Cloud Occlusion Probability Calculation Jointly Using Himawari-8 and CloudSat Satellite Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Himawari-8 Satellite Data
2.2. CloudSat Satellite Data
2.3. Method
2.4. Study Area
2.4.1. BCIA COP in 12 Directions
2.4.2. Haiyang Aerostat Production Base Flight Test at Different Heights and Directions
2.4.3. Scientific Research on Mount Qomolangma
3. Application Results and Discussion
3.1. COPs in 12 Directions from BCIA
3.2. Haiyang Aerostat Production Base at Different Heights and Directions of COP
3.2.1. COP at 6 km
3.2.2. COP at 9 km
3.3. Mount Qomolangma at Different Times of COP
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Liu, D.; Xie, W.; Yang, M.; Gao, Z.; Ling, X.; Huang, Y.; Li, C.; Liu, Y.; Xia, Y. Day and Night Clouds Detection Using a Thermal-Infrared All-Sky-View Camera. Remote Sens. 2021, 13, 1852. [Google Scholar] [CrossRef]
- Stephens, G.L. Cloud Feedbacks in the Climate System: A Critical Review. J. Clim. 2005, 18, 237–273. [Google Scholar] [CrossRef] [Green Version]
- Roscow, W.B.; Schiffer, R.A. Advances in understanding clouds from ISCCP. Bull. Am. Meteorol. Soc. 1999, 80, 2261–2287. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, W.; Wan, X.; Wang, B. Cloud occurrence frequency and cloud liquid water path for non-precipitating clouds using ground-based measurements over central Chin. J. Atmos. Sol. Terr. Phys. 2021, 215, 105575. [Google Scholar] [CrossRef]
- Temme, M.M.; Tienes, C. Factors for Pilot’s Decision Making Process to Avoid Severe Weather during Enroute and Approach. In Proceedings of the 37th Digital Systems Avionics Conference (DASC), London, UK, 25–27 September 2018; pp. 1–10. [Google Scholar]
- Appleman, H.S. A Comparison of Simultaneous Aircraft and Surface Cloud Observations. J. Appl. Meteorol. 2010, 1, 548–551. [Google Scholar] [CrossRef]
- Lund, I.A. Estimating the Probability of Clear Lines-of-Sight from Sunshine and Cloud Cover Observations. J. Appl. Meteorol. Clim. 2010, 4, 714–722. [Google Scholar] [CrossRef]
- Lund, I.A.; Shanklin, M.D. Universal Methods for Estimating Probabilities of Cloud-Free Lines-of-Sight Through the Atmosphere. J. Appl. Meteorol. Clim. 1973, 12, 28–35. [Google Scholar] [CrossRef]
- Rapp, R.; Schutz, C.; Rodriguez, E. Cloud-Free Line-of-Sight calculations. J. Appl. Meteorol. 1973, 12, 484–493. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, R.; Wang, H. Comparing occurrences and vertical structures of hydrometeors between eastern China and the Indian monsoon region using CloudSat CALIPSO data. J. Clim. 2009, 22, 1052–1064. [Google Scholar] [CrossRef]
- Kato, S.; Sun-Mack, S.; Miller, W.F.; Rose, F.G.; Chen, Y.; Minnis, P.; Wielicki, B.A. Relationships among cloud occurrence frequency, overlap, and effective thickness derived from CALIPSO and CloudSat merged cloud vertical profiles. J. Geophys. Res. 2010, 115, D00H28. [Google Scholar] [CrossRef]
- Ruthrich, F.; Thies, B.; Reudenbach, C.; Bendix, J. Cloud detection and analysis on the Tibetan Plateau using Meteosat and Cloudsat. J. Geophys. Res. Atmos. 2013, 118, 10082–10099. [Google Scholar] [CrossRef]
- Tan, Z.; Ma, S.; Zhao, X.; Yan, W.; Lu, W. Evaluation of Cloud Top Height Retrievals from China’s Next-Generation Geostationary Meteorological Satellite FY-4A. J. Meteorol. Res. 2019, 33, 10. [Google Scholar] [CrossRef]
- Huang, Y.; Siems, S.; Manton, M.; Protat, A.; Majewski, L.; Nguyen, H. Evaluating Himawari-8 Cloud Products Using Shipborne and CALIPSO Observations: Cloud-top Height and Cloud-top Temperature. J. Atmos. Ocean. Technol. 2019, 36, 2327. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.-H.; Yoo, J.-M.; Choi, Y.-S. Advanced Dual-Satellite Method for Detection of Low Stratus and Fog near Japan at Dawn from FY-4A and Himawari-8. Remote Sens. 2021, 13, 1042. [Google Scholar] [CrossRef]
- Sasidharan, A.; Ratna, K.V.; Venkata, R.M.O. Aerodynamic characteristics of an aerostat under unsteady wind gust conditions. Aerosp. Sci. Technol. 2021, 113, 106684. [Google Scholar]
- Zhang, Y.; Li, Z.; Bai, K.; Wei, Y.; Xie, Y.; Zhang, Y.; Ou, Y.; Cohen, J.; Zhang, Y.; Peng, Z.; et al. Satellite remote sensing of atmospheric particulate matter mass concentration: Advances, challenges, and perspectives. Fundam. Res. 2021, 1, 240–258. [Google Scholar] [CrossRef]
- Da, C. Preliminary assessment of the Advanced Himawari Imager (AHI) measurement onboard Himawari-8 geostationary satellite. Remote Sens. Lett. 2015, 6, 637–646. [Google Scholar] [CrossRef]
- Wang, Y.; Min, J.; Chen, Y.; Huang, X.; Zeng, M.; Li, X. Improving precipitation forecast with hybrid 3DVar and time-lagged ensembles in a heavy rainfall event. Atmos. Res. 2017, 183, 1–16. [Google Scholar] [CrossRef]
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Kumagai, Y.; Miyakawa, T.; Murata, H.; Ohno, T.; et al. An Introduction to Himawari-8/9—Japan’s New-Generation Geostationary Meteorological Satellites. J. Meteorol. Soc. Jpn. 2016, 94, 151–183. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Li, Z.; Kahn, R.A.; Zhao, C.; Rosenfeld, D.; Guo, J.; Han, W.; Chen, D. Potential impact of aerosols on convective clouds revealed by Himawari-8 observations over different terrain types in eastern China. Atmos. Chem. Phys. 2021, 21, 6199–6220. [Google Scholar] [CrossRef]
- Liu, B.; Huo, J.; Daren, L.Y.U.; Wang, X. Assessment of FY-4A and Himawari-8 cloud top height retrieval through comparison with ground-based millimeter radar at sites in Tibet and Beijing. Adv. Atmos. Sci. 2021, 38, 17. [Google Scholar] [CrossRef]
- She, L.; Zhang, H.K.; Li, Z.; de Leeuw, G.; Huang, B. Himawari-8 Aerosol Optical Depth (AOD) Retrieval Using a Deep Neural Network Trained Using AERONET Observations. Remote Sens. 2020, 12, 4125. [Google Scholar] [CrossRef]
- Ahmad, U.A.; Suherman, A.L.; Virgono, A.; Dirgantoro, B.; Septiawan, R.R.; Harjupa, W.; Utama, D.Q.; Risyanto, R.; Abadi, P.; Virgono, A.; et al. Verification of Himawari-8 Observation Data using Cloud Optical Thickness (COT) and Cloud Image Energy. Int. J. Adv. Comput. Sci. Appl. 2020, 11, 245–249. [Google Scholar] [CrossRef]
- Stephens, G.L.; Vane, D.G.; Tanelli, S.; Im, E.; Durden, S.; Rokey, M.; Reinke, D.; Partain, P.; Mace, G.G.; Austin, R.; et al. CloudSat mission: Performance and early science after the first year of operation. J. Geophys. Res. Atmos. 2008, 113, D00A18. [Google Scholar] [CrossRef]
- Hamann, U.; Walther, A.; Baum, B.; Bennartz, R.; Bugliaro, L.; Derrien, M.; Francis, P.N.; Heidinger, A.; Joro, S.; Kniffka, A.; et al. Remote sensing of cloud top pressure/height from SEVIRI: Analysis of ten current retrieval algorithms. Atmos. Meas. Tech. 2014, 7, 2839–2867. [Google Scholar] [CrossRef] [Green Version]
- Kodamana, R.; Fletcher, C.G. Validation of CloudSat-CPR Derived Precipitation Occurrence and Phase Estimates Across Canada. Atmosphere 2021, 12, 295. [Google Scholar] [CrossRef]
- Hung, M.-P.; Chen, W.-T.; Wu, C.-M.; Chen, P.-J.; Feng, P.-N. Intraseasonal Vertical Cloud Regimes Based on CloudSat Observations over the Tropics. Remote Sens. 2020, 12, 2273. [Google Scholar] [CrossRef]
- Naud, C.M.; Posselt, D.J.; Van, d.H.S.C. A CloudSat-CALIPSO View of Cloud and Precipitation Properties across Cold Fronts over the Global Oceans. J. Clim. 2015, 28, 6743–6761. [Google Scholar] [CrossRef]
- Christensen, M.; Stephens, G.; Lebsock, M. Exposing biases in retrieved low cloud properties from CloudSat: A guide for evaluating observations and climate data. J. Geophys. Res. Atmos. 2013, 118, 120–131. [Google Scholar] [CrossRef]
- Liu, C.-Y.; Chiu, C.-H.; Lin, P.-H.; Min, M. Comparison of cloud-top property retrievals from Advanced Himawari Imager, MODIS, CloudSat/CPR, CALIPSO/CALIOP, and radiosonde. J. Geophys. Res. Atmos. 2020, 125, e2020JD032683. [Google Scholar] [CrossRef]
- Ma, Y.; Ma, W.; Dai, H.; Zhang, L.; Sun, F.; Zhang, J.; Yao, N.; He, J.; Bai, Z.; Xuan, Y.; et al. Earth summit mission 2022–Scientific expedition and research on Mt. Qomolangma helps reveal the synergy between westerly winds and monsoon and the resulting climatic and environmental effects. Adv. Atmos. Sci. 2022. [CrossRef]
- Kim, M.; Im, J.; Park, H.; Park, S.; Lee, M.-I.; Ahn, M.-H. Detection of Tropical Overshooting Cloud Tops Using Himawari-8 Imagery. Remote Sens. 2017, 9, 685. [Google Scholar] [CrossRef]
Band | Central Wavelength (μm) | Spatial Resolution (km) |
---|---|---|
1 | 0.47 | 1 |
2 | 0.51 | 1 |
3 | 0.64 | 0.5 |
4 | 0.86 | 1 |
5 | 1.6 | 2 |
6 | 2.3 | 2 |
7 | 3.9 | 2 |
8 | 6.2 | 2 |
9 | 6.9 | 2 |
10 | 7.3 | 2 |
11 | 8.6 | 2 |
12 | 9.6 | 2 |
13 | 10.4 | 2 |
14 | 11.2 | 2 |
15 | 12.4 | 2 |
16 | 13.3 | 2 |
Satellite | Bias (km) | Standard Deviation (km) |
---|---|---|
Himawari-8 | −0.49 | 2.16 |
CloudSat | −1.96 | 3.82 |
Parameter | Satellite |
---|---|
COTi | Himawari-8 |
CTH | Himawari-8 |
LCODx(j) | CloudSat |
CODx | CloudSat |
Season | Time (UTC) | Direction | Observation Days | Cloud Occlusion Days | COP |
---|---|---|---|---|---|
Spring | 02:00 | ocean | 459 | 71 | 15.47% |
Summer | 02:00 | ocean | 460 | 129 | 28.04% |
Autumn | 02:00 | ocean | 455 | 80 | 17.58% |
Winter | 02:00 | ocean | 448 | 41 | 9.15% |
- Annual | 02:00 | ocean | 1824 | 321 | 17.60% |
Spring | 06:00 | ocean | 457 | 84 | 18.38% |
Summer | 06:00 | ocean | 459 | 114 | 24.84% |
Autumn | 06:00 | ocean | 454 | 83 | 18.28% |
Winter | 06:00 | ocean | 447 | 48 | 10.74% |
- Annual | 06:00 | ocean | 1819 | 329 | 18.09% |
Spring | 02:00 | land | 459 | 56 | 12.2% |
Summer | 02:00 | land | 460 | 127 | 27.61% |
Autumn | 02:00 | land | 455 | 61 | 13.41% |
Winter | 02:00 | land | 448 | 34 | 7.59% |
- Annual | 02:00 | land | 1824 | 278 | 15.24% |
Spring | 06:00 | land | 457 | 76 | 16.63% |
Summer | 06:00 | land | 459 | 136 | 29.63% |
Autumn | 06:00 | land | 454 | 81 | 17.84% |
Winter | 06:00 | land | 447 | 46 | 10.29% |
- Annual | 06:00 | land | 1819 | 339 | 18.64% |
Season | Time (UTC) | Direction | Observation Days | Cloud Occlusion Days | COP |
---|---|---|---|---|---|
Spring | 02:00 | ocean | 459 | 25 | 5.45% |
Summer | 02:00 | ocean | 460 | 76 | 16.52% |
Autumn | 02:00 | ocean | 455 | 22 | 4.84% |
Winter | 02:00 | ocean | 448 | 4 | 0.89% |
- Annual | 02:00 | ocean | 1824 | 127 | 6.96% |
Spring | 06:00 | ocean | 457 | 36 | 7.88% |
Summer | 06:00 | ocean | 459 | 79 | 17.21% |
Autumn | 06:00 | ocean | 454 | 27 | 5.95% |
Winter | 06:00 | ocean | 447 | 10 | 2.24% |
- Annual | 06:00 | ocean | 1819 | 152 | 8.36% |
Spring | 02:00 | land | 459 | 17 | 3.70% |
Summer | 02:00 | land | 460 | 81 | 17.61% |
Autumn | 02:00 | land | 455 | 15 | 3.30% |
Winter | 02:00 | land | 448 | 4 | 0.89% |
- Annual | 02:00 | land | 1824 | 117 | 6.41% |
Spring | 06:00 | land | 457 | 27 | 5.91% |
Summer | 06:00 | land | 459 | 88 | 19.17% |
Autumn | 06:00 | land | 454 | 22 | 4.85% |
Winter | 06:00 | land | 447 | 7 | 1.57% |
- Annual | 06:00 | land | 1819 | 144 | 7.92% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Zhao, L.; Ding, H.; Wang, D.; Li, J.; Cao, C.; Zheng, F.; Li, Z.; Liu, J.; Liu, S. Cloud Occlusion Probability Calculation Jointly Using Himawari-8 and CloudSat Satellite Data. Atmosphere 2022, 13, 1754. https://doi.org/10.3390/atmos13111754
Chen X, Zhao L, Ding H, Wang D, Li J, Cao C, Zheng F, Li Z, Liu J, Liu S. Cloud Occlusion Probability Calculation Jointly Using Himawari-8 and CloudSat Satellite Data. Atmosphere. 2022; 13(11):1754. https://doi.org/10.3390/atmos13111754
Chicago/Turabian StyleChen, Xingfeng, Limin Zhao, Haonan Ding, Donghong Wang, Jiaguo Li, Chen Cao, Fengjie Zheng, Zhiliang Li, Jun Liu, and Shanwei Liu. 2022. "Cloud Occlusion Probability Calculation Jointly Using Himawari-8 and CloudSat Satellite Data" Atmosphere 13, no. 11: 1754. https://doi.org/10.3390/atmos13111754
APA StyleChen, X., Zhao, L., Ding, H., Wang, D., Li, J., Cao, C., Zheng, F., Li, Z., Liu, J., & Liu, S. (2022). Cloud Occlusion Probability Calculation Jointly Using Himawari-8 and CloudSat Satellite Data. Atmosphere, 13(11), 1754. https://doi.org/10.3390/atmos13111754