What Drives Climate Change Adaptation Practices in Smallholder Farmers? Evidence from Potato Farmers in Indonesia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Location, Sampling, and Data Collection
2.2. Data Analysis
3. Result and Discussion
3.1. Descriptive Statistics
3.2. Empirical Result from the Multivariate Probit Model: On-farm Adaptation Practices
3.3. Empirical Result from the Multivariate Probit Model: Off-farm Adaptation Practices
3.4. The Determinants of Adaptation Intensity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Variable | Crop Pattern | Variety | Plant Diversification | Fertilizer and Pesticide | Organic Fertilizer | Intercropping | Irrigation | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Coef. | Std. Error | Coef. | Std. Error | Coef. | Std. Error | Coef. | Std. Error | Coef. | Std. Error | Coef. | Std. Error | Coef. | Std. Error | |
Education | −0.104 | 0.055 * | −0.017 | 0.040 | 0.021 | 0.047 | −0.093 | 0.049 * | 0.022 | 0.040 | 0.162 | 0.061 *** | −0.036 | 0.052 |
Family education | 0.043 | 0.046 | 0.028 | 0.037 | 0.051 | 0.045 | −0.035 | 0.043 | −0.041 | 0.038 | −0.030 | 0.046 | −0.041 | 0.044 |
Dependency | −0.033 | 0.133 | −0.047 | 0.114 | −0.058 | 0.135 | 0.134 | 0.129 | −0.011 | 0.120 | 0.110 | 0.138 | 0.071 | 0.144 |
Family labor | 0.059 | 0.107 | 0.042 | 0.075 | 0.054 | 0.096 | −0.090 | 0.101 | −0.059 | 0.080 | 0.019 | 0.112 | 0.185 | 0.116 |
Total area | 0.002 | 0.066 | 0.027 | 0.047 | −0.055 | 0.062 | −0.017 | 0.054 | 0.011 | 0.045 | −0.019 | 0.067 | −0.007 | 0.061 |
Access to irrigation | −0.016 | 0.214 | −0.204 | 0.186 | −0.121 | 0.228 | −0.130 | 0.214 | −0.002 | 0.199 | 0.130 | 0.214 | 0.272 | 0.235 |
Land status | −0.201 | 0.234 | 0.262 | 0.204 | 0.006 | 0.247 | −0.187 | 0.243 | −0.208 | 0.219 | 0.011 | 0.248 | 0.499 | 0.236 ** |
Social network | −0.020 | 0.597 | 0.020 | 0.484 | −0.654 | 0.590 | 0.102 | 0.703 | 0.685 | 0.606 | 1.319 | 0.521 ** | −0.369 | 0.561 |
Cooperative | −0.991 | 0.338 *** | −0.183 | 0.303 | −0.038 | 0.326 | −0.336 | 0.367 | −0.199 | 0.302 | 0.026 | 0.338 | −0.032 | 0.396 |
Social activity | 0.270 | 0.207 | 0.056 | 0.170 | −0.178 | 0.216 | −0.032 | 0.201 | −0.096 | 0.180 | 0.396 | 0.221 * | −0.438 | 0.216 ** |
Farmer group | 0.619 | 0.234 *** | −0.111 | 0.184 | −0.447 | 0.218 ** | 0.756 | 0.258 *** | 0.062 | 0.193 | 0.715 | 0.241 *** | 0.244 | 0.264 |
Climate information | −0.495 | 0.232 ** | 0.000 | 0.177 | 0.211 | 0.221 | 0.444 | 0.233 * | 0.014 | 0.189 | 0.299 | 0.228 | 0.496 | 0.250 ** |
Irrigation infrastructure | 0.096 | 0.242 | −0.247 | 0.191 | 0.407 | 0.228 * | 0.286 | 0.234 | 0.691 | 0.196 *** | −0.336 | 0.255 | 0.381 | 0.244 |
Agriculture machinery | 1.190 | 0.204 *** | 0.627 | 0.131 *** | −0.086 | 0.128 | 0.366 | 0.177 ** | −0.359 | 0.113 *** | −1.011 | 0.215 *** | 0.793 | 0.207 *** |
Agriculture road | 1.124 | 0.392 *** | 0.380 | 0.335 | 1.432 | 0.375 *** | 1.637 | 0.365 *** | −0.434 | 0.326 | −1.179 | 0.356 *** | 2.462 | 0.648 *** |
Storage | 0.354 | 0.260 | −0.108 | 0.194 | 0.223 | 0.229 | 0.060 | 0.259 | 0.282 | 0.201 | −0.620 | 0.278 ** | 0.027 | 0.290 |
Access to credit | 0.150 | 0.214 | −0.037 | 0.176 | 0.044 | 0.216 | 0.064 | 0.208 | −0.222 | 0.185 | −0.626 | 0.223 *** | 0.116 | 0.219 |
Livestock ownership | 0.094 | 0.096 | 0.023 | 0.082 | 1.057 | 0.578 *** | 0.013 | 0.099 | −0.053 | 0.094 | −0.007 | 0.114 | −0.499 | 0.142 *** |
Public transfer | 0.865 | 0.410 ** | −0.318 | 0.257 | 0.041 | 0.306 | 0.632 | 0.403 | 0.018 | 0.258 | −0.636 | 0.456 | 1.343 | 0.641 ** |
Output prices | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 *** | 0.000 | 0.000 *** | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Constant | −2.175 | 1.003 | −0.982 | 0.843 | 1.480 | 1.129 | −2.455 | 0.972 | 1.792 | 0.934 | −0.025 | 1.004 | −2.150 | 1.172 |
Log-likelihood | −912.722 | Likelihood ratio test = 0 | ||||||||||||
Wald chi2(140) | 354.820 | Number of obs = 302 | ||||||||||||
Prob > chi2 | 0.000 |
References
- Sabbaghi, M.A.; Nazari, M.; Araghinejad, S.; Soufizadeh, S. Economic impacts of climate change on water resources and agriculture in Zayandehroud river basin in Iran. Agric. Water Manag. 2020, 241, 106323. [Google Scholar] [CrossRef]
- Sivakumar, M. Operational agrometeorological strategies in different regions of the world. Chall. Oppor. Agrometeorol. 2011, 11, 551–571. [Google Scholar] [CrossRef]
- Smit, B.; Skinner, M.W. Adaptation options in agriculture to climate change: A typology. Mitig. Adapt. Strateg. Glob. Change 2002, 7, 85–114. [Google Scholar] [CrossRef]
- Trinh, T.Q.; Rañola Jr, R.F.; Camacho, L.D.; Simelton, E. Determinants of farmers’ adaptation to climate change in agricultural production in the central region of Vietnam. Land Use Policy 2018, 70, 224–231. [Google Scholar] [CrossRef]
- Di Falco, S.; Yesuf, M.; Kohlin, G.; Ringler, C. Estimating the impact of climate change on agriculture in low-income countries: Household level evidence from the Nile Basin, Ethiopia. Environ. Resour. Econ. 2012, 52, 457–478. [Google Scholar] [CrossRef]
- Mendelsohn, R. The impact of climate change on agriculture in developing countries. J. Nat. Resour. Policy Res. 2008, 1, 5–19. [Google Scholar] [CrossRef] [Green Version]
- Molua, E.L. The economic impact of climate change on agriculture in Cameroon. World Bank Policy Res. Work. Pap. 2007, 4364, 4–31. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1016260 (accessed on 3 July 2021).
- Ebert, A.W. Vegetable production, diseases, and climate change. In World Agricultural Resources and Food Security; Emerald Publishing Limited: Bingley, UK, 2017. [Google Scholar]
- Prasad, B.; Chakravorty, S. Effects of Climate Change on Vegetable Cultivation—A Review. Nat. Environ. Pollut. Technol. 2015, 14, 923–929. [Google Scholar]
- Lemi, T.; Hailu, F. Effects of climate change variability on agricultural productivity. Int. J. Environ. Sci. Nat. Resour. 2019, 17, 14–20. [Google Scholar] [CrossRef]
- Tito, R.; Vasconcelos, H.L.; Feeley, K.J. Global climate change increases risk of crop yield losses and food insecurity in the tropical Andes. Glob. Change Biol. 2018, 24, e592–e602. [Google Scholar] [CrossRef]
- Raymundo, R.; Asseng, S.; Robertson, R.; Petsakos, A.; Hoogenboom, G.; Quiroz, R.; Hareau, G.; Wolf, J. Climate change impact on global potato production. Eur. J. Agron. 2018, 100, 87–98. [Google Scholar] [CrossRef]
- Devaux, A.; Kromann, P.; Ortiz, O. Potatoes for sustainable global food security. Potato Res. 2014, 57, 185–199. [Google Scholar] [CrossRef]
- CIP. Why Are Potatoes Important? International Potato Center: Lima, Peru, 2017. [Google Scholar]
- FAO. OECD-FAO Agricultural Outlook 2021–2030; Food Agriculture Organization: Rome, Italy, 2021. [Google Scholar]
- Ezeta, F.; Papademetriou, M. An Overview of Potato Produciton in Asia and the Pacific Region: Markets, Development and Constraints. 2008. Available online: ftp://ftp.fao.org/docrep/fao/010/i0200e/i0200e00.pdf (accessed on 3 February 2021).
- Taylor, A.S.; Dawson, P. Major Constraints to Potato Production in Indonesia: A Review. Am. J. Potato Res. 2021, 98, 171–186. [Google Scholar] [CrossRef]
- Kuswanto, H.; Hibatullah, F.; Soedjono, E.S. Perception of weather and seasonal drought forecasts and its impact on livelihood in East Nusa Tenggara, Indonesia. Heliyon 2019, 5, e02360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Measey, M. Indonesia: A vulnerable country in the face of climate change. Glob. Major. E-J. 2010, 1, 31–45. [Google Scholar]
- Supriyanto, E.; Wasito, E.; Hasan, A.; Ernanda, D.; Balqis, K. Design of a Water Sprinkler System and Monitoring of Soil Moisture in Potato Cultivation of the Kledung Horticulture Seed Center based on the Internet of Things (IoT). JAICT 2020, 5, 20–25. [Google Scholar]
- Setiyanto, A.; Pasaribu, S. Predicting the impacts of climate change on Indonesia’s five main horticulture commodities. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; p. 012009. [Google Scholar]
- Di Falco, S.; Veronesi, M.; Yesuf, M. Does adaptation to climate change provide food security? A micro-perspective from Ethiopia. Am. J. Agric. Econ. 2011, 93, 829–846. [Google Scholar] [CrossRef] [Green Version]
- IPCC. The Physical Science Basis. 2007. Available online: https://www.ipcc.ch/report/ar4/wg1/ (accessed on 3 July 2021).
- Gifford, R. The dragons of inaction: Psychological barriers that limit climate change mitigation and adaptation. Am. Psychol. 2011, 66, 290. [Google Scholar] [CrossRef] [PubMed]
- Khanal, U.; Wilson, C.; Hoang, V.-N.; Lee, B. Farmers’ adaptation to climate change, its determinants and impacts on rice yield in Nepal. Ecol. Econ. 2018, 144, 139–147. [Google Scholar] [CrossRef]
- Ahmad, D.; Afzal, M. Climate change adaptation impact on cash crop productivity and income in Punjab province of Pakistan. Environ. Sci. Pollut. Res. 2020, 27, 30767–30777. [Google Scholar] [CrossRef]
- Mottaleb, K.A.; Rejesus, R.M.; Murty, M.; Mohanty, S.; Li, T. Benefits of the development and dissemination of climate-smart rice: Ex ante impact assessment of drought-tolerant rice in South Asia. Mitig. Adapt. Strateg. Glob. Change 2017, 22, 879–901. [Google Scholar] [CrossRef]
- Fadina, A.M.R.; Barjolle, D. Farmers’ adaptation strategies to climate change and their implications in the Zou Department of South Benin. Environments 2018, 5, 15. [Google Scholar] [CrossRef] [Green Version]
- Bryan, E.; Deressa, T.T.; Gbetibouo, G.A.; Ringler, C. Adaptation to climate change in Ethiopia and South Africa: Options and constraints. Environ. Sci. Policy 2009, 12, 413–426. [Google Scholar] [CrossRef]
- Alemayehu, A.; Bewket, W. Smallholder farmers’ coping and adaptation strategies to climate change and variability in the central highlands of Ethiopia. Local Environ. 2017, 22, 825–839. [Google Scholar] [CrossRef]
- Arunrat, N.; Wang, C.; Pumijumnong, N.; Sereenonchai, S.; Cai, W. Farmers’ intention and decision to adapt to climate change: A case study in the Yom and Nan basins, Phichit province of Thailand. J. Clean. Prod. 2017, 143, 672–685. [Google Scholar] [CrossRef]
- Kuang, F.; Jin, J.; He, R.; Wan, X.; Ning, J. Influence of livelihood capital on adaptation strategies: Evidence from rural households in Wushen Banner, China. Land Use Policy 2019, 89, 104228. [Google Scholar] [CrossRef]
- Wu, W.; Ma, B.-L. Assessment of canola crop lodging under elevated temperatures for adaptation to climate change. Agric. For. Meteorol. 2018, 248, 329–338. [Google Scholar] [CrossRef]
- Harvey, C.A.; Saborio-Rodríguez, M.; Martinez-Rodríguez, M.R.; Viguera, B.; Chain-Guadarrama, A.; Vignola, R.; Alpizar, F. Climate change impacts and adaptation among smallholder farmers in Central America. Agric. Food Secur. 2018, 7, 57. [Google Scholar] [CrossRef]
- Ojo, T.; Baiyegunhi, L. Determinants of climate change adaptation strategies and its impact on the net farm income of rice farmers in south-west Nigeria. Land Use Policy 2020, 95, 103946. [Google Scholar] [CrossRef]
- Arun Yeo, J.-H. Perception to Adaptation of Climate Change in Nepal: An Empirical Analysis Using Multivariate Probit Model. Sci 2020, 2, 87. [Google Scholar]
- BPS. Potato Production by Province, Years 2015–2019; Central Bureau of Statistics: Jakarta, Indonesia, 2020.
- BPS. East Java Province in Figures 2021; Statistics Indonesia: Jakarta, Indonesia, 2021.
- GeoSIS. Indonesian SHP Data. Available online: https://geosis.id/blog/data-shp-seluruh-indonesia/ (accessed on 3 October 2021).
- Becker, H.; Loder, A.; Schmid, B.; Axhausen, K.W. Modeling car-sharing membership as a mobility tool: A multivariate Probit approach with latent variables. Travel Behav. Soc. 2017, 8, 26–36. [Google Scholar] [CrossRef] [Green Version]
- Mittal, S.; Mehar, M. Socio-economic factors affecting adoption of modern information and communication technology by farmers in India: Analysis using multivariate probit model. J. Agric. Educ. Ext. 2016, 22, 199–212. [Google Scholar] [CrossRef]
- Raza, M.H.; Abid, M.; Yan, T.; Naqvi, S.A.A.; Akhtar, S.; Faisal, M. Understanding farmers’ intentions to adopt sustainable crop residue management practices: A structural equation modeling approach. J. Clean. Prod. 2019, 227, 613–623. [Google Scholar] [CrossRef]
- Abdul-Rahaman, A.; Abdulai, A. Do farmer groups impact farm yield and efficiency of smallholder farmers? Evidence from rice farmers in northern Ghana. Food Policy 2018, 81, 95–105. [Google Scholar] [CrossRef]
- Bellemare, M.F.; Novak, L. Contract farming and food security. Am. J. Agric. Econ. 2017, 99, 357–378. [Google Scholar] [CrossRef]
- Henderson, H.; Isaac, A.G. Modern value chains and the organization of agrarian production. Am. J. Agric. Econ. 2017, 99, 379–400. [Google Scholar] [CrossRef]
- Rahman, M.; Toiba, H.; Huang, W.-C. The impact of climate change adaptation strategies on income and food security: Empirical evidence from small-scale fishers in Indonesia. Sustainability 2021, 13, 7905. [Google Scholar] [CrossRef]
- Amare, A.; Simane, B. Determinants of smallholder farmers’ decision to adopt adaptation options to climate change and variability in the Muger Sub basin of the Upper Blue Nile basin of Ethiopia. Agric. Food Secur. 2017, 6, 64. [Google Scholar] [CrossRef] [Green Version]
- Awazi, N.P.; Tchamba, M.N.; Avana, T.M.-L. Climate change resiliency choices of small-scale farmers in Cameroon: Determinants and policy implications. J. Environ. Manag. 2019, 250, 109560. [Google Scholar] [CrossRef]
- Marie, M.; Yirga, F.; Haile, M.; Tquabo, F. Farmers’ choices and factors affecting adoption of climate change adaptation strategies: Evidence from northwestern Ethiopia. Heliyon 2020, 6, e03867. [Google Scholar] [CrossRef]
- Islam, M.M.; Barman, A.; Kundu, G.K.; Kabir, M.A.; Paul, B. Vulnerability of inland and coastal aquaculture to climate change: Evidence from a developing country. Aquac. Fish. 2019, 4, 183–189. [Google Scholar] [CrossRef]
- Rolnick, D.; Donti, P.L.; Kaack, L.H.; Kochanski, K.; Lacoste, A.; Sankaran, K.; Ross, A.S.; Milojevic-Dupont, N.; Jaques, N.; Waldman-Brown, A. Tackling climate change with machine learning. arXiv 2019, arXiv:1906.05433. [Google Scholar]
- Ma, W.; Zhou, X.; Renwick, A. Impact of off-farm income on household energy expenditures in China: Implications for rural energy transition. Energy Policy 2019, 127, 248–258. [Google Scholar] [CrossRef]
- Anang, B.T.; Nkrumah-Ennin, K.; Nyaaba, J.A. Does off-farm work improve farm income? Empirical evidence from Tolon district in northern Ghana. Adv. Agric. 2020, 2020, 1406594. [Google Scholar] [CrossRef]
- Anang, B.T.; Yeboah, R.W. Determinants of off-farm income among smallholder rice farmers in Northern Ghana: Application of a double-hurdle model. Adv. Agric. 2019, 2019, 7246176. [Google Scholar] [CrossRef] [Green Version]
Variable | Measurement | Mean | Std. Dev. |
---|---|---|---|
On-farm adaptation intensity | Number of on-farm adaptation (1–7) | 4.139 | 1.327 |
Off-farm adaptation intensity | Number of off-farm adaptation (1–4) | 1.255 | 0.834 |
Education | Farmers’ education level (years) | 6.235 | 2.413 |
Family education | Higher education level of family members | 8.000 | 2.668 |
Dependency | Number of family members aged higher than 65 years old and lower than 16 years old | 0.742 | 0.742 |
Employed family member | Number of employed family members (Person) | 1.606 | 1.198 |
Total area | Total cultivated area (Ha) | 1.834 | 1.955 |
Access to irrigation | Dummy, 1 if the farmers had to do natural irrigation; 0 otherwise | 0.656 | 0.476 |
Land status | Dummy, 1 if owning land; 0 otherwise | 0.722 | 0.449 |
Social network | Dummy, 1 if the farmers interacted with other farmers; 0 otherwise | 0.030 | 0.170 |
Cooperative | Dummy, 1 if the farmers participated in cooperative membership; 0 otherwise | 0.096 | 0.295 |
Social activity | Dummy, 1 if the farmers participated in farmers group; 0 otherwise | 0.666 | 0.473 |
Farmer group | Dummy, 1 if the farmers participated in a social activity; 0 otherwise | 0.301 | 0.460 |
Climate information | Dummy, 1 if the farmers had climate information access; 0 otherwise | 0.351 | 0.478 |
Irrigation Infrastructure | Dummy, 1 if the farmers had irrigation infrastructure; 0 otherwise | 0.579 | 0.494 |
Agriculture machinery | Numbers of agriculture machinery owned by farmers (units) | 0.709 | 0.828 |
Agriculture road | Dummy, 1 if the farmers had access to agricultural road infrastructure; 0 otherwise | 0.917 | 0.276 |
Storage | Dummy, 1 if the farmers had agricultural storage; 0 otherwise | 0.308 | 0.462 |
Access to credit | Dummy, 1 if the farmers had access to credit; 0 otherwise | 0.566 | 0.496 |
Livestock ownership | Number of livestock owned by the farmers | 0.245 | 0.900 |
Public transfer | Dummy, 1 if the farmers received public transfer; 0 otherwise | 0.109 | 0.312 |
Output prices | Agricultural output price (Rupiah/Kg) | 8189.404 | 1149.471 |
Variables | Livestock | Off-Farm Work | Land Rent | Training | ||||
---|---|---|---|---|---|---|---|---|
Coef. | Std. Error | Coef. | Std. Error | Coef. | Std. Error | Coef. | Std. Error | |
Education | 0.000 | 0.051 | 0.143 | 0.047 *** | 0.038 | 0.054 | −0.125 | 0.058 ** |
Family education | −0.003 | 0.047 | 0.033 | 0.041 | 0.001 | 0.055 | 0.019 | 0.046 |
Dependency | −0.246 | 0.152 | −0.269 | 0.133 ** | 0.092 | 0.161 | 0.160 | 0.157 |
Employed family member | 0.220 | 0.105 *** | 0.134 | 0.092 | 0.209 | 0.104 ** | −0.161 | 0.108 |
Total area | −0.048 | 0.066 | −0.026 | 0.057 | −0.035 | 0.075 | 0.055 | 0.087 |
Access to irrigation | 0.103 | 0.252 | 0.134 | 0.206 | 0.170 | 0.300 | −0.424 | 0.237 * |
Land status | −0.414 | 0.243 * | −0.109 | 0.225 | −0.058 | 0.309 | 0.176 | 0.251 |
Social network | 0.371 | 0.550 | 0.357 | 0.495 | −3.743 | 306.898 | 0.027 | 0.579 |
Cooperative | −0.077 | 0.419 | 0.182 | 0.331 | −0.733 | 0.536 | −0.925 | 0.400 ** |
Social activity | −0.030 | 0.219 | 0.081 | 0.191 | 0.485 | 0.268 * | −0.308 | 0.226 |
Farmer group | −0.737 | 0.285 ** | −0.090 | 0.211 | −0.003 | 0.296 | 0.385 | 0.263 |
Climate information | 0.320 | 0.242 | −0.132 | 0.207 | 0.027 | 0.259 | 0.706 | 0.248 *** |
Irrigation infrastructure | −0.367 | 0.254 | −0.132 | 0.216 | −0.970 | 0.306 *** | −0.154 | 0.257 |
Agriculture machinery | −0.323 | 0.195 * | −0.525 | 0.174 *** | 0.038 | 0.152 | 1.099 | 0.224 *** |
Agriculture road | 4.506 | 118.916 | 0.654 | 0.412 | −0.123 | 0.451 | 3.018 | 0.593 *** |
Storage | −0.090 | 0.282 | −0.323 | 0.243 | −0.006 | 0.271 | −0.206 | 0.299 |
Access to credit | 0.099 | 0.227 | 0.484 | 0.202 ** | 0.111 | 0.257 | −0.034 | 0.228 |
Livestock ownership | 0.350 | 0.085 *** | 0.140 | 0.094 | −0.041 | 0.194 | −0.198 | 0.112 ** |
Public transfer | −0.395 | 0.394 | −0.017 | 0.331 | 0.354 | 0.326 | −0.456 | 0.394 |
Output prices | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Constant | −4.255 | 118.919 | −1.741 | 0.964 | −0.712 | 1.224 | −2.060 | 1.158 |
Log-likelihood | −437.424 | |||||||
Wald chi2(140) | 178.040 | |||||||
Prob > chi2 | 0.000 | |||||||
Number of obs | 302 | |||||||
Likelihood ratio test | 0.013 |
Variable | On-Farm Adaptation | On-Farm Adaptation | ||
---|---|---|---|---|
Coef. | Std. Error | Coef. | Std. Error | |
Education | −0.015 | 0.032 | 0.025 | 0.035 |
Family education | −0.010 | 0.029 | 0.034 | 0.032 |
Dependency | 0.029 | 0.089 | −0.100 | 0.099 |
Employed family member | 0.069 | 0.061 | 0.106 | 0.066 |
Total area | 0.003 | 0.035 | −0.020 | 0.040 |
Access to irrigation | 0.020 | 0.145 | 0.012 | 0.161 |
Land status | 0.099 | 0.162 | −0.110 | 0.178 |
Social network | 0.347 | 0.407 | 0.266 | 0.419 |
Cooperative | −0.528 | 0.245 ** | −0.486 | 0.277 |
Social activity | −0.008 | 0.134 | −0.010 | 0.148 |
Farmers’ group | 0.394 | 0.150 *** | −0.121 | 0.164 |
Climate information | 0.244 | 0.144 * | 0.279 | 0.157 |
Irrigation infrastructure | 0.210 | 0.154 | −0.423 | 0.169 ** |
Agriculture machinery | 0.362 | 0.093 *** | 0.023 | 0.100 |
Agriculture road | 1.382 | 0.269 *** | 2.152 | 0.336 *** |
Storage | 0.072 | 0.156 | −0.269 | 0.174 |
Access to credit | −0.143 | 0.141 | 0.284 | 0.155 * |
Livestock ownership | −0.025 | 0.070 | 0.161 | 0.077 *** |
Public transfer | 0.071 | 0.207 | −0.114 | 0.231 |
Output prices | 0.000 | 0.000 | 0.000 | 0.000 |
Cut 1 | −1.871 | 0.744 | 0.074 | 0.740 |
Cut 2 | −0.617 | 0.668 | 2.181 | 0.747 |
Cut 3 | 0.141 | 0.667 | 3.036 | 0.751 |
Cut 4 | 0.913 | 0.672 | 3.915 | 0.769 |
Cut 5 | 1.756 | 0.675 | ||
Cut 6 | 2.894 | 0.679 | ||
Cut 7 | 4.756 | 0.760 | ||
Log-likelihood | −441.049 | −298.081 | ||
LR chi2(20) | 113.640 | 97.090 | ||
Prob > chi2 | 0.000 | 0.000 | ||
Pseudo R2 | 0.114 | 0.140 | ||
Number of obs | 302 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Purwanti, T.S.; Syafrial, S.; Huang, W.-C.; Saeri, M. What Drives Climate Change Adaptation Practices in Smallholder Farmers? Evidence from Potato Farmers in Indonesia. Atmosphere 2022, 13, 113. https://doi.org/10.3390/atmos13010113
Purwanti TS, Syafrial S, Huang W-C, Saeri M. What Drives Climate Change Adaptation Practices in Smallholder Farmers? Evidence from Potato Farmers in Indonesia. Atmosphere. 2022; 13(1):113. https://doi.org/10.3390/atmos13010113
Chicago/Turabian StylePurwanti, Tina Sri, Syafrial Syafrial, Wen-Chi Huang, and Mohammad Saeri. 2022. "What Drives Climate Change Adaptation Practices in Smallholder Farmers? Evidence from Potato Farmers in Indonesia" Atmosphere 13, no. 1: 113. https://doi.org/10.3390/atmos13010113
APA StylePurwanti, T. S., Syafrial, S., Huang, W. -C., & Saeri, M. (2022). What Drives Climate Change Adaptation Practices in Smallholder Farmers? Evidence from Potato Farmers in Indonesia. Atmosphere, 13(1), 113. https://doi.org/10.3390/atmos13010113