Anthropogenic Vehicular Heat and Its Influence on Urban Planning
Abstract
:1. Introduction
- (a)
- The thermal properties of city surfaces;
- (b)
- Urban morphology ranges from land use, location, orientation, sky view factor, and building profiles to their geometric shape;
- (c)
- (d)
- The anthropogenic heat (QF) is analyzed holistically with the heat flows of the human metabolism, industry, application of mechanical systems for comfort in interior spaces, and vehicles (QFV).
2. Materials and Methods
2.1. Study Case
- (a)
- (b)
- Analysis of the coating of paved surfaces [41].
- (c)
- Analysis of traffic behavior patterns with statistical information from the Center for Sustainable Transportation in Mexico [42].
- (d)
- Urban canyon aspect ratio analyses in compliance with H/W ≥ 1 = 1 or higher.
- (e)
- Determination of the area as Urban Zone 2, according to World Meteorological Organization guidelines [43].
- (f)
- Orientation of the street, which must be North to South, according to WMO [43], thus indicating the presence of shading/sunshine in streets with this orientation are preferable to those of east-west orientation for the realization of climatic measurements.
- (g)
- Determination of the period for field measurements.
2.2. Data Collected
2.3. CFD Modeling
2.3.1. Computational Geometry and Grid
2.3.2. Boundary Conditions
2.3.3. Solver Settings
- qout,k = energy flux leaving the surface
- εk = emissivity
- = Stefan–Boltzmann constant
- qin,k = energy flux incident on the surface from the surroundings
- Ak = surface area;
- Fjk = view factor between surface k and surface j;
- q = energy flux incident on the surface.
2.3.4. CFD Results
2.4. Simulation Validation
- PMARE = percent mean absolute relative error;
- Abs = absolute value (of the difference between observed and simulated value);
- n = number of observations;
- Oi = observed value in field;
- Pi = simulated value.
3. Results
3.1. Analysis in Relation to the Number of Vehicles
3.2. Analysis in Relation to Wind Speed
3.3. Analysis in Relation to the Orientation
4. Discussion and Conclusions
- The north–south orientation of the canyon (facades towards east–west) are those that represent the highest elevation in the thermal profile, since the solar path is perpendicular to the studied transect, thus causing both the horizontal area (street) and vertical area (east and west façades) to be affected by solar radiation, instead of just the horizontal area [36].
- Wind speed is a determining factor in calculating the internal temperature of the urban canyon because, in conditions of 0 m/s, temperature values are higher, although the difference in TWA offered between the speeds 1.2 and 2.2 m/s were not relevant for the streets with east–west orientation, as can be seen in Figure 6.
- The number of cars in the case studies (10 and 20 units) did not affect the decrease in temperature with wind speed at 1.2 m/s, where the E–W orientation decreased mostly by 1.5 °C and N–S-oriented lane decreased within a range of 3.3 to 4.6 °C.
- The increase in temperature inside the canyon is progressive with the increase in vehicles; however, in E–W canyons, it was proportional; that is, for every ten cars, it increased by 0.5 °C more. However, in N–S canyons, the increase was 1.6 °C; adding ten more units, it was 1.2 °C, which was, in this case, not proportional.
- (a)
- The domain (air volume) consistently exceeded twice the height of the highest urban element to avoid turbulence at the canopy level;
- (b)
- The mesh must adapt to the geometry of the domain, in this case tetrahedral, and have spatial treatment on smaller surfaces, such as vehicle volumes, if more precise data are required;
- (c)
- Perform a mesh sensitivity study to save simulation resources;
- (d)
- Determine the properties of materials and how they intervene in thermal and radiation processes;
- (e)
- Concerning the proposed radiation model (S2S), consider that the static simulation data represent the maximum values that can be obtained from the assigned conditions;
- (f)
- Using a realizable k-epsilon as a turbulence model is advisable because it considers pressure gradients between the walls to avoid calculation errors.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. World Urbanization Prospects: The 2014 Revision, Highlights (ST/ESA/SER.A/352); United Nations: New York, NY, USA, 2014. [Google Scholar]
- He, B.J.; Wang, J.; Liu, H.; Ulpiani, G. Localized synergies between heat waves and urban heat islands: Implications on human thermal comfort and urban heat management. Environ. Res. 2021, 193, 110584. [Google Scholar] [CrossRef] [PubMed]
- He, B.J.; Ding, L.; Prasad, D. Wind-sensitive urban planning and design: Precinct ventilation performance and its potential for local warming mitigation in an open midrise gridiron precinct. J. Build. Eng. 2020, 29, 101145. [Google Scholar] [CrossRef]
- Ruth, M.; Baklanov, A. Urban climate science, planning, policy and investment challenges. Urban Clim. 2012, 1, 1–3. [Google Scholar] [CrossRef]
- Li, H.; Zhou, Y.; Li, X.; Meng, L.; Wang, X.; Wu, S.; Sodoudi, S. A new method to quantify surface urban heat island intensity. Sci. Total Environ. 2018, 624, 262–272. [Google Scholar] [CrossRef] [PubMed]
- Ramakreshnan, L.; Aghamohammadi, N.; Fong, C.S.; Ghaffarianhoseini, A.; Ghaffarianhoseini, A.; Wong, L.P.; Hassan, N.; Sulaiman, N.M. A critical review of Urban Heat Island phenomenon in the context of Greater Kuala Lumpur, Malaysia. Sustain. Cities Soc. 2018, 39, 99–113. [Google Scholar] [CrossRef]
- Strømann-Andersen, J.; Sattrup, P.A. The urban canyon and building energy use: Urban density versus daylight and passive solar gains. Energy Build. 2011, 43, 2011–2020. [Google Scholar] [CrossRef]
- Santamouris, M.; Asimakopoulos, D.N.; Assimakopoulos, V.D.; Chrisomallidou, N.; Klisikas, N.; Mangold, D.; Michel, P.; Tsangrassoulis, A. Energy and Climate in the Urban Built Environment; Routledge: Oxfordshire, UK, 2011; ISBN 9781873936900. [Google Scholar]
- Lemos, L.d.O.; Oscar Júnior, A.C.; Mendonça, F. Urban canyon in the CBD of Rio de Janeiro (Brazil): Thermal profile of avenida rio branco during summer. Atmosphere 2022, 13, 27. [Google Scholar] [CrossRef]
- Nikolopoulou, M.; Steemers, K. Thermal comfort and psychological adaptation as a guide for designing urban spaces. Energy Build. 2003, 35, 95–101. [Google Scholar] [CrossRef]
- He, B.-J. Potentials of meteorological characteristics and synoptic conditions to mitigate urban heat island effects. Urban Clim. 2018, 24, 26–33. [Google Scholar] [CrossRef]
- Ngarambe, J.; Oh, J.W.; Su, M.A.; Santamouris, M.; Yun, G.Y. Influences of wind speed, sky conditions, land use and land cover characteristics on the magnitude of the urban heat island in Seoul: An exploratory analysis. Sustain. Cities Soc. 2021, 71, 102953. [Google Scholar] [CrossRef]
- Li, D.; Bou-Zeid, E. Synergistic Interactions between Urban Heat Islands and Heat Waves: The Impact in Cities Is Larger than the Sum of Its Parts. J. Appl. Meteorol. Climatol. 2013, 52, 2051–2064. [Google Scholar] [CrossRef] [Green Version]
- Oke, T. The urban energy balance. Prog. Phys. Geogr. Earth Environ. 1988, 12, 471–508. [Google Scholar] [CrossRef]
- Sailor, D.J. A review of methods for estimating anthropogenic heat and moisture emissions in the urban environment. Int. J. Climatol. 2011, 31, 189–199. [Google Scholar] [CrossRef]
- Mirzaei, P.A. Recent challenges in modeling of urban heat island. Sustain. Cities Soc. 2015, 19, 200–206. [Google Scholar] [CrossRef] [Green Version]
- Bottillo, S.; De Lieto Vollaro, A.; Galli, G.; Vallati, A. Fluid dynamic and heat transfer parameters in an urban canyon. Sol. Energy 2014, 99, 1–10. [Google Scholar] [CrossRef]
- Gagliano, A.; Nocera, F.; Aneli, S. Computational Fluid Dynamics Analysis for Evaluating the Urban Heat Island Effects. Energy Procedia 2017, 134, 508–517. [Google Scholar] [CrossRef]
- Grajeda-Rosado, R.M.; Alonso-Guzman, E.M.; Esparza-Lopez, C.J.; Escobar-Del Pozo, C. Simulación del comportamiento térmico en exteriores urbanos correlacionando las variables de calor antropogénico vehicular y orientación. Rev. Simulación Lab. 2019, 6, 19–33. [Google Scholar] [CrossRef]
- Grajeda-Rosado, R.M.; Alonso-Guzman, E.M.; Martínez Molina, W.; Bedolla Arroyo, J.A.; Esparza-Lopez, C.J.; Chávez García, H.L. Thermal Analysis of the Urban Canyon Based on the Variables: Orientation, Wind and Vehicular Anthropogenic Heat. IOP Conf. Ser. Mater. Sci. Eng. 2020, 811, 012044. [Google Scholar] [CrossRef]
- Jin, K.; Wang, F.; Wang, S. Assessing the spatiotemporal variation in anthropogenic heat and its impact on the surface thermal environment over global land areas. Sustain. Cities Soc. 2020, 63, 102488. [Google Scholar] [CrossRef]
- Takahashi, K.; Yoshida, H.; Tanaka, Y.; Aotake, N.; Wang, F. Measurement of thermal environment in Kyoto city and its prediction by CFD simulation. Energy Build. 2004, 36, 771–779. [Google Scholar] [CrossRef]
- He, C.; Zhou, L.; Yao, Y.; Ma, W.; Kinney, P.L. Estimating spatial effects of anthropogenic heat emissions upon the urban thermal environment in an urban agglomeration area in East China. Sustain. Cities Soc. 2020, 57, 102046. [Google Scholar] [CrossRef]
- Holt, T.; Pullen, J. Urban canopy modeling of the New York City metropolitan Area: A comparison and validation of single- and multilayer parameterizations. Mon. Weather Rev. 2007, 135, 1906–1930. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.Y.; Chen, F.; Huang, J.C.; Chen, W.C.; Liou, Y.A.; Chen, W.N.; Liu, S.C. Urban heat island effect and its impact on boundary layer development and land-sea circulation over northern Taiwan. Atmos. Environ. 2008, 42, 5635–5649. [Google Scholar] [CrossRef]
- Sailor, D.J.; Georgescu, M.; Milne, J.M.; Hart, M.A. Development of a national anthropogenic heating database with an extrapolation for international cities. Atmos. Environ. 2015, 118, 7–18. [Google Scholar] [CrossRef] [Green Version]
- Chow, W.T.L.; Salamanca, F.; Georgescu, M.; Mahalov, A.; Milne, J.M.; Ruddell, B.L. A multi-method and multi-scale approach for estimating city-wide anthropogenic heat fluxes. Atmos. Environ. 2014, 99, 64–76. [Google Scholar] [CrossRef] [Green Version]
- Sailor, D.J.; Lu, L. A top-down methodology for developing diurnal and seasonal anthropogenic heating profiles for urban areas. Atmos. Environ. 2004, 38, 2737–2748. [Google Scholar] [CrossRef]
- Sun, R.; Wang, Y.; Chen, L. A distributed model for quantifying temporal-spatial patterns of anthropogenic heat based on energy consumption. J. Clean. Prod. 2018, 170, 601–609. [Google Scholar] [CrossRef]
- Smith, C.; Lindley, S.; Levermore, G. Estimating spatial and temporal patterns of urban anthropogenic heat fluxes for UK cities: The case of Manchester. Theor. Appl. Climatol. 2009, 98, 19–35. [Google Scholar] [CrossRef]
- Quah, A.K.L.; Roth, M. Diurnal and weekly variation of anthropogenic heat emissions in a tropical city, Singapore. Atmos. Environ. 2012, 46, 92–103. [Google Scholar] [CrossRef]
- Santamouris, M. Urban warming and mitigation. In Urban Climate Mitigation Techn; Routledge: Oxfordshire, UK, 2016. [Google Scholar]
- Dirección de obras públicas y desarrollo social Plan Distrito Centro; Veracruz, 2019. Available online: https://distritocentro.veracruzmunicipio.gob.mx/index.html (accessed on 22 April 2019).
- Velasco Toro, J.; Félix Báez, J. Ensayos Sobre la Cultura de Veracruz: Arqueología, Etnología, Cultura Popular, Educación, Historiografía, Arquitectura, Plástica, Literatura, Ciencias Naturales, 2nd ed.; Universidad Veracruzana: Veracruz, Mexico, 2000. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Grajeda Rosado, R.M.; Alonso Guzman, E.M.; Esparza López, C.J. Vehicular anthropogenic heat in the physical parameters of an urban canyon for warm humid climate. In PLEA 2018—Smart and Healthy within the Two-Degree Limit: Proceedings of the 34th International Conference on Passive and Low Energy Architecture; 2018; Volume 1, Available online: http://web5.arch.cuhk.edu.hk/server1/staff1/edward/www/plea2018/home.html (accessed on 14 May 2019).
- Tomlinson, C.J.; Chapman, L.; Thornes, J.E.; Baker, C. Remote sensing land surface temperature for meteorology and climatology: A review. Meteorol. Appl. 2011, 18, 296–306. [Google Scholar] [CrossRef] [Green Version]
- Anderson, M.C.; Allen, R.G.; Morse, A.; Kustas, W.P. Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources. Remote Sens. Environ. 2012, 122, 50–65. [Google Scholar] [CrossRef]
- Mia, M.B.; Bromley, C.J.; Fujimitsu, Y. Monitoring heat flux using Landsat TM/ETM+ thermal infrared data—A case study at Karapiti (Craters of the Moon’) thermal area, New Zealand. J. Volcanol. Geotherm. Res. 2012, 235–236, 1–10. [Google Scholar] [CrossRef]
- Rosado, R.M.G.; Guzmán, E.M.A.; Lopez, C.J.E.; Molina, W.M.; García, H.L.C.; Yedra, E.L. Mapping the LST (Land Surface Temperature) with Satellite Information and Software ArcGis. IOP Conf. Ser. Mater. Sci. Eng. 2020, 811, 012045. [Google Scholar] [CrossRef]
- INEGI, Instituto Nacional de Geografía, Estadística e Informática. Inventario Nacional de Vivienda. Available online: http://www.beta.inegi.org.mx/app/mapa/INV/Default.aspx?ll=19.185135,-96.14908000000003&z=13 (accessed on 6 June 2019).
- Instituto Nacional de Ecología y Cambio Climático (INECC); Dirección de Investigación sobre la Contaminación Urbana y Regional (DGICUR); Dirección de Investigación sobre la Calidad del Aire (DICA). Estudio de Emisiones y Actividad Vehícular en el Puerto de Veracruz, Veracruz; INECC; SEMARNAT: Ciudad de México, Mexico, 2012.
- World Meteorological Organzation. Guía de Instrumentos y Métodos de Observación Meteorológicos; World Meteorological Organzation: Geneva, Switzerland, 2014. [Google Scholar]
- ANSYS, Inc. ANSYS Fluent Theory Guide; Ansys: Canonsburg, PA, USA, 2013. [Google Scholar]
- Nazarian, N.; Kleissl, J. CFD simulation of an idealized urban environment: Thermal effects of geometrical characteristics and surface materials. Urban Clim. 2015, 12, 141–159. [Google Scholar] [CrossRef]
- Cascetta, F.; Musto, M. Assessment of thermal comfort in a car cabin with sky-roof. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2007, 221, 1251–1258. [Google Scholar] [CrossRef]
- Cengel, Y.A.; Ghajar, A.J. Heat and Mass Transfer, 4th ed.; Mc Graw Hill; Springer: Barcelona, Spain, 2011. [Google Scholar]
- Yuan, C.; Adelia, A.S.; Mei, S.; He, W.; Li, X.-X.; Norford, L. Mitigating intensity of urban heat island by better understanding on urban morphology and anthropogenic heat dispersion. Build. Environ. 2020, 176, 106876. [Google Scholar] [CrossRef]
- Aghamolaei, R.; Fallahpour, M.; Mirzaei, P.A. Tempo-spatial thermal comfort analysis of urban heat island with coupling of CFD and building energy simulation. Energy Build. 2021, 251, 111317. [Google Scholar] [CrossRef]
- Ali, M.H.; Abustan, I. A new novel index for evaluating model performance. J. Nat. Resour. Dev. 2014, 4, 1–9. [Google Scholar] [CrossRef]
- Park, H.S. Features of the heat island in Seoul and its surrounding cities. Atmos. Environ. 1986, 20, 1859–1866. [Google Scholar] [CrossRef]
- Kolokotroni, M.; Giridharan, R. Urban heat island intensity in London: An investigation of the impact of physical characteristics on changes in outdoor air temperature during summer. Sol. Energy 2008, 82, 986–998. [Google Scholar] [CrossRef] [Green Version]
Orientation | Velocity m/s | No. Vehicles units | Aspect Ratio Width/Height | Length m | Width m | Height m |
---|---|---|---|---|---|---|
East–west | 0.0 | 0 | 1:½ | 100 | 10 | 10 |
North–south | 1.2 | 10 | 1:1 | 20 | 20 | |
2.2 | 20 | 1:2 |
Materials | Thickness m | Density kg/m3 | Specific Heat j/kg-K | Thermal Conductivity W/m-K | Emissivity ε | |
---|---|---|---|---|---|---|
Ground | Concrete | 0.20 | 2300 | 840 | 1.00 | 0.90 |
Wall | Plaster finish | 0.15 | 1570 | 1000 | 0.53 | 0.90 |
Auto body | Steel | 0.01 | 7850 | 456 | 50.00 | 0.50 |
TWA PMARE (Mean Temperature Inside Urban Canyon) | X Position (Street Width, Street Lanes) and Z Position (Building Height) | |||||
---|---|---|---|---|---|---|
X = 1.5 m Z = 1.5 m | X = 5.0 m Z = 1.5 m | X = 8.5 m Z = 1.5 m | X = 1.5 m Z = 3.0 m | X = 5.0 m Z = 3.0 m | X = 8.5 m Z = 3.0 m | |
Value | 7.29 | 15.91 | 3.33 | 5.09 | 0.30 | 2.38 |
PMARE | Very good | Fair | Excellent | Very good | Excellent | Excellent |
East–West Orientation | North–South Orientation | |||||
---|---|---|---|---|---|---|
Simulated Cases Wind Speed–[AR] | 0 Vehicles | 10 Vehicles | 20 Vehicles | 0 Vehicles | 10 Vehicles | 20 Vehicles |
0.0 m/s [10:05] | 32.1 | 32.6 | 33.1 | 39.0 | 41.0 | 41.7 |
1.2 m/s [10:05] | 30.6 | 31.2 | 31.7 | 34.9 | 36.4 | 37.6 |
2.2 m/s [10:05] | 30.6 | 31.2 | 31.7 | 33.8 | 35.4 | 36.8 |
0.0 m/s [10:10] | 32.1 | 32.9 | 33.2 | 38.4 | 39.8 | 41.9 |
1.2 m/s [10:10] | 30.6 | 31.1 | 31.5 | 35.1 | 36.7 | 38.2 |
2.2 m/s [10:10] | 30.8 | 31.2 | 31.6 | 34.2 | 35.7 | 37.3 |
0.0 m/s [10:20] | 32.2 | 32.8 | 33.5 | 35.9 | 39.8 | 40.4 |
1.2 m/s [10:20] | 30.6 | 31.7 | 32.3 | 34.5 | 37.1 | 38.3 |
2.2 m/s [10:20] | 30.6 | 31.6 | 32.1 | 33.6 | 36.1 | 37.2 |
0.0 m/s [20:05] | 31.6 | 32.0 | 32.5 | 36.9 | 38.1 | 39.0 |
1.2 m/s [20:05] | 30.5 | 31.1 | 32.9 | 33.8 | 34.9 | 36.0 |
2.2 m/s [20:05] | 30.5 | 31.0 | 31.4 | 33.1 | 34.8 | 35.9 |
0.0 m/s [20:10] | 31.5 | 31.9 | 32.4 | 37.3 | 38.1 | 39.3 |
1.2 m/s [20:10] | 30.6 | 31.0 | 31.6 | 33.8 | 34.7 | 35.8 |
2.2 m/s [20:10] | 30.6 | 31.0 | 31.5 | 33.3 | 34.8 | 35.8 |
0.0 m/s [20:20] | 31.5 | 32.0 | 32.4 | 36.1 | 37.5 | 38.6 |
1.2 m/s [20:20] | 30.6 | 31.0 | 31.5 | 33.7 | 34.5 | 35.5 |
2.2 m/s [20:20] | 30.8 | 31.1 | 31.4 | 33.3 | 34.4 | 35.4 |
Case | E–W 0 Vehicles | E–W 10 Vehicles | E–W 20 Vehicles | N–S 0 Vehicles | N–S 10 Vehicles | N–S 20 Vehicles |
---|---|---|---|---|---|---|
Mean 1.2 m/s | −1.3 | −1.2 | −2.4 | −3.0 | −3.3 | −3.3 |
Mean 2.2 m/s | −1.2 | −1.2 | −2.9 | −3.7 | −3.9 | −3.8 |
0 Vehicles 0.0 m/s | 0 Vehicles 1.2 m/s | 0 Vehicles 2.2 m/s | 10 Vehicles 0.0 m/s | 10 Vehicles 1.2 m/s | 10 Vehicles 2.2 m/s | 20 Vehicles 0.0 m/s | 20 Vehicles 1.2 m/s | 20 Vehicles 2.2 m/s | |
---|---|---|---|---|---|---|---|---|---|
10 m width | 17.5% | 13.9% | 10.4% | 22.7% | 17.2% | 14.0% | 24.3% | 19.4% | 16.8% |
20 m width | 16.6% | 10.4% | 8.5% | 18.6% | 11.9% | 11.8% | 20.1% | 11.8% | 13.4% |
Difference | 0.9% | 3.5% | 1.9% | 4.1% | 5.3% | 2.2% | 4.2% | 7.7% | 3.4% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grajeda-Rosado, R.M.; Alonso-Guzmán, E.M.; Escobar-Del Pozo, C.; Esparza-López, C.J.; Sotelo-Salas, C.; Martínez-Molina, W.; Mondragon-Olan, M.; Cabrera-Macedo, A. Anthropogenic Vehicular Heat and Its Influence on Urban Planning. Atmosphere 2022, 13, 1259. https://doi.org/10.3390/atmos13081259
Grajeda-Rosado RM, Alonso-Guzmán EM, Escobar-Del Pozo C, Esparza-López CJ, Sotelo-Salas C, Martínez-Molina W, Mondragon-Olan M, Cabrera-Macedo A. Anthropogenic Vehicular Heat and Its Influence on Urban Planning. Atmosphere. 2022; 13(8):1259. https://doi.org/10.3390/atmos13081259
Chicago/Turabian StyleGrajeda-Rosado, Ruth M., Elia M. Alonso-Guzmán, Carlos Escobar-Del Pozo, Carlos J. Esparza-López, Cristina Sotelo-Salas, Wilfrido Martínez-Molina, Max Mondragon-Olan, and Alfonso Cabrera-Macedo. 2022. "Anthropogenic Vehicular Heat and Its Influence on Urban Planning" Atmosphere 13, no. 8: 1259. https://doi.org/10.3390/atmos13081259
APA StyleGrajeda-Rosado, R. M., Alonso-Guzmán, E. M., Escobar-Del Pozo, C., Esparza-López, C. J., Sotelo-Salas, C., Martínez-Molina, W., Mondragon-Olan, M., & Cabrera-Macedo, A. (2022). Anthropogenic Vehicular Heat and Its Influence on Urban Planning. Atmosphere, 13(8), 1259. https://doi.org/10.3390/atmos13081259