Trends of Ground-Level Ozone in New York City Area during 2007–2017
Abstract
:1. Introduction
2. Materials and Methods
2.1. Air Pollution Data Acquisition and Processing
- Seven sites are operated by the New York State Department of Environmental Conservation, four of them within NYC (City College of New York in West Harlem) (#1), Pfizer Lab in Bronx (#3) and Queens College in Queens (#4), with more than 1.5 million of people within 8 km of each site; White Plains in Westchester (#6, about 450,000 residents within 8 km) County in Figure 1 and three of them in Suffolk County, Long Island (#10, #11 (500,000–700,000 people) and #12 (57,000 people) in Figure 1);
- Six sites were operated by the New Jersey Department of Environmental Protection. Three of the sites (#2, #5 and #15) were in populated urban settings (from 600,000 to 2,500,000 people within 8-km radius), while the remaining three were further away from New York City (#13, #14 and #16, less than 275,000 people within 8-km); and
- Three sites along the US Interstate-95 highway to Bridgeport, CT, operated by the Connecticut Department of Environmental Quality (#7, #8, and #9 in Figure 1, with 180,000 to 280,000 people living within an 8-km radius).
ID # | Site Name | Latitude (oN) | Longitude (oW) | Elevation (m) | Distance from CCNY Site (km) | Population (<8 km) |
---|---|---|---|---|---|---|
NYC urban sites | ||||||
1 | CCNY | 40.819 | 73.948 | 45 | - | 4,117,668 |
2 | Leonia | 40.870 | 73.991 | 1 | 6.7 | 2,675,227 |
3 | Pfizer Lab Site a | 40.867 | 73.878 | 31 | 7.8 | 2,900,231 |
4 | Queens College a | 40.736 | 73.821 | 25 | 13.9 | 2,825,439 |
5 | Bayonne a | 40.670 | 74.126 | 3 | 22.5 | 1,426,212 |
Peri-urban sites | ||||||
6 | White Plains | 41.051 | 73.763 | 64 | 31.5 | 452,018 |
7 | Greenwich Point Park | 41.004 | 73.585 | 3 | 37.5 | 283,192 |
8 | Sherwood Island a | 41.118 | 73.336 | 4 | 62.4 | 188,692 |
9 | Stratford | 41.152 | 73.103 | 3 | 79.5 | 288,077 |
10 | Babylon | 40.745 | 73.419 | 27 | 45.2 | 671,479 |
11 | Holtsville | 40.827 | 73.057 | 45 | 75.2 | 455,965 |
12 | Riverhead | 40.960 | 72.712 | 31 | 105.7 | 57,381 |
13 | Ramapo | 41.058 | 74.255 | 3047 | 37.8 | 265,429 |
14 | Chester a | 40.787 | 74.676 | 278 | 61.3 | 205,712 |
15 | Rutgers University | 40.462 | 74.429 | 19 | 56.6 | 619,552 |
16 | Monmouth University | 40.277 | 74.005 | 8 | 60.5 | 240,959 |
2.2. Emissions Inventories and Wildfires
2.3. Data Analysis
3. Results
3.1. Spatial and Temporal Trends
3.2. O3 Precursors Emissions and Wildfires
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vicedo-Cabrera, A.M.; Sera, F.; Liu, C.; Armstrong, B.; Milojevic, A.; Guo, Y.; Tong, S.; Lavigne, E.; Kyselý, J.; Urban, A.; et al. Short term association between ozone and mortality: Global two stage time series study in 406 locations in 20 countries. BMJ 2020, 368, m108. [Google Scholar] [CrossRef] [Green Version]
- Agathokleous, E.; Feng, Z.; Oksanen, E.; Sicard, P.; Wang, Q.; Saitanis, C.J.; Araminiene, V.; Blande, J.D.; Hayes, F.; Calatayud, V.; et al. Ozone affects plant, insect, and soil microbial communities: A threat to terrestrial ecosystems and biodiversity. Sci. Adv. 2020, 6, eabc1176. [Google Scholar] [CrossRef]
- Badman, D.; Jaffe, E.R. Blood and air pollution: State of the knowledge and research needs. Otolaryngol. Head Neck Surg. 1996, 114, 205–208. [Google Scholar] [CrossRef]
- Kim, C.S.; Alexis, N.E.; Rappold, A.G.; Kehrl, H.; Hazucha, M.J.; Lay, J.C.; Schmitt, M.T.; Case, M.; Devlin, R.B.; Peden, D.B.; et al. Lung function and inflammatory responses in healthy young adults exposed to 0.06 ppm ozone for 6.6 hours. Am. J. Respir. Crit. Care Med. 2001, 183, 1215–1221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khatri, S.; Holguin, F.C.; Ryan, P.B.; Mannino, D.; Erzurum, S.C.; Teague, W.G. Association of ambient ozone exposure with airway inflammation and allergy in adults with asthma. Asthma 2009, 46, 777–785. [Google Scholar] [CrossRef] [PubMed]
- Mortimer, K.; Neugebauer, R.; Lurmann, F.; Alcorn, S.; Balmes, J.; Tager, I. Air pollution and pulmonary function in asthmatic children: Effects of prenatal and lifetime exposures. Epidemiology 2008, 19, 550–562. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, K.K.; Galanter, J.M.; Roth, L.A.; Oh, S.S.; Thakur, N.; Nguyen, E.A.; Thyne, S.; Farber, H.J.; Serebrisky, D.; Kumar, R.; et al. Early-life air pollution and asthma risk in minority children. The GALA II and SAGE II studies. Am. J. Respir. Crit. Care Med. 2013, 188, 309–318. [Google Scholar] [CrossRef]
- Enweasor, C.; Flayer, C.H.; Haczku, A. Ozone-Induced Oxidative Stress, Neutrophilic Airway Inflammation, and Glucocorticoid Resistance in Asthma. Front. Immunol. 2021, 12, 631092. [Google Scholar] [CrossRef]
- Ierodiakonou, D.; Zanobetti, A.; Coull, B.A.; Melly, S.; Postma, D.S.; Boezen, H.M.; Vonk, J.M.; Williams, P.V.; Shapiro, G.G.; McKone, E.F.; et al. Ambient air pollution, lung function, and airway responsiveness in asthmatic children. J. Allergy Clin. Immunol. 2016, 137, 390–399. [Google Scholar] [CrossRef] [Green Version]
- Rodopoulou, S.; Samoli, E.; Chalbot, M.G.; Kavouras, I.G. Air pollution and cardiovascular and respiratory emergency visits in Central Arkansas: A time-series analysis. Sci. Total Environ. 2015, 536, 872–879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kavouras, I.G.; DuBois, D.W.; Etyemezian, V.; Nikolich, G. Spatiotemporal variability of ground-level ozone and influence of smoke in Treasure Valley, Idaho. Atmos. Res. 2013, 124, 44–52. [Google Scholar] [CrossRef]
- Simon, H.; Reff, A.; Wells, B.; Xing, J.; Frank, N. Ozone Trends Across the United States over a Period of Decreasing NOx and VOC Emissions. Environ. Sci. Technol. 2015, 49, 186–195. [Google Scholar] [CrossRef] [Green Version]
- Strode, S.A.; Ziemke, J.R.; Oman, L.D.; Lamsal, L.N.; Olsen, M.A.; Liu, J. Global changes in the diurnal cycle of surface ozone. Atmos. Environ. 2019, 199, 323–333. [Google Scholar] [CrossRef] [Green Version]
- Henneman, L.R.F.; Shen, H.; Liu, C.; Hu, Y.; Mulholland, J.A.; Russell, A.G. Ozone in the Eastern United States: Production Efficiency Variability Over Time and Between Sources. In Air Pollution Modeling and its Application XXVI. ITM 2018. Springer Proceedings in Complexity; Mensink, C., Gong, W., Hakami, A., Eds.; Springer: Cham, Switzerland, 2020; Chapter 9. [Google Scholar] [CrossRef]
- Jin, X.; Fiore, A.; Boersma, K.F.; De Smedt, I.; Valin, L. Inferring Changes in Summertime Surface Ozone–NOx–VOC Chemistry over U.S. Urban Areas from Two Decades of Satellite and Ground-Based Observations. Environ. Sci. Technol. 2020, 54, 6518–6529. [Google Scholar] [CrossRef]
- Wells, B.; Dolwick, P.; Eder, B.; Evangelista, M.; Foley, K.; Mannshardt, E.; Misenis, C.; Weishampel, A. Improved estimation of trends in U.S. ozone concentrations adjusted for interannual variability in meteorological conditions. Atmos. Environ. 2021, 248, 118234. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Hao, Y.; Simayi, M.; Shi, Y.; Xie, S. Spatiotemporal variation of surface ozone and its causes in Beijing, China since 2014. Atmos. Environ. 2021, 260, 118556. [Google Scholar] [CrossRef]
- Wilkins, J.L.; de Foy, B.; Thompson, A.M.; Peterson, D.A.; Hyer, E.J.; Graves, C.; Fishman, J.; Morris, G.A. Evaluation of Stratospheric Intrusions and Biomass Burning Plumes on the Vertical Distribution of Tropospheric Ozone Over the Midwestern United States. J. Geophys. Res. Atmos. 2020, 125, e2020JD032454. [Google Scholar] [CrossRef]
- Jaffe, D.A.; Wigder, N.; Downey, N.; Pfister, G.; Boynard, A.; Reid, S.B. Impact of Wildfires on Ozone Exceptional Events in the Western, U.S. Environ. Sci. Technol. 2013, 47, 11065–11072. [Google Scholar] [CrossRef]
- U.S. Census Bureau. American Community Survey 5-Year Estimates Data Profiles. 2019. Available online: https://data.census.gov/cedsci/table?tid=ACSDP5Y2019.DP05&g=310XX00US35620. (accessed on 10 December 2021).
- Ninneman, M.; Jaffe, D. Observed Relationship between Ozone and Temperature for Urban Nonattainment Areas in the United States. Atmosphere 2021, 12, 1235. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency Air Data. Pre-Generated Data Files. Available online: https://aqs.epa.gov/aqsweb/airdata/download_files.html#Daily (accessed on 8 October 2021).
- National Interagency Fire Center. Statistics. Available online: https://www.nifc.gov/fire-information/statistics (accessed on 10 December 2021).
- Chalbot, M.C.; Kavouras, I.G.; Dubois, D.W. Assessment of the Contribution of Wildfires to Ozone Concentrations in the Central US-Mexico Border Region. Aerosol Air Qual. Res. 2013, 13, 838–848. [Google Scholar] [CrossRef] [Green Version]
- Sather, M.E.; Cavender, K. Update of Longterm Trends Analysis of Ambient 8-hour Ozone and Precursor Monitoring Data in the South Central U.S.; Encouraging News. J. Environ. Monit. 2012, 14, 666–676. [Google Scholar] [CrossRef] [PubMed]
- Shikwambana, L.; Mhangara, P.; Mbatha, N. Trend Analysis and First Time Observations of Sulphur Dioxide and Nitrogen Dioxide in South Africa Using TROPOMI/Sentinel-5 P Data. Int. J. Appl. Earth Obs. Geoinf. 2020, 91, 102130. [Google Scholar] [CrossRef]
- Opio, R.; Mugume, I.; Nakatumba-Nabende, J. Understanding the Trend of NO2, SO2 and CO over East Africa from 2005 to 2020. Atmosphere 2021, 12, 1283. [Google Scholar] [CrossRef]
- Sicard, P.; Paoletti, E.; Agathokleous, E.; Araminienė, V.; Proietti, C.; Coulibaly, F.; De Marco, A. Ozone weekend effect in cities: Deep insights for urban air pollution control. Environ. Res. 2020, 191, 110193. [Google Scholar] [CrossRef] [PubMed]
- Sicard, P. Ground-level ozone over time: An observation-based global overview. Curr. Opin. Environ. Sci. Health 2021, 19, 100226. [Google Scholar] [CrossRef]
- Yan, Y.; Lin, J.; He, C. Ozone trends over the United States at different times of day. Atmos. Chem. Phys. 2018, 18, 1185–1202. [Google Scholar] [CrossRef] [Green Version]
- Baidar, S.; Hardesty, R.M.; Kim, S.-W.; Langford, A.O.; Oetjen, H.; Senff, C.J.; Trainer, M.; Volkamer, R. Weakening of the weekend ozone effect over California’s South Coast Air Basin. Geophys. Res. Lett. 2015, 42, 9457–9464. [Google Scholar] [CrossRef]
- Coggon, M.G.; Gkatzelis, G.I.; McDonald, B.C.; Gilman, J.B.; Schwantes, R.H.; Abuhassan, N.; Aikin, K.C.; Arend, M.F.; Berkoff, T.A.; Brown, S.S.; et al. Volatile chemical product emissions enhance ozone and modulate urban chemistry. Proc. Natl. Acad. Sci. USA 2021, 118, e2026653118. [Google Scholar] [CrossRef]
- Kerr, G.H.; Waugh, D.W.; Sarah, S.A.; Steenrod, S.D.; Oman, L.D.; Strahan, S.E. Disentangling the drivers of the summertime ozone-temperature relationship over the United States. J. Geophys. Res. Atmos. 2019, 124, 10503–10524. [Google Scholar] [CrossRef]
- Mason, S.A.; Hamlington, P.E.; Hamlington, B.D.; Matt Jolly, W.; Hoffman, C.M. Effects of climate oscillations on wildland fire potential in the continental United States. Geophys. Res. Lett. 2017, 44, 7002–7010. [Google Scholar] [CrossRef] [Green Version]
Site No and Location | 2017 8-h Max O3 (ppbv) | COD | ΔC (Median (σ)) | %ΔC/Cref (Median (σ)) | Annual Trend (ppbv/year) |
---|---|---|---|---|---|
NYC urban sites | |||||
1 CCNY | 70 | n.c. | n.c. | n.c. | 0.24 * |
2 Leonia | 74 | 0.12 | 4 (5.0) | 11 (129.7) | 1.39 ** |
3 Pfizer Laboratories | 69 | 0.10 | 2 (3.8) | 6 (107.3) | 0.31 ** |
4 Queens College | 79 | 0.14 | 4 (5.1) | 12 (119.1) | 0.18 |
5 Bayonne | 67 | 0.12 | 2 (5.2) | 7 (108.1) | −0.28 |
Peri-urban sites | |||||
6 White Plains | 72 | 0.18 | 6 (6.6) | 21 (92.5) | −0.25 * |
7 Greenwich Point Park | 74 | 0.14 | 8 (6.4) | 20 (32.4) | 0.03 a |
8 Sherwood Island | 81 | 0.13 | 7 (7.3) | 18 (30.1) | 0.43 *,a |
9 Stratford | 81 | 0.16 | 9 (7.7) | 23 (38.4) | 0.01 a |
10 Babylon | 77 | 0.19 | 6 (7.3) | 20 (161.4) | −0.69 ** |
11 Holtsville | 71 | 0.22 | 7 (12.0) | 23 (199.1) | −1.82 ** |
12 Riverhead | 76 | 0.19 | 8 (8.9) | 23 (102.9) | −0.41 ** |
13 Ramapo | 66 | 0.16 | 5 (9.0) | 16 (164.2) | 0.01 a |
14 Chester | 70 | 0.22 | 8 (8.1) | 27 (150.2) | −0.82 ** |
15 Rutgers University | 75 | 0.20 | 8 (6.7) | 26 (142.4) | −0.41 * |
16 Monmouth University | 60 | 0.17 | 6 (9.0) | 18 (154.2) | −0.73 ** |
Number | Area Burnt | |||
---|---|---|---|---|
GACG Coordinating Centers * | Lightning | Human | Lightning | Human |
Eastern Area | 0.91 *** | 0.47 | 0.60 | 0.58 |
Southern Area | 0.80 ** | 0.24 | 0.44 | 0.41 |
Northern Rockies | 0.00 | 0.08 | 0.36 | 0.31 |
Southwest | 0.46 | 0.06 | −0.11 | 0.18 |
Rocky Mountain | 0.41 | 0.25 | 0.44 | 0.19 |
Great Basin | 0.16 | 0.35 | 0.34 | 0.36 |
Northwest | −0.48 | −0.29 | −0.08 | −0.10 |
Northern California | −0.12 | −0.61 | 0.06 | −0.32 |
Southern California | 0.17 | 0.36 | 0.39 | 0.16 |
Alaska | 0.01 | −0.12 | −0.28 | −0.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, S.; Kavouras, I.G. Trends of Ground-Level Ozone in New York City Area during 2007–2017. Atmosphere 2022, 13, 114. https://doi.org/10.3390/atmos13010114
Singh S, Kavouras IG. Trends of Ground-Level Ozone in New York City Area during 2007–2017. Atmosphere. 2022; 13(1):114. https://doi.org/10.3390/atmos13010114
Chicago/Turabian StyleSingh, Subraham, and Ilias G. Kavouras. 2022. "Trends of Ground-Level Ozone in New York City Area during 2007–2017" Atmosphere 13, no. 1: 114. https://doi.org/10.3390/atmos13010114
APA StyleSingh, S., & Kavouras, I. G. (2022). Trends of Ground-Level Ozone in New York City Area during 2007–2017. Atmosphere, 13(1), 114. https://doi.org/10.3390/atmos13010114