel, R.; Silva, E. Ilhas Oceânicas. In Ecossistemas e Bem-Estar Humano: Avaliação para Portugal do Millennium Ecosystem Assessment; Pereira, H., Domingos, T., Vicente, L., Eds.; Escolar Editora: Lisboa, Portugal, 2009; pp. 463–510. Available online: https://hdl.handle.net/10400.3/2011 (accessed on 10 October 2022).
- Scandurra, G.; Romano, A.; Ronghi, M.; Carfora, A. On the vulnerability of Small Island Developing States: A dynamic analysis. Ecol. Indic. 2018, 84, 382–392. [Google Scholar] [CrossRef]
- Calado, H.; Borges, P.; Ng, K.; Vergílio, M. Case Study Portugal: Addressing Tourism Development and Climate Change in Small Atlantic Islands: The Case of the Azores. In Global Climate Change and Coastal Tourism: Recognizing Problems, Managing Solution and Future Expectations; Jones, A., Phillips, M., Eds.; CABI: Oxfordshire, UK, 2018; pp. 125–137. ISBN 9781780648439. [Google Scholar]
- Bird, G.; Thomlinson, M. Globalization and the Tourism Industry. In Introduction to Tourism and Hospitality in B.C., 2nd ed.; Anderson, W., Butler, R., Eds.; BCcampus Open Publishing: North Vancouver, BC, Canada, 2021; Chapter 14.1; ISBN 978-1-77420-081-0. [Google Scholar]
- Cannonier, C.; Burke, M.G. The economic growth impact of tourism in Small Island Developing States—Evidence from the Caribbean. Tour. Econ. 2019, 25, 85–108. [Google Scholar] [CrossRef]
- Carlsen, J.; Butler, R. Introducing sustainable perspectives of island tourism. In Island Tourism: Sustainable Perspectives; Carlsen, J., Butler, R., Eds.; CABI: Oxfordshire, UK, 2011; pp. 1–7. ISBN 978-1-84593-699-0. [Google Scholar]
- Brtnický, M.; Pecina, V.; Vašinová Galiová, M.; Prokeš, L.; Zvěřina, O.; Juřička, D.; Klimánek, M.; Kynický, J. The impact of tourism on extremely visited volcanic island: Link between environmental pollution and transportation modes. Chemosphere 2020, 249, 126118:1–126118:9. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.-Y.; Tsai, C.-C.; Lee, J.-Y. A Study on the Trends of the Global Cruise Tourism Industry, Sustainable Development, and the Impacts of the COVID-19 Pandemic. Sustainability 2022, 14, 6890. [Google Scholar] [CrossRef]
- Jeftic, L.; Sheavly, R.; Adler, E. Marine Litter: A Global Challenge; Meith, N., Ed.; United Nations Environment Programme (UNEP): Nairobi, Kenya, 2009; ISBN 978-92-807-3029-6. [Google Scholar]
- Perdiguero, J.; Sanz, A. Cruise activity and pollution: The case of Barcelona. Transp. Res. D Transp. Environ. 2020, 78, 102181:1–102181:52. [Google Scholar] [CrossRef]
- Abbasov, F. One Corporation to Pollute Them All: Luxury Cruise Air Emissions in Europe (In-House Analysis); European Federation for Transport and Environment AISBL: Brussels, Belgium, 2019; Available online: https://www.transportenvironment.org/discover/one-corporation-pollute-them-all/ (accessed on 23 December 2022).
- Sinha, S. Marine Insight—How Much Fuel Does a Cruise Ship Use? Available online: https://www.marineinsight.com/know-more/how-much-fuel-does-a-cruise-ship-use (accessed on 10 October 2022).
- Comer, B. The International Council on Clean Transportation Blog—What If I Told You Cruising Is Worse for the Climate Than Flying? Available online: https://theicct.org/marine-cruising-flying-may22/ (accessed on 10 October 2022).
- Lloret, J.; Carreño, A.; Carić, H.; San, J.; Fleming, L.E. Environmental and human health impacts of cruise tourism: A review. Mar. Pollut. Bull. 2021, 173, 112979:1–112979:13. [Google Scholar] [CrossRef]
- Liu, R.A.; Wei, Y.; Qiu, X.; Kosheleva, A.; Schwartz, J.D. Short Term Exposure to Air Pollution and Mortality in the US: A Double Negative Control Analysis. Environ. Health 2022, 21, 2–12. [Google Scholar] [CrossRef]
- Padula, A.M.; Tager, I.B.; Carmichael, S.L.; Hammond, S.K.; Lurmann, F.; Shaw, G.M. The Association of Ambient Air Pollution and Traffic Exposures with Selected Congenital Anomalies in the San Joaquin Valley of California. Am. J. Epidemiol. 2013, 177, 1074–1085. [Google Scholar] [CrossRef]
- Thurston, G.D.; Kipen, H.; Annesi-Maesano, I.; Balmes, J.; Brook, R.D.; Cromar, K.; Matteis, S.D.; Forastiere, F.; Forsberg, B.; Frampton, M.W.; et al. A Joint ERS/ATS Policy Statement: What Constitutes an Adverse Health Effect of Air Pollution? An Analytical Framework. Eur. Respir. J. 2017, 49, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Bernardo, F.; Rodrigues, A.; Branquinho, C.; Garcia, P. Elemental profile of native lichens displaying the impact by agricultural and artificial land uses in the Atlantic Island of São Miguel (Azores). Chemosphere 2021, 267, 128887:1–128887:9. [Google Scholar] [CrossRef]
- Direção Regional do Ambiente do Governo dos Açores. IRERPA—Inventário Regional de Emissões por Fontes e Remoção por Sumidouros de Poluentes Atmosféricos 2019; Secretaria Regional da Energia Ambiente e Turismo, Ed.; Direção Regional do Ambiente do Governo dos Açores: Horta, Portugal, 2019. Available online: http://www.azores.gov.pt/Gra/srrn-ambiente/conteudos/destaques/2017/Setembro/IRERPA.htm (accessed on 10 October 2022).
- Direção Regional do Ambiente e Alterações Climáticas do Governo dos Açores. Relatório da Qualidade do Ar da Região Autónoma dos Açores 2020; Secretaria Regional do Ambiente e Alterações Climáticas, Direção Regional do Ambiente e Alterações Climáticas, Direção de Serviços da Qualidade Ambiental, Ed.; Direção Regional do Ambiente e Alterações Climáticas: Horta, Portugal, 2021. Available online: http://qualidadedoar.azores.gov.pt/pmqa/464/relatorios (accessed on 10 October 2022).
- Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. Off. J. Eur. Union 2008, L152, 1–44. Available online: https://eur-lex.europa.eu/eli/dir/2008/50/oj (accessed on 23 December 2022).
- Direção Regional do Ambiente do Governo dos Açores. Clima e Alterações Climáticas. In Relatório do Estado do Ambiente dos Açores 2014–2016; Secretaria Regional da Energia Ambiente e Turismo, Ed.; Direção Regional do Ambiente do Governo dos Açores: Açores, Portugal, 2017; pp. 50–61. Available online: http://rea.azores.gov.pt/EdicoesAnteriores.aspx (accessed on 10 October 2022).
- Direção Regional do Ambiente do Governo dos Açores. Plano de Gestão da Região Hidrográfica (PGRH) dos Açores 2016-2021; Secretaria Regional da Agricultura e Ambiente—Direção Regional do Ambiente: Açores, Portugal, 2015; Chapter 2. Available online: https://www.azores.gov.pt/Gra/srrn-drotrh/conteudos/livres/PGRH-A%C3%A7ores+2016-2021.htm (accessed on 10 October 2022).
- Instituto Nacional de Estatística. CENSOS 2021—Portugal. Available online: https://tabulador.ine.pt/indicador/?id=0011609 (accessed on 10 October 2022).
- Nedcruise. Independent, Non-Commercial Cruise Information Site. Available online: https://www.nedcruise.info/eersteeng.htm (accessed on 10 October 2022).
- Ghosh, S. Marine Insight—Different Types of Cruise Ships Explained. Available online: https://www.marineinsight.com/naval-architecture/different-types-of-cruise-ships-explained/ (accessed on 10 October 2022).
- JASP Team. JASP Statistics—A Fresh Way to Do Statistics (Version 0.16.3). Available online: https://jasp-stats.org/ (accessed on 10 October 2022).
- IBM Corp. IBM SPSS Software (Version 28.0). Available online: https://www.ibm.com/analytics/spss-statistics-software (accessed on 10 October 2022).
- Microsoft Corp. Microsoft 365 (Version 2209). Available online: http://www.office.com/ (accessed on 10 October 2022).
- Reşitoğlu, İ.A.; Altinişik, K.; Keskin, A. The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems. Clean Technol. Environ. Policy 2015, 17, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Atmosphere Monitoring Service of the Copernicus Programme by the European Comission. CAMS Accurately Forecasts First Saharan Dust Transports of 2022. Available online: https://atmosphere.copernicus.eu/cams-accurately-forecasts-first-saharan-dust-transports-2022 (accessed on 10 October 2022).
- Murena, F.; Mocerino, L.; Quaranta, F.; Toscano, D. Impact on air quality of cruise ship emissions in Naples, Italy. Atmos. Environ. 2018, 187, 70–83. [Google Scholar] [CrossRef]
- de Vries, W. Impacts of Nitrogen Emissions on Ecosystems and Human Health: A Mini Review. Curr. Opin. Environ. Sci. Health 2021, 21, 100249:1–100248:8. [Google Scholar] [CrossRef]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Wei, Y.; Fang, Z. Ozone Pollution: A Major Health Hazard Worldwide. Front. Immunol. 2019, 10, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ebi, K.L.; McGregor, G. Climate Change, Tropospheric Ozone and Particulate Matter, and Health Impacts. Environ. Health Perspect. 2008, 116, 1449–1455. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Yendrek, C.R.; Sitch, S.; Collins, W.J.; Emberson, L.D. The Effects of Tropospheric Ozone on Net Primary Productivity and Implications for Climate Change. Annu. Rev. Plant Biol. 2012, 63, 637–661. [Google Scholar] [CrossRef] [Green Version]
- Secretaria Regional do Turismo, Mobilidade e Infraestruturas do Governo dos Açores. Navios de Cruzeiro Ultrapassam Recorde de Escalas nos Açores. Available online: https://portal.azores.gov.pt/web/comunicacao/news-detail?id=8345154 (accessed on 10 October 2022).
- International Maritime Organization. IMO 2020—Cutting Sulphur Oxide Emissions. Available online: https://imo.org/en/MediaCentre/HotTopics/Pages/Sulphur-2020.aspx (accessed on 10 October 2022).
- Global Maritime Forum. Getting to Zero Coalition—Accelerating Maritime Shipping’s Decarbonization with the Development and Deployment of Commercially Viable Deep Sea Zero Emission Vessels by 2030 towards Full Decarbonization by 2050. Available online: https://www.globalmaritimeforum.org/getting-to-zero-coalition (accessed on 10 October 2022).
- Batts, J.E.; Calder, L.J.; Batts, B.D. Utilizing stable isotope abundances of lichens to monitor environmental change. Chem. Geol. 2004, 204, 345–368. [Google Scholar] [CrossRef]
- Boltersdorf, S.H.; Werner, W. Lichens as a useful mapping tool?—An approach to assess atmospheric N loads in Germany by total N content and stable isotope signature. Environ. Monit. Assess. 2014, 186, 4767–4778. [Google Scholar] [CrossRef]
- Barros, C.; Pinho, P.; Durão, R.; Augusto, S.; Máguas, C.; Pereira, M.J.; Branquinho, C. Disentangling natural and anthropogenic sources of atmospheric sulfur in an industrial region using biomonitors. Environ. Sci. Technol. 2015, 49, 2222–2229. [Google Scholar] [CrossRef] [PubMed]
- Pinho, P.; Barros, C.; Augusto, S.; Pereira, M.J.; Máguas, C.; Branquinho, C. Using nitrogen concentration and isotopic composition in lichens to spatially assess the relative contribution of atmospheric nitrogen sources in complex landscapes. Environ. Pollut. 2017, 230, 632–638. [Google Scholar] [CrossRef] [PubMed]
Year | Daily Records | Daily Maximum | Daily Limit | Daily Exceedances | Exceedances on CS Days | Yearly Average | Yearly Limit | Yearly Exceedances | |
---|---|---|---|---|---|---|---|---|---|
SO2 | 2013 | 78.9% | 3.3 | >125 | 0 | 0 | 0.8 | >20 | 0 |
2014 | 99.2% | 2.4 | 0 | 0 | 0.8 | 0 | |||
2015 | 98.6% | 24 | 0 | 0 | 0.9 | 0 | |||
2016 | 97.8% | 3.7 | 0 | 0 | 0.9 | 0 | |||
2017 | 92.6% | 9.1 | 0 | 0 | 1 | 0 | |||
2018 | 98.6% | 3.2 | 0 | 0 | 0.9 | 0 | |||
2019 | 100.0% | 3.8 | 0 | 0 | 1 | 0 | |||
2020 | 86.3% | 3.3 | 0 | 0 | 0.9 | 0 | |||
O3 | 2013 | 91.5% | 104.6 | >120 | 0 | 0 | 67.1 | >120 | 0 |
2014 | 99.2% | 101.6 | 0 | 0 | 61.1 | 0 | |||
2015 | 98.1% | 108.1 | 0 | 0 | 64.2 | 0 | |||
2016 | 99.7% | 99.5 | 0 | 0 | 62.5 | 0 | |||
2017 | 95.1% | 106.8 | 0 | 0 | 63.6 | 0 | |||
2018 | 99.7% | 105 | 0 | 0 | 63 | 0 | |||
2019 | 100.0% | 110.9 | 0 | 0 | 61.3 | 0 | |||
2020 | 99.7% | 81.8 | 0 | 0 | 50 | 0 | |||
NOx | 2013 | 79.7% | 31.7 | Not applicable | 7.3 | >30 | 0 | ||
2014 | 98.4% | 24.7 | 6.5 | 0 | |||||
2015 | 96.2% | 31.1 | 7.1 | 0 | |||||
2016 | 96.2% | 35.5 | 6.8 | 0 | |||||
2017 | 96.2% | 26.5 | 7 | 0 | |||||
2018 | 57.5% | 43.1 | 8 | 0 | |||||
2019 | 97.3% | 41.7 | 7.3 | 0 | |||||
2020 | 100.0% | 24 | 5.1 | 0 | |||||
NO2 | 2013 | 79.7% | 25.2 | >200 | 0 | 0 | 5.6 | >40 | 0 |
2014 | 98.4% | 19.3 | 0 | 0 | 4.8 | 0 | |||
2015 | 96.2% | 21 | 0 | 0 | 5.5 | 0 | |||
2016 | 96.2% | 25.2 | 0 | 0 | 4.8 | 0 | |||
2017 | 96.2% | 19.6 | 0 | 0 | 4.9 | 0 | |||
2018 | 57.5% | 28.1 | 0 | 0 | 5.8 | 0 | |||
2019 | 97.3% | 24.4 | 0 | 0 | 5.7 | 0 | |||
2020 | 100.0% | 18.4 | 0 | 0 | 3.9 | 0 | |||
PM10 | 2013 | 97.3% | 55 | >50 | 1 | 0 | 11.8 | >40 | 0 |
2014 | 99.2% | 103.7 | 4 | 0 | 11.6 | 0 | |||
2015 | 96.4% | 51.6 | 2 | 1 | 5.5 | 0 | |||
2016 | 92.9% | 125.1 | 1 | 0 | 10.7 | 0 | |||
2017 | 97.0% | 55.8 | 1 | 0 | 11.3 | 0 | |||
2018 | 94.5% | 61.6 | 2 | 0 | 12.7 | 0 | |||
2019 | 98.1% | 50.7 | 1 | 1 | 13.9 | 0 | |||
2020 | 98.9% | 88.4 | 3 | 0 | 13.9 | 0 | |||
PM2.5 | 2013 | 78.90% | 37.1 | >20 | 1 | 0 | 5.9 | >7 | 0 |
2014 | 94.50% | 60.7 | 6 | 0 | 5.8 | 0 | |||
2015 | 83.30% | 32.6 | 4 | 1 | 5.4 | 0 | |||
2016 | 85.50% | 73.4 | 4 | 0 | 5.2 | 0 | |||
2017 | 93.70% | 25.7 | 2 | 0 | 5 | 0 | |||
2018 | 77.80% | 33.3 | 4 | 1 | 6.6 | 0 | |||
2019 | 69.60% | 29.5 | 5 | 1 | 7.3 | 1 | |||
2020 | 85.50% | 55.2 | 6 | 0 | 7 | 0 |
PC1 | PC2 | PC3 | |
Eigenvalue | 2.73 | 2.15 | 1.63 |
Variance (%) | 21.02 | 16.56 | 12.56 |
Cumulative Variance (%) | 21.02 | 37.58 | 50.14 |
Variables | Loadings | ||
NO2 | −0.952 * | 0.253 | 0.091 |
NOx | −0.945 * | 0.209 | 0.103 |
Wind Velocity | 0.608 * | 0.320 | 0.304 |
SO2 | −0.199 | −0.070 | −0.008 |
Precipitation | 0.064 | −0.003 | 0.006 |
Air Temperature | 0.055 | −0.895 * | 0.036 |
O3 | 0.358 | 0.744 * | −0.034 |
Solar Radiation | 0.210 | −0.523 * | −0.399 |
Combined Engine Power | −0.053 | 0.205 | −0.121 |
PM10 | 0.198 | 0.110 | 0.892 * |
PM2.5 | 0.185 | 0.073 | 0.891 * |
Wind Direction | −0.147 | −0.174 | 0.329 |
Relative Humidity | −0.037 | −0.051 | 0.328 |
Correlation | Spearman’s ρ | SO2 | NO2 | NOx | O3 | PM10 | PM2.5 | |
---|---|---|---|---|---|---|---|---|
Combined Engine power | Total Period | Coefficients | 0.010 | 0.085 *** | 0.084 *** | 0.144 *** | 0.001 | −0.001 |
p value | 0.595 | <0.001 | <0.001 | <0.001 | 0.939 | 0.953 | ||
CS Spring Season | Coefficients | 0.040 | 0.116 ** | 0.129 ** | 0.133 ** | 0.006 | 0.012 | |
p value | 0.341 | 0.004 | 0.001 | <0.001 | 0.883 | 0.774 | ||
CS Autumn Season | Coefficients | 0.023 | 0.083 * | 0.093 * | 0.075 * | −0.022 | −0.023 | |
p value | 0.537 | 0.035 | 0.018 | 0.045 | 0.556 | 0.567 |
Pollutant | Season | Days with no Cruise Ships | Days with Cruise Ships | Effect Size | ||
---|---|---|---|---|---|---|
n | Mean ± S.E.M | n | Mean ± S.E.M | |||
SO2 | Spring | 483 | 0.822 ± 0.027 | 172 | 0.823 ± 0.039 | −0.002 |
Autumn | 588 | 0.938 ± 0.024 | 120 | 0.994 ± 0.057 | −0.094 | |
NO2 | Spring | 520 | 3.896 ± 0.105 ** | 188 | 4.515 ± 0.212 ** | −0.232 |
Autumn | 539 | 6.012 ± 0.174 | 110 | 6.539 ± 0.348 | −0.137 | |
NOx | Spring | 520 | 5.184 ± 0.125 ** | 188 | 6.274 ± 0.335 ** | −0.285 |
Autumn | 539 | 7.911 ± 0.218 | 110 | 8.912 ± 0.481 | −0.198 | |
O3 | Spring | 516 | 73.500 ± 0.754 | 196 | 76.042 ± 1.227 | −0.148 |
Autumn | 599 | 58.921 ± 0.545 | 123 | 61.217 ± 1.205 | −0.172 | |
PM10 | Spring | 513 | 12.417 ± 0.263 | 188 | 12.670 ± 0.496 | −0.039 |
Autumn | 590 | 11.992 ± 0.290 | 122 | 11.688 ± 0.634 | 0.043 | |
PM2.5 | Spring | 475 | 5.962 ± 0.153 | 171 | 6.191 ± 0.278 | −0.066 |
Autumn | 503 | 5.804 ± 0.174 | 106 | 5.551 ± 0.374 | 0.066 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernardo, F.; Garcia, P.; Rodrigues, A. Air Quality at Ponta Delgada City (Azores) Is Unaffected so Far by Growing Cruise Ship Transit in Recent Years. Atmosphere 2023, 14, 188. https://doi.org/10.3390/atmos14010188
Bernardo F, Garcia P, Rodrigues A. Air Quality at Ponta Delgada City (Azores) Is Unaffected so Far by Growing Cruise Ship Transit in Recent Years. Atmosphere. 2023; 14(1):188. https://doi.org/10.3390/atmos14010188
Chicago/Turabian StyleBernardo, Filipe, Patrícia Garcia, and Armindo Rodrigues. 2023. "Air Quality at Ponta Delgada City (Azores) Is Unaffected so Far by Growing Cruise Ship Transit in Recent Years" Atmosphere 14, no. 1: 188. https://doi.org/10.3390/atmos14010188
APA StyleBernardo, F., Garcia, P., & Rodrigues, A. (2023). Air Quality at Ponta Delgada City (Azores) Is Unaffected so Far by Growing Cruise Ship Transit in Recent Years. Atmosphere, 14(1), 188. https://doi.org/10.3390/atmos14010188