VOC Characteristics and Their Source Apportionment in the Yangtze River Delta Region during the G20 Summit
Abstract
:1. Introduction
2. Methods
2.1. Sampling Sites
2.2. Observational Instrumentation
2.3. Data Sources
2.4. Modeling Methodology
2.4.1. Backward Trajectory Analysis
2.4.2. Positive Matrix Factorization (PMF)
2.4.3. Nonparametric Wind Regression (NWR)
3. Results and Discussion
3.1. Synoptic Condition and Variation in Pollutant Concentration
3.2. Changes in Chemical Compositions of VOCs
3.3. Control Effect Analysis during Different Control Phases
3.4. Source Apportionment of VOCs
3.5. Geographic Origin Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, R.; Wang, G.; Guo, S.; Zamora, M.L.; Ying, Q.; Lin, Y.; Wang, W.; Hu, M.; Wang, Y. Formation of urban fine particulate matter. Chem. Rev. 2015, 115, 3803–3855. [Google Scholar] [CrossRef]
- Anand, S.S.; Philip, B.K.; Mehendale, H.M. Volatile organic compounds. In Encyclopedia of Toxicology, 3rd ed.; Wexler, P., Ed.; Academic Press: Oxford, UK, 2014; pp. 967–970. [Google Scholar]
- Durkee, J.B. Appendix b1—Chemistry of atmospheric reactions of VOCs leading to smog. In Cleaning with Solvents; Durkee, J.B., Ed.; William Andrew Publishing: Norwich, NY, USA, 2014; pp. 547–556. [Google Scholar]
- Guo, S.; Hu, M.; Zamora, M.L.; Peng, J.; Zhang, R. Elucidating severe urban haze formation in China. Proc. Natl. Acad. Sci. USA 2014, 111, 17373–17378. [Google Scholar] [CrossRef] [Green Version]
- Likun, X.; Tao, W.; Louie, P.K.K.; Luk, C.W.Y.; Blake, D.R.; Zheng, X. Increasing external effects negate local efforts to control ozone air pollution: A case study of Hong Kong and implications for other Chinese cities. Environ. Sci. Technol. 2014, 48, 10769–10775. [Google Scholar]
- Johnson, D.; Utembe, S.R.; Jenkin, M.E. Simulating the detailed chemical composition of secondary organic aerosol formed on a regional scale during the torch 2003 campaign in the southern UK. Atmos. Chem. Phys. 2006, 6, 7829–7874. [Google Scholar] [CrossRef] [Green Version]
- Huang, R.-J.; Zhang, Y.; Bozzetti, C.; Ho, K.-F.; Cao, J.-J.; Han, Y.; Daellenbach, K.R.; Slowik, J.G.; Platt, S.M.; Canonaco, F.; et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2014, 514, 218–222. [Google Scholar] [CrossRef] [Green Version]
- Shrivastava, M.; Cappa, C.; Fan, J.H.; Goldstein, A.; Guenther, A.L.; Jimenez, J.; Kuang, C.; Laskin, A.; Martin, S.; Lee Ng, N.; et al. Recent advances in understanding secondary organic aerosol: Implications for global climate forcing. Rev. Geophys. 2017, 55, 277–585. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Tang, L.; Sun, Y.; Favez, O.; Canonaco, F.; Albinet, A.; Couvidat, F.; Liu, D.; Jayne, J.T.; Zhuang, W. Limited formation of isoprene epoxydiols-derived secondary organic aerosol under nox-rich environments in eastern China. Cell. Immunol. 2017, 44, 2035–2043. [Google Scholar] [CrossRef] [Green Version]
- Min, S.; Yuanhang, Z.; Limin, Z.; Xiaoyan, T.; Jing, Z.; Liuju, Z.; Boguang, W. Ground-level ozone in the pearl river delta and the roles of VOC and NOx in its production. J. Environ. Manag. 2009, 90, 512–518. [Google Scholar]
- Zhang, Q.; Yuan, B.; Shao, M.; Wang, X.; Lu, S.; Lu, K.; Wang, M.; Chen, L.; Chang, C.C.; Liu, S.C. Variations of ground-level O3 and its precursors in Beijing in summertime between 2005 and 2011. Atmos. Chem. Phys. 2014, 14, 6089–6101. [Google Scholar] [CrossRef] [Green Version]
- Ke, L.; Jacob, D.J.; Liao, H.; Shen, L.; Bates, K.H. Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China. Proc. Natl. Acad. Sci. USA 2019, 116, 422–427. [Google Scholar]
- Li, L.; Xie, S.; Zeng, L.; Wu, R.; Li, J. Characteristics of volatile organic compounds and their role in ground-level ozone formation in the Beijing-Tianjin-Hebei region, China. Atmos. Environ. 2015, 113, 247–254. [Google Scholar] [CrossRef]
- An, J.; Zhu, B.; Wang, H.; Li, Y.; Lin, X.; Yang, H. Characteristics and source apportionment of VOCs measured in an industrial area of Nanjing, Yangtze River Delta, China. Atmos. Environ. 2014, 97, 206–214. [Google Scholar] [CrossRef]
- Li, L.; An, J.Y.; Shi, Y.Y.; Zhou, M.; Yan, R.S.; Huang, C.; Wang, H.L.; Lou, S.R.; Wang, Q.; Lu, Q.; et al. Source apportionment of surface ozone in the Yangtze River Delta, China in the summer of 2013. Atmos. Environ. 2016, 144, 194–207. [Google Scholar] [CrossRef]
- Shao, P.; An, J.; Xin, J.; Wu, F.; Wang, J.; Ji, D.; Wang, Y. Source apportionment of VOCs and the contribution to photochemical ozone formation during summer in the typical industrial area in the Yangtze River Delta, China. Atmos. Res. 2016, 176–177, 64–74. [Google Scholar] [CrossRef]
- Tang, J.H.; Chan, L.Y.; Chan, C.Y.; Li, Y.S.; Chang, C.C.; Liu, S.C.; Wu, D.; Li, Y.D. Characteristics and diurnal variations of NMHCs at urban, suburban, and rural sites in the Pearl River Delta and a remote site in south China. Atmos. Environ. 2007, 41, 8620–8632. [Google Scholar] [CrossRef]
- Liu, Y.; Shao, M.; Fu, L.; Lu, S.; Zeng, L.; Tang, D. Source profiles of volatile organic compounds (VOCs) measured in China: Part I. Atmos. Environ. 2008, 42, 6247–6260. [Google Scholar] [CrossRef]
- Cheng, H.R.; Guo, H.; Saunders, S.M.; Lam, S.H.M.; Jiang, F.; Wang, X.M.; Simpson, I.J.; Blake, D.R.; Louie, P.K.K.; Wang, T.J. Assessing photochemical ozone formation in the Pearl River Delta with a photochemical trajectory model. Atmos. Environ. 2010, 44, 4199–4208. [Google Scholar] [CrossRef] [Green Version]
- Ling, Z.H.; Guo, H.; Cheng, H.R.; Yu, Y.F. Sources of ambient volatile organic compounds and their contributions to photochemical ozone formation at a site in the Pearl River Delta, southern China. Environ. Pollut. 2011, 159, 2310–2319. [Google Scholar] [CrossRef]
- Song, Y.; Shao, M.; Liu, Y.; Lu, S.; Kuster, W.; Goldan, P.; Xie, S. Source apportionment of ambient volatile organic compounds in Beijing. Environ. Sci. Technol. 2007, 41, 4348–4353. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Shao, M.; Lu, S.H.; Yuan, B.; Zhao, Y.; Wang, M.; Zhang, S.Q.; Wu, D. Variation of ambient non-methane hydrocarbons in Beijing city in summer 2008. Atmos. Chem. Phys. Discuss. 2010, 10, 5911–5923. [Google Scholar] [CrossRef] [Green Version]
- Yuan, B.; Shao, M.; Lu, S.; Wang, B. Source profiles of volatile organic compounds associated with solvent use in Beijing, China. Atmos. Environ. 2010, 44, 1919–1926. [Google Scholar] [CrossRef]
- Cai, C.; Geng, F.; Tie, X.; Yu, Q.; An, J. Characteristics and source apportionment of VOCs measured in Shanghai, China. Atmos. Environ. 2010, 44, 5005–5014. [Google Scholar] [CrossRef]
- Wang, H.; Qiao, Y.; Chen, C.; Lu, J.; Dai, H.; Qiao, L.; Lou, S.; Huang, C.; Li, L.; Jing, S.; et al. Source profiles and chemical reactivity of volatile organic compounds from solvent use in Shanghai, China. Aerosol Air Qual. Res. 2014, 14, 301–310. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.X.; Tang, L.L.; Hu, B.X.; Zhou, H.C.; Hua, Y.; Qin, W.; Chen, W.T.; Cui, Y.H.; Jiang, L. Sources apportionment of volatile organic compounds vocs in summertime Nanjing and their potential contribution to secondary organic aerosols (SOA). China Environ. Sci. 2016, 36, 2896–2902. [Google Scholar]
- Shao, M.; Lu, S.; Liu, Y.; Xie, X.; Chang, C.; Huang, S.; Chen, Z. Volatile organic compounds measured in summer in beijing and their role in ground-level ozone formation. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef]
- Wang, H.L.; Chen, C.H.; Huang, H.Y.; Wang, Q.; Chen, Y.R.; Huang, C.; Li, L.I.; Zhang, G.F.; Chen, M.H.; Lou, S.R. Emission strength and source apportionment of volatile organic compounds in shanghai during 2010 EXPO. Huanjing Kexue 2012, 33, 4151–4158. [Google Scholar]
- Geng, C.; Wang, J.; Yin, B.; Zhao, R.; Bai, Z. Vertical distribution of volatile organic compounds conducted by tethered balloon in the Beijing-Tianjin-Hebei region of China. J. Environ. Sci. 2020, 95, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Dai, W.; Ren, L.L.; Liu, D.; Yan, X.T.; Xiao, H.; He, J.; Xu, H.H. The effect of emission control on the submicron particulate matter size distribution in Hangzhou during the 2016 G20 summit. Aerosol Air Qual. Res. 2018, 18, 2038–2046. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.R.; Tian, X.D.; Cai, Z.; Wang, X.Y.; Li, Y.; Liu, Y.; Jiang, F. Evaluation of ozone change and control effects in Yangtze River Delta region during G20 summit. Environ. Monit. China 2020, 36, 41–49. [Google Scholar]
- Gros, V.; Gaimoz, C.; Herrmann, F.; Custer, T.; Williams, J.; Bonsang, B.; Sauvage, S.; Locoge, N.; D’Argouges, O.; Sarda-esteve, R.; et al. Volatile organic compounds source apportionment in Paris in spring 2007. EGU General Assembly. 2009, 11, 12418. [Google Scholar]
- Lyu, X.P.; Chen, N.; Guo, H.; Zhang, W.H.; Wang, N.; Wang, Y.; Liu, M. Ambient volatile organic compounds and their effect on ozone production in Wuhan, central China. Sci. Total Environ. 2016, 541, 200–209. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Draxler, R.R. TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data. Environ. Model. Softw. 2009, 24, 938–939. [Google Scholar] [CrossRef]
- Squizzato, S.; Masiol, M. Application of meteorology based methods to determine local and external contributions to particulate matter pollution: A case study in Venice (Italy). Atmos. Environ. 2015, 119, 69–81. [Google Scholar] [CrossRef]
- Zheng, H.; Kong, S.F.; Xing, X.L.; Mao, Y.; Hu, T.P.; Ding, Y.; Li, G.; Liu, D.T.; Li, S.L.; Qi, S.H. Monitoring of volatile organic compounds (VOCs) from an oil and gas station in northwest China for 1 year. Atmos. Chem. Phys. 2018, 18, 4567–4595. [Google Scholar] [CrossRef] [Green Version]
- Paatero, P.; Tapper, U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 2010, 5, 111–126. [Google Scholar] [CrossRef]
- Norris, G.; Duvall, R.; Brown, S.; Bai, S. EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide. Available online: https://www.epa.gov/sites/production/files/2015-02/documents/pmf_5.0_user_guide.pdf (accessed on 12 July 2021).
- Brown, S.G.; Frankel, A.; Hafner, H.R. Source apportionment of VOCs in the Los Angeles area using positive matrix factorization. Atmos. Environ. 2007, 41, 227–237. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, R.; Fu, H.; Zhou, D.; Chen, J. Observation and analysis of atmospheric volatile organic compounds in a typical petrochemical area in Yangtze River Delta, China. J. Environ. Sci. 2018, 71, 233–248. [Google Scholar] [CrossRef]
- Henry, R.; Norris, G.A.; Vedantham, R.; Turner, J.R. Source region identification using kernel smoothing. Environ. Sci. Technol. 2009, 43, 4090–4097. [Google Scholar] [CrossRef]
- Petit, J.E.; Favez, O.; Albinet, A.; Canonaco, F. A user-friendly tool for comprehensive evaluation of the geographical origins of atmospheric pollution: Wind and trajectory analyses. Environ. Model. Softw. 2017, 88, 183–187. [Google Scholar] [CrossRef] [Green Version]
- Shi, W.K.; Qian, Y.H.; Bian, Z.M.; Pan, X.; Li, X.Z.; Xie, W.P. Ozone and VOCs characteristics and control effect in Yixing during the G20 Summit. Sichuan Environ. 2019, 38, 92–97. [Google Scholar]
- Gan, Y.; Wei, W.; Zhao-Feng, L.V.; Cheng, S.Y.; Yue, L.I. Characteristics of VOCs in Beijing urban area during APEC period and its verification for VOCs emission inventory. China Environ. Sci. 2016, 36, 1297–1304. [Google Scholar]
- Goldan, P.D.; Parrish, D.D.; Kuster, W.C.; Mckeen, S.A.; Fehsenfeld, F.C. Airborne measurements of isoprene, CO, and anthropogenic hydrocarbons and their implications. J. Geophys. Res. Atmos. 2000, 105, 9091–9106. [Google Scholar] [CrossRef]
- Gao, S.; Cui, H.X.; Fu, Q.Y.; Tian, X.Y.; Fang, F.; Yi, X.W.; Gao, S.; Cui, H.X.; Fu, Q.Y.; Tian, X.Y. Characteristics and source apportionment of VOCs of high pollution process at chemical industrial area in winter of China. Environ. Sci. 2016, 37, 4094–4102. [Google Scholar]
- Wu, F.; Yu, Y.; Sun, J.; Zhang, J.; Wang, J.; Tang, G.; Wang, Y. Characteristics, source apportionment and reactivity of ambient volatile organic compounds at Dinghu Mountain in Guangdong Province, China. Sci. Total Environ. 2016, 548–549, 347–359. [Google Scholar] [CrossRef]
- Sun, J.; Wu, F.; Hu, B.; Tang, G.; Wang, Y. VOC characteristics, emissions and contributions to SOA formation during hazy episodes. Atmos. Environ. 2016, 141, 560–570. [Google Scholar] [CrossRef]
Period | Date | Control Measurement |
---|---|---|
Phase 1 | 24/8–27/8 | Site stoppage control; coal-fired power plant capacity reduction of 50%. |
Phase 2 | 28/8–31/8 | Motor vehicle restriction; Formulate the pollution prevention measures focusing on particulate matter and VOCs; Make efforts to implement pollutant emission reduction plans and organize personnel; Conduct on-site supervision, control and supervise the implementation of local rectification measures. |
Phase 3 | 1/9–6/9 | Strengthen joint control of regional air pollution; Emergency measures, combination of governance, on-site supervision and law enforcement supervision are the strongest. |
ZH | DSL | YX | ||||
---|---|---|---|---|---|---|
MDL | ppb | MDL | ppb | MDL | ppb | |
Ethane | 0.056 | 1.57 ± 0.79 | 0.18 | 1.97 ± 0.8 | 0.054 | 1.96 ± 0.7 |
Propane | 0.03 | 0.64 ± 0.54 | 0.283 | 2.72 ± 2.53 | 0.05 | 3.82 ± 1.87 |
i-Butane | 0.02 | 0.36 ± 0.26 | 0.102 | 2.4 ± 2.22 | 0.046 | 0.93 ± 0.47 |
n-Butane | 0.062 | 0.4 ± 0.3 | 0.162 | 1.81 ± 1.68 | 0.039 | 1.02 ± 0.56 |
Cyclopentane | 0.018 | - | 0.08 | 0.16 ± 0.14 | 0.033 | 0.12 ± 0.13 |
i-pentane | 0.2 | 0.46 ± 0.37 | 0.159 | 0.89 ± 0.87 | 0.047 | 0.8 ± 0.54 |
n-Pentane | 0.064 | 0.54 ± 0.22 | 0.123 | 0.54 ± 0.53 | 0.067 | 0.45 ± 0.26 |
2,2-Dimethylbutane | 0.035 | 0.14 ± 0.1 | 0.115 | 0.06 ± 0.06 | 0.015 | 0.03 ± 0.02 |
2,3-Dimethylbutane | 0.091 | 0.28 ± 0.14 | 0.095 | 0.58 ± 0.84 | 0.011 | 0.11 ± 0.12 |
2-Methylpentane | 0.054 | 0.29 ± 0.18 | 0.099 | 0.52 ± 0.84 | 0.011 | 0.22 ± 0.12 |
3-Methylpentane | 0.043 | 0.2 ± 0.19 | 0.065 | 0.31 ± 0.34 | 0.006 | 0.14 ± 0.08 |
n-Hexane | 0.045 | 0.3 ± 0.29 | 0.27 | 0.43 ± 0.45 | 0.005 | 0.2 ± 0.13 |
2,4-Dimethylpentane | 0.043 | 0.04 ± 0.02 | 0.134 | 0.03 ± 0.04 | 0.012 | 0.02 ± 0.01 |
Methylcyclopentane | 0.029 | 0.02 ± 0.03 | 0.295 | 0.15 ± 0.17 | 0.011 | 0.09 ± 0.05 |
2-Methylhexane | 0.028 | - | 0.212 | 0.15 ± 0.21 | 0.005 | 0.06 ± 0.05 |
Cyclohexane | 0.052 | 0.13 ± 0.2 | 0.081 | 0.17 ± 0.23 | 0.021 | 0.12 ± 0.22 |
2,3-Dimethylpentane | 0.056 | 0.05 ± 0.04 | 0.053 | 0.07 ± 0.1 | 0.007 | 0.05 ± 0.03 |
3-Methylhexane | 0.035 | 0.07 ± 0.07 | 0.159 | 0.15 ± 0.2 | 0.005 | 0.07 ± 0.05 |
2,2,4-Trimethylpentane | 0.023 | 0.04 ± 0.02 | 0.326 | 0.04 ± 0.15 | 0.009 | 0.04 ± 0.03 |
n-Heptane | 0.05 | 0.19 ± 0.68 | 0.189 | 0.19 ± 0.25 | 0.006 | 0.08 ± 0.06 |
Methylcyclohexane | 0.024 | 0.03 ± 0.03 | 0.156 | 0.31 ± 0.51 | 0.006 | 0.09 ± 0.1 |
2,3,4-Trimethylpentane | 0.027 | 0.06 ± 0.09 | 0.245 | 0.02 ± 0.06 | 0.005 | 0.03 ± 0.02 |
2-Methylheptane | 0.029 | 0.02 ± 0.01 | 0.144 | 0.03 ± 0.04 | 0.013 | 0.03 ± 0.02 |
3-Methylheptane | 0.027 | 0.04 ± 0.03 | 0.221 | 0.04 ± 0.05 | 0.008 | 0.03 ± 0.02 |
n-Octane | 0.036 | 0.13 ± 0.12 | 0.24 | 0.07 ± 0.07 | 0.005 | 0.05 ± 0.03 |
n-Nonane | 0.069 | 0.02 ± 0.02 | 0.323 | 0.07 ± 0.1 | 0.006 | 0.05 ± 0.04 |
n-Decane | 0.07 | 0.06 ± 0.04 | 0.533 | 0.14 ± 0.2 | 0.006 | 0.11 ± 0.08 |
n-Undecane | 0.137 | 0.01 ± 0.01 | 1.023 | 0.29 ± 0.51 | 0.006 | 0.25 ± 0.26 |
n-Dodecane | 0.17 | 0.01 ± 0 | 1.865 | 0.48 ± 0.43 | 0.005 | 1.41 ± 1.45 |
Ethylene | 0.078 | 1.65 ± 0.69 | 0.246 | 1.31 ± 1 | 0.046 | 1.37 ± 0.94 |
Propylene | 0.026 | 0.23 ± 0.15 | 0.127 | 0.36 ± 0.53 | 0.035 | 0.32 ± 0.27 |
Trans-2-butene | 0.031 | 0.05 ± 0.03 | 0.077 | 0.13 ± 0.07 | 0.031 | 0.11 ± 0.05 |
1-Butene | 0.024 | - | 0.059 | 0.14 ± 0.15 | 0.034 | 0.09 ± 0.04 |
Cis-2-butene | 0.016 | 0.02 ± 0 | 0.038 | 0.11 ± 0.12 | 0.054 | 0.11 ± 0.13 |
1-Pentene | 0.08 | 0.06 ± 0.03 | 0.096 | 0.07 ± 0.08 | 0.050 | 0.04 ± 0.03 |
Trans-2-Pentene | 0.039 | 0.06 ± 0.03 | 0.096 | 0.22 ± 0.31 | 0.008 | 0.11 ± 0.14 |
Isoprene | 0.033 | 0.23 ± 0.21 | 0.214 | 0.4 ± 0.71 | 0.010 | 0.14 ± 0.17 |
Cis-2-Pentene | 0.024 | 0.07 ± 0.04 | 0.068 | 0.04 ± 0.03 | 0.012 | 0.04 ± 0.02 |
1-Hexene | 0.084 | 0.21 ± 0.24 | 0.063 | 0.11 ± 0.18 | 0.010 | 0.11 ± 0.11 |
Acetylene | 0.055 | 0.83 ± 0.51 | 0.191 | 1.02 ± 0.55 | 0.007 | 1.31 ± 0.62 |
Benzene | 0.045 | 0.39 ± 0.21 | 0.306 | 0.61 ± 0.51 | 0.010 | 0.59 ± 0.27 |
Toluene | 0.083 | 0.66 ± 0.51 | 0.283 | 3.72 ± 3.79 | 0.008 | 2 ± 1.36 |
Ethylbenzene | 0.086 | 0.15 ± 0.17 | 0.296 | 1.27 ± 1.53 | 0.006 | 0.8 ± 0.47 |
m/p-Xylene | 0.088 | 0.21 ± 0.24 | 0.736 | 0.83 ± 1.07 | 0.020 | 0.57 ± 0.35 |
o-Xylene | 0.091 | 0.06 ± 0.07 | 0.306 | 0.66 ± 0.85 | 0.010 | 0.43 ± 0.26 |
Styrene | 0.092 | 0.08 ± 0.07 | 0.523 | 0.37 ± 0.48 | 0.011 | 0.59 ± 1.29 |
Iso-Propylbenzene | 0.056 | 0.01 ± 0.01 | 0.362 | 0.07 ± 0.09 | 0.005 | 0.11 ± 0.36 |
n-Propylbenzene | 0.089 | 0.01 ± 0 | 0.582 | 0.06 ± 0.1 | 0.011 | 0.08 ± 0.05 |
m-Ethyltoluene | 0.079 | 0.07 ± 0.03 | 0.574 | 0.1 ± 0.16 | 0.015 | 0.1 ± 0.07 |
p-Ethyltoluene | 0.091 | 0.03 ± 0.01 | 0.753 | 0.07 ± 0.12 | 0.007 | 0.07 ± 0.06 |
1,3,5-Trimethylbenzene | 0.1 | 0.01 ± 0.01 | 0.673 | 0.07 ± 0.12 | 0.015 | 0.07 ± 0.06 |
o-Ethyltoluene | 0.086 | 0.02 ± 0.01 | 0.554 | 0.06 ± 0.11 | 0.015 | 0.07 ± 0.05 |
1,2,4-Trimethylbenzene | 0.175 | 0.04 ± 0.02 | 0.762 | 0.14 ± 0.26 | 0.015 | 0.14 ± 0.12 |
1,2,3-Trimethylbenzene | 0.077 | 0.01 ± 0 | 0.746 | 0.11 ± 0.31 | 0.015 | 0.08 ± 0.07 |
m-Diethylbenzene | 0.081 | 0.02 ± 0.01 | 0.764 | 0.11 ± 0.34 | 0.050 | 0.06 ± 0.08 |
p-Diethylbenzene | 0.095 | - | 0.951 | 0.12 ± 0.27 | 0.100 | 0.11 ± 0.11 |
Pollutants Concentrations | ZH | DSL | YX | |||
---|---|---|---|---|---|---|
Control | Deregualation | Control | Deregualation | Control | Deregualation | |
SO2 (ppb) | 3.01 ± 0.9 | 4.17 ± 1.53 | 4.33 ± 1.98 | 3.16 ± 1.35 | 4.34 ± 4.36 | 3.42 ± 2.77 |
NO2 (µg·m−3) | 21.62 ± 9.77 | 50.39 ± 20.12 | 32.48 ± 22.56 | 40.52 ± 21.54 | 20.27 ± 9.63 | 23.74 ± 15.02 |
CO (ppm) | 0.55 ± 0.15 | 0.63 ± 0.13 | 0.56 ± 0.18 | 0.57 ± 0.15 | 0.61 ± 0.19 | 0.75 ± 0.17 |
O3 (µg·m−3) | 117.68 ± 45.48 | 81.02 ± 60.1 | 126.86 ± 64.07 | 94.15 ± 56.84 | 149.8 ± 71.02 | 114.58 ± 73.72 |
PM2.5 (µg·m−3) | 36.13 ± 15.33 | 53.06 ± 19.69 | 45.70 ± 25.31 | 53.75 ± 22.34 | 28.52 ± 15.89 | 28.43 ± 13.13 |
PM10 (µg·m−3) | 49.82 ± 18.71 | 65.06 ± 25.58 | 58.65 ± 21.58 | 54.19 ± 20.12 | 54.25 ± 21.2 | 49.72 ± 25.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Wang, L.; Qin, Y.; Zhang, Y.; Zheng, S.; Yang, Y.; Jin, S.; Yang, X. VOC Characteristics and Their Source Apportionment in the Yangtze River Delta Region during the G20 Summit. Atmosphere 2021, 12, 928. https://doi.org/10.3390/atmos12070928
Chen C, Wang L, Qin Y, Zhang Y, Zheng S, Yang Y, Jin S, Yang X. VOC Characteristics and Their Source Apportionment in the Yangtze River Delta Region during the G20 Summit. Atmosphere. 2021; 12(7):928. https://doi.org/10.3390/atmos12070928
Chicago/Turabian StyleChen, Cheng, Lingrui Wang, Yanhong Qin, Yunjiang Zhang, Shanshan Zheng, Yifan Yang, Shiguang Jin, and Xiaoxiao Yang. 2021. "VOC Characteristics and Their Source Apportionment in the Yangtze River Delta Region during the G20 Summit" Atmosphere 12, no. 7: 928. https://doi.org/10.3390/atmos12070928
APA StyleChen, C., Wang, L., Qin, Y., Zhang, Y., Zheng, S., Yang, Y., Jin, S., & Yang, X. (2021). VOC Characteristics and Their Source Apportionment in the Yangtze River Delta Region during the G20 Summit. Atmosphere, 12(7), 928. https://doi.org/10.3390/atmos12070928