Estimating Particulate Matter Emission from Dust Sources Using ZY-3 Data and GIS Technology—A Case Study in Zhengzhou City, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Processing and Spatial Mapping
2.3. Methodology
2.3.1. The RS–GIS Approach
2.3.2. Soil Dust
2.3.3. Construction Dust
2.3.4. Paved Road Dust
3. Results
3.1. Emission Inventory and Spatial Distribution of PM from Soil Dust Source
3.2. Emission Inventory and Spatial Distribution of PM from Construction Dust Source
3.3. Emission Inventory and Spatial Distribution of PM from Road Dust Source
3.4. Total PM Emission from Dust Sources
4. Discussion
4.1. Comparisons
4.2. Source of Uncertainty
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chan, C.K.; Yao, X. Air pollution in mega cities in China. Atmos. Environ. 2008, 42, 1–42. [Google Scholar] [CrossRef]
- Feng, Y.L.; Chen, Y.J.; Guo, H.; Zhi, G.R.; Xiong, S.C.; Li, J.; Sheng, G.Y.; Fu, J.M. Characteristics of organic and elemental carbon in PM2.5 samples in Shanghai, China. Atmos. Res. 2009, 92, 434–442. [Google Scholar] [CrossRef]
- Tunno, B.J.; Shields, K.N.; Lioy, P.; Chu, N.; Kadane, J.B.; Parmanto, B.; Pramana, G.; Zora, J.; Davidson, C.; Holguin, F.; et al. Understanding intra-neighborhood patterns in PM2.5 and PM10 using mobile monitoring in Braddock, PA. Environ. Health 2012, 11. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Zhou, L.; Fu, Q.Y.; Yan, L.; Morawska, L.; Jayaratne, R.; Xiu, G.L. Sources and vertical distribution of PM2.5 over Shanghai during the winter of 2017. Sci. Total Environ. 2020, 706, 135683. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.Y.; Wei, Y.M.; Tian, W.L.; Yang, K.M. GIS-based emission inventories of urban scale: A case study of Hangzhou, China. Atmos. Environ. 2008, 42, 5150–5165. [Google Scholar] [CrossRef]
- Cohen, A.J.; Anderson, H.R.; Ostro, B.; Pandey, K.D.; Krzyzanowski, M.; Kunzli, N.; Gutschmidt, K.; Pope, A.; Romieu, I.; Samet, J.M.; et al. The global burden of disease due to outdoor air pollution. J. Toxicol. Environ. Health A 2005, 68, 1301–1307. [Google Scholar] [CrossRef]
- Dappe, V.; Uzu, G.; Schreck, E.; Wu, L.; Li, X.; Dumat, C.; Moreau, M.; Hanoune, B.; Ro, C.U.; Sobanska, S. Single-particle analysis of industrial emissions brings new insights for health risk assessment of PM. Atmos. Pollut. Res. 2018, 9, 697–704. [Google Scholar] [CrossRef]
- Khanna, I.; Khare, M.; Gargava, P.; Khan, A.A. Effect of PM2.5 chemical constituents on atmospheric visibility impairment. J. Air Waste Manag. 2018, 68, 430–437. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.Y.; Ren, X.D.; Xiong, K.N.; Li, L.Q.; Bi, X.C.; Wu, Q.L. Analysis of the driving factors of PM2.5 concentration in the air: A case study of the Yangtze River Delta, China. Ecol. Indic. 2020, 110, 105889. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Niu, T.; Zhang, X.; Gong, S.; Zhang, Y.; Sun, J. Atmospheric aerosol compositions in China: Spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols. Atmos. Chem. Phys. 2012, 12, 779–799. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.; Chow, J.; Watson, J.; Wu, F.; Han, Y.; Jin, Z.; Shen, Z.; An, Z. Size-differentiated source profiles for fugitive dust in the Chinese Loess Plateau. Atmos. Environ. 2008, 42, 2261–2275. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, J.; Wang, S.; He, K.; Zheng, M. Review of receptor-based source apportionment research of fine particulate matter and its challenges in China. Sci. Total Environ. 2017, 586, 917–929. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.-J.; Shen, Z.-X.; Chow, J.C.; Watson, J.G.; Lee, S.-C.; Tie, X.-X.; Ho, K.-F.; Wang, G.-H.; Han, Y.-M. Winter and summer PM2.5 chemical compositions in fourteen Chinese cities. J. Air Waste Manag. 2012, 62, 1214–1226. [Google Scholar] [CrossRef]
- Shu, L.; Luo, B.; Hu, J.; Xia, J.; Zhang, L.; Luo, B.; Zhong, L.; Zhang, Z. Emission Inventory and Characteristics of Atmosphere PM_(2.5) and PM_(10) in Nanchong. Environ. Monit. China 2018, 34, 84–92. [Google Scholar]
- Wu, H.; Zhang, C.; Wang, J.; Xuan, Z.; Chu, C.; Feng, Y.; Xu, H. Comparative Study on Pollution Characteristics and Source Apportionment of PM_(10) and PM_(2.5) in Qingdao. Res. Environ. Sci. 2013, 26, 583–589. [Google Scholar]
- Kong, S.F.; Han, B.; Bai, Z.P.; Chen, L.; Shi, J.W.; Xu, Z. Receptor modeling of PM2.5, PM10 and TSP in different seasons and long-range transport analysis at a coastal site of Tianjin, China. Sci. Total Environ. 2010, 408, 4681–4694. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, L.; Che, W.; Zheng, Z.; Yin, S. A highly resolved temporal and spatial air pollutant emission inventory for the Pearl River Delta region, China and its uncertainty assessment. Atmos. Environ. 2009, 43, 5112–5122. [Google Scholar] [CrossRef]
- Xu, H.; Xiao, Z.; Chen, K.; Tang, M.; Zheng, N.; Li, P.; Yang, N.; Yang, W.; Deng, X. Spatial and temporal distribution, chemical characteristics, and sources of ambient particulate matter in the Beijing-Tianjin-Hebei region. Sci. Total Environ. 2019, 658, 280–293. [Google Scholar] [CrossRef]
- Xue, Y.; Zhang, S.; Zhou, Z.; Wang, K.; Liu, K.; Wang, X.; Shi, A.; Xu, K.; Tian, H. Spatio-temporal variations of multiple primary air pollutants emissions in Beijing of China, 2006–2015. Atmosphere 2019, 10, 494. [Google Scholar] [CrossRef] [Green Version]
- Maricq, M.M.; Szente, J.J.; Harwell, A.L.; Loos, M.J. Impact of aggressive drive cycles on motor vehicle exhaust PM emissions. J. Aerosol Sci. 2017, 113, 1–11. [Google Scholar] [CrossRef]
- Mousavi, A.; Sowlat, M.H.; Hasheminassab, S.; Pikelnaya, O.; Polidori, A.; Ban-Weiss, G.; Sioutas, C. Impact of particulate matter (PM) emissions from ships, locomotives, and freeways in the communities near the ports of Los Angeles (POLA) and Long Beach (POLB) on the air quality in the Los Angeles county. Atmos. Environ. 2018, 195, 159–169. [Google Scholar] [CrossRef]
- Wang, X.Y.; Lei, Y.; Yan, L.; Liu, T.; Zhang, Q.; He, K.B. A unit-based emission inventory of SO2, NOx and PM for the Chinese iron and steel industry from 2010 to 2015. Sci. Total Environ. 2019, 676, 18–30. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-S.; Lim, Y.-K.; Cho, J.H.; Lee, H.C.; Ryoo, S.-B. Improved dust emission reduction factor in the ADAM2 model using real-time MODIS NDVI. Atmosphere 2019, 10, 702. [Google Scholar] [CrossRef]
- Bullard, J.; Baddock, M.; McTainsh, G.; Leys, J. Sub-basin scale dust source geomorphology detected using MODIS. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Moawad, M.B.; Youssief, A.A.; Madkour, K. Modeling and Monitoring of Air Quality in Greater Cairo Region, Egypt Using Landsat-8 Images, HYSPLIT and GIS Based Analysis. In Climate Change Research at Universities; Springer: Berlin/Heidelberg, Germany, 2017; pp. 37–54. [Google Scholar]
- Guo, M.-M.; Jiang, N.; Wang, S.-B.; Duan, S.-G.; Zhang, R.-Q. Analysis of Air Pollution Characteristics and Meteorological Conditions in Zhengzhou from 2014 to 2017. Huan Jing Ke Xue Huanjing Kexue 2019, 40, 3856–3867. [Google Scholar] [CrossRef]
- Ni, W.J.; Sun, G.Q.; Ranson, K.J.; Pang, Y.; Zhang, Z.Y.; Yao, W. Extraction of ground surface elevation from ZY-3 winter stereo imagery over deciduous forested areas. Remote Sens. Environ. 2015, 159, 194–202. [Google Scholar] [CrossRef]
- Yang, B.; Wang, M.; Xu, W.; Li, D.R.; Gong, J.Y.; Pi, Y.D. Large-scale block adjustment without use of ground control points based on the compensation of geometric calibration for ZY-3 images. ISPRS J. Photogramm. 2017, 134, 1–14. [Google Scholar] [CrossRef]
- Lambert, F.; Delmonte, B.; Petit, J.-R.; Bigler, M.; Kaufmann, P.R.; Hutterli, M.A.; Stocker, T.F.; Ruth, U.; Steffensen, J.P.; Maggi, V. Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core. Nature 2008, 452, 616–619. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Bi, X.; Dai, Q.; Liu, B.; Han, Y.; You, H.; Wang, L.; Zhang, J.; Cheng, Y.; Zhang, Y. Improving spatial resolution of soil fugitive dust emission inventory using RS-GIS technology: An application case in Tianjin, China. Atmos. Environ. 2018, 191, 46–54. [Google Scholar] [CrossRef]
- Xue, Y.-F.; Zhou, Z.; Huang, Y.-H.; Wang, K.; Nie, T.; Nie, L.; Qin, J.-P. Fugitive Dust Emission Characteristics from Building Construction Sites of Beijing. Huan Jing Ke Xue Huanjing Kexue 2017, 38, 2231–2237. [Google Scholar] [CrossRef]
- Huang, Y.; Hu, C.; Cheng, H.; Wang, Z. Emission Inventory and Spatial Distribution Characteristics of Particulate Matters from Dust Source in Wuhan, China. J. Wuhan Univ. 2018, 64, 354–362. [Google Scholar] [CrossRef]
- Xu, Y.; Jiang, N.; Yan, Q.; Zhang, R.; Chen, L.; Li, S. Research on emission inventory of bareness wind erosion dust Zhengzhou. Environ. Pollut. 2016, 38, 22–27. [Google Scholar]
- Cui, M.; Lu, H.; Etyemezian, V.; Su, Q. Quantifying the emission potentials of fugitive dust sources in Nanjing, East China. Atmos. Environ. 2019, 207, 129–135. [Google Scholar] [CrossRef]
- Huang, C.; Tao, S.K.; Lou, S.R.; Hu, Q.Y.; Wang, H.L.; Wang, Q.; Li, L.; Wang, H.Y.; Liu, J.G.; Quan, Y.F.; et al. Evaluation of emission factors for light-duty gasoline vehicles based on chassis dynamometer and tunnel studies in Shanghai, China. Atmos. Environ. 2017, 169, 193–203. [Google Scholar] [CrossRef]
- Li, L.; Wang, K.; Sun, Z.; Wang, W.; Zhao, Q.; Qi, H. Bottom-up Emission Inventory and Its Spatio-Temporal Distribution from Paved Road Dust Based on Field Investigation: A Case Study of Harbin, Northeast China. Atmosphere 2021, 12, 449. [Google Scholar] [CrossRef]
- Sun, W.; Liu, Z.; Zhang, Y.; Xu, W.; Lv, X.; Liu, Y.; Lyu, H.; Li, X.; Xiao, J.; Ma, F. Study on land-use changes and their impacts on air pollution in Chengdu. Atmosphere 2020, 11, 42. [Google Scholar] [CrossRef] [Green Version]
Road Type | National Road | Provincial Road | County Road | Township Road |
---|---|---|---|---|
Traffic flow (vehicles/day) | 7579 | 6432 | 1500 | 850 |
Dust load (g/m2) | 0.27 | 0.33 | 0.52 | 1.57 |
Average weight (t) | 8.80 | 6.90 | 4.70 | 2.80 |
TSP emission coefficient (g/VKT) | 9.02 | 8.45 | 8.64 | 13.92 |
PM10 emission coefficient (g/VKT) | 1.73 | 1.62 | 1.66 | 2.67 |
PM2.5 emission coefficient (g/VKT) | 0.42 | 0.39 | 0.40 | 0.65 |
Type | Length (km) | TSP (t/a) | PM10 (t/a) | PM2.5 (t/a) |
---|---|---|---|---|
State road | 396.30 | 7958.07 | 1527.56 | 369.57 |
Provincial road | 901.40 | 14,387.84 | 2761.75 | 668.17 |
County road | 2439.88 | 9285.82 | 1782.42 | 431.23 |
Township road | 6863.92 | 23,857.19 | 4579.40 | 1107.92 |
Total | 10,601.50 | 55,488.93 | 10,651.13 | 2576.89 |
Districts | Bare Ground (km2) | Construction Sites (km2) | Roads (km) |
---|---|---|---|
Urban Area | 0.19 | 103.13 | 6996.99 |
New High-Tech Zone | 0.14 | 11.62 | 50.89 |
Economic Development Zone | 0.48 | 7.84 | 75.27 |
Airport Economy Zone | 3.62 | 2.91 | 87.99 |
Zhengdong New Zone | 2.14 | 14.67 | 134.64 |
Gongyi City | 1.31 | 0.29 | 531.14 |
Dengfeng City | 2.76 | 0.15 | 426.18 |
Xinzheng City | 15.52 | 1.74 | 657.29 |
Xinmi City | 3.39 | 0.44 | 326.53 |
Xingyang City | 3.21 | 1.31 | 593.68 |
Zhongmou County | 36.21 | 1.16 | 720.90 |
Dust Sources | Soil Dust | Construction Dust | Road Dust | Total | |
---|---|---|---|---|---|
TSP | Total annual emission (t·a−1) | 507.40 | 181,547.25 | 55,488.93 | 237,543.58 |
percentage % | 0.21 | 76.43 | 23.36 | 100 | |
PM10 | Total annual emission (t·a−1) | 45.53 | 93,047.65 | 10,651.13 | 103,744.31 |
percentage % | 0.044 | 89.69 | 10.27 | 100 | |
PM2.5 | Total annual emission (t·a−1) | 1.30 | 19,842.70 | 2576.89 | 22,420.89 |
percentage % | 0.006 | 88.50 | 11.49 | 100 |
City/ Region | Soil Dust (kt a−1) | Construction Dust (kt a−1) | Road Dust (kt a−1) | ||||||
---|---|---|---|---|---|---|---|---|---|
TSP | PM10 | PM2.5 | TSP | PM10 | PM2.5 | TSP | PM10 | PM2.5 | |
Beijing | - | - | - | 144.0 | 70.6 | 14.7 | 641.0 | 465.0 | 74.7 |
Tianjin | - | - | - | 77.4 | 43.0 | 29.2 | - | - | - |
Zhengzhou | 11.9 | 3.6 | 0.6 | - | - | - | - | - | - |
Nanjing | - | - | - | 144.0 | 70.6 | 14.7 | - | - | - |
Wuhan | 3.8 × 10−1 | 3.45 × 10−2 | 0.9 × 10−3 | 95.8 | 46.9 | 9.6 | 157.0 | 14.0 | 11.6 |
Pearl River Delta | - | - | - | - | - | - | 2760.0 | 529.0 | 128.0 |
This study | 5.1 × 10−1 | 4.6 × 10−2 | 1.3 × 10−3 | 181.5 | 93.0 | 19.8 | 55.5 | 10.7 | 2.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Song, X.; Du, L.; Zhang, Q.; Cui, J.; Yin, S. Estimating Particulate Matter Emission from Dust Sources Using ZY-3 Data and GIS Technology—A Case Study in Zhengzhou City, China. Atmosphere 2021, 12, 660. https://doi.org/10.3390/atmos12060660
Yang H, Song X, Du L, Zhang Q, Cui J, Yin S. Estimating Particulate Matter Emission from Dust Sources Using ZY-3 Data and GIS Technology—A Case Study in Zhengzhou City, China. Atmosphere. 2021; 12(6):660. https://doi.org/10.3390/atmos12060660
Chicago/Turabian StyleYang, Huan, Xuan Song, Liping Du, Qi Zhang, Jian Cui, and Shasha Yin. 2021. "Estimating Particulate Matter Emission from Dust Sources Using ZY-3 Data and GIS Technology—A Case Study in Zhengzhou City, China" Atmosphere 12, no. 6: 660. https://doi.org/10.3390/atmos12060660
APA StyleYang, H., Song, X., Du, L., Zhang, Q., Cui, J., & Yin, S. (2021). Estimating Particulate Matter Emission from Dust Sources Using ZY-3 Data and GIS Technology—A Case Study in Zhengzhou City, China. Atmosphere, 12(6), 660. https://doi.org/10.3390/atmos12060660