Near-Surface Atmospheric Turbulence in the Presence of a Squall Line above a Forested and Deforested Region in the Central Amazon
Abstract
:1. Introduction
2. Materials And Methods
2.1. Experimental Site
2.2. Satellite Imagery, Ozone, and Meteorological Variables
2.3. Turbulent Parameters
3. Results
3.1. Case Study of a Squall Line
3.2. Surface Values of Ozone, Wind Speed, and Temperature during the Squall Line
3.3. Turbulent Parameters
3.3.1. Skewness and Variance of the Vertical Wind Velocity
3.3.2. Sensible Heat Fluxes
3.3.3. Multiresolution Analysis and Atmospheric Turbulent Regimes
3.3.4. Turbulence Kinetic Energy (TKE)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Houze, R.A., Jr. Observed structure of mesoscale convective systems and implications for large-scale heating. Q. J. R. Meteorol. Soc. 1989, 115, 425–461. [Google Scholar] [CrossRef]
- Nesbitt, S.W.; Cifelli, R.; Rutledge, S.A. Storm Morphology and Rainfall Characteristics of TRMM Precipitation Features. Mon. Weather Rev. 2006, 134, 2702–2721. [Google Scholar] [CrossRef] [Green Version]
- Peters, O.; Neelin, J.D.; Nesbitt, S.W. Mesoscale convective systems and critical clusters. J. Atmos. Sci. 2009, 66, 2913–2924. [Google Scholar] [CrossRef] [Green Version]
- Houze, R.A., Jr.; Rasmussen, K.L.; Zuluaga, M.D.; Brodzik, S.R. The variable nature of convection in the tropics and subtropics: A legacy of 16 years of the Tropical Rainfall Measuring Mission satellite. Rev. Geophys. 2015, 53, 994–1021. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Weisman, M.L.; Klemp, J.B. Three-dimensional evolution of simulated long-lived squall lines. J. Atmos. Sci. 1994, 51, 2563–2584. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J.C.P.; Dias, M.A.F.S.; Nobre, C.A. Environmental Conditions Associated with Amazonian Squall Lines: A Case Study. Mon. Weather Rev. 1995, 123, 3163–3174. [Google Scholar] [CrossRef]
- Adams, D.; Fernandes, R.; Holub, K.; Gutman, S.; Barbosa, H.; Machado, L.; Calheiros, A.; Bennett, R.; Kursinski, E.R.; Sapucci, L.; et al. The Amazon dense gnss meteorological network a new approach for examining water vapor and deep convection interactions in the tropics. Bull. Am. Meteorol. Soc. 2015, 96, 2151–2165. [Google Scholar] [CrossRef]
- Schiro, K.A.; Neelin, J.D.; Adams, D.K.; Lintner, B.R. Deep convection and column water vapor over tropical land versus tropical ocean: A comparison between the Amazon and the tropical western Pacific. J. Atmos. Sci. 2016, 73, 4043–4063. [Google Scholar] [CrossRef]
- Garstang, M.; Massie, H.L., Jr.; Halverson, J.; Greco, S.; Scala, J. Amazon Coastal Squall Lines. Part I: Structure and Kinematics. Mon. Weather Rev. 1994, 122, 608–622. [Google Scholar] [CrossRef] [Green Version]
- Silva Dias, M.A.F.; Rutledge, S.; Kabat, P.; Silva Dias, P.L.; Nobre, C.; Fisch, G.; Dolman, A.J.; Zipser, E.; Garstang, M.; Manzi, A.O.; et al. Cloud and rain processes in a biosphere-atmosphere interaction context in the Amazon Region. J. Geophys. Res. Atmos. 2002, 107, LBA 39-1–LBA 39-18. [Google Scholar] [CrossRef] [Green Version]
- Machado, L.; Laurent, H.; Dessay, N.; Miranda, I. Seasonal and diurnal variability of convection over the Amazonia: A comparison of different vegetation types and large scale forcing. Theor. Appl. Climatol. 2004, 78, 61–77. [Google Scholar] [CrossRef]
- Anselmo, E.M.; Schumacher, C.; Machado, L.A. The Amazonian Low-level Jet and Its Connection to Convective Cloud Propagation and Evolution. Mon. Weather Rev. 2020, 148, 4083–4099. [Google Scholar] [CrossRef]
- Zipser, E.J. The role of organized unsaturated convective downdrafts in the structure and rapid decay of an equatorial disturbance. J. Appl. Meteorol. Climatol. 1969, 8, 799–814. [Google Scholar] [CrossRef]
- Betts, A.K. The thermodynamic transformation of the tropical subcloud layer by precipitation and downdrafts. J. Atmos. Sci. 1976, 33, 1008–1020. [Google Scholar] [CrossRef] [Green Version]
- Garstang, M.; Scala, J.; Greco, S.; Harriss, R.; Beck, S.; Browell, E.; Sachse, G.; Gregory, G.; Hill, G.; Simpson, J.; et al. Trace gas exchanges and convective transports over the Amazonian rain forest. J. Geophys. Res. Atmos. 1988, 93, 1528–1550. [Google Scholar] [CrossRef]
- Scala, J.R.; Garstang, M.; Tao, W.K.; Pickering, K.E.; Thompson, A.M.; Simpson, J.; Kirchhoff, V.W.J.H.; Browell, E.V.; Sachse, G.W.; Torres, A.L.; et al. Cloud draft structure and trace gas transport. J. Geophys. Res. Atmos. 1990, 95, 17015–17030. [Google Scholar] [CrossRef] [Green Version]
- Betts, A.K.; Gatti, L.V.; Cordova, A.M.; Dias, M.A.S.; Fuentes, J.D. Transport of ozone to the surface by convective downdrafts at night. J. Geophys. Res. Atmos. 2002, 107, LBA–13. [Google Scholar] [CrossRef]
- Gerken, T.; Wei, D.; Chase, R.J.; Fuentes, J.D.; Schumacher, C.; Machado, L.A.; Andreoli, R.V.; Chamecki, M.; de Souza, R.A.F.; Freire, L.S.; et al. Downward transport of ozone rich air and implications for atmospheric chemistry in the Amazon rainforest. Atmos. Environ. 2016, 124 Pt A, 64–76. [Google Scholar] [CrossRef] [Green Version]
- Harriss, R.; Garstang, M.; Wofsy, S.; Beck, S.; Bendura, R.; Coelho, J.; Drewry, J.; Hoell, J.; Matson, P.; McNeal, R.J.; et al. The Amazon boundary layer experiment: Wet season 1987. J. Geophys. Res. Atmos. 1990, 95, 16721–16736. [Google Scholar] [CrossRef]
- Hu, X.M.; Fuentes, J.D.; Zhang, F. Downward transport and modification of tropospheric ozone through moist convection. J. Atmos. Chem. 2010, 65, 13–35. [Google Scholar] [CrossRef]
- Dias-Júnior, C.Q.; Dias, N.L.; Fuentes, J.D.; Chamecki, M. Convective storms and non-classical low-level jets during high ozone level episodes in the Amazon region: An ARM/GOAMAZON case study. Atmos. Environ. 2017, 155, 199–209. [Google Scholar] [CrossRef] [Green Version]
- Garstang, M.; White, S.; Shugart, H.H.; Halverson, J. Convective cloud downdrafts as the cause of large blowdowns in the Amazon rainforest. Meteorol. Atmos. Phys. 1998, 67, 199–212. [Google Scholar] [CrossRef]
- Negrón-Juárez, R.I.; Chambers, J.Q.; Guimaraes, G.; Zeng, H.; Raupp, C.F.M.; Marra, D.M.; Ribeiro, G.H.P.M.; Saatchi, S.S.; Nelson, B.W.; Higuchi, N. Widespread Amazon forest tree mortality from a single cross–basin squall line event. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Meischner, P.; Baumann, R.; Höller, H.; Jank, T. Eddy dissipation rates in thunderstorms estimated by Doppler radar in relation to aircraft in situ measurements. J. Atmos. Ocean. Technol. 2001, 18, 1609–1627. [Google Scholar] [CrossRef]
- Verrelle, A.; Ricard, D.; Lac, C. Evaluation and improvement of turbulence parameterization inside deep convective clouds at kilometer-scale resolution. Mon. Weather Rev. 2017, 145, 3947–3967. [Google Scholar] [CrossRef]
- Alfaro, D.A. Low-tropospheric shear in the structure of squall lines: Impacts on latent heating under layer-lifting ascent. J. Atmos. Sci. 2017, 74, 229–248. [Google Scholar] [CrossRef]
- Freire, L.S.; Gerken, T.; Ruiz-Plancarte, J.; Wei, D.; Fuentes, J.D.; Katul, G.G.; Dias, N.L.; Acevedo, O.C.; Chamecki, M. Turbulent mixing and removal of ozone within an Amazon rainforest canopy. J. Geophys. Res. Atmos. 2017, 122, 2791–2811. [Google Scholar] [CrossRef]
- Martin, S.T.; Artaxo, P.; Machado, L.A.T.; Manzi, A.O.; Souza, R.A.F.; Schumacher, C.; Wang, J.; Andreae, M.O.; Barbosa, H.M.J.; Fan, J.; et al. Introduction: Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5). Atmos. Chem. Phys. 2016, 16, 4785–4797. [Google Scholar] [CrossRef] [Green Version]
- Maddox, R.A. Mesoscale convective complexes. Bull. Am. Meteorol. Soc. 1980, 61, 1374–1387. [Google Scholar] [CrossRef]
- Adams, D.K.; Gutman, S.I.; Holub, K.L.; Pereira, D.S. GNSS observations of deep convective time scales in the Amazon. Geophys. Res. Lett. 2013, 40, 2818–2823. [Google Scholar] [CrossRef]
- Machado, L.A.T.; Dias, M.A.F.S.; Morales, C.; Fisch, G.; Vila, D.; Albrecht, R.; Goodman, S.J.; Calheiros, A.J.P.; Biscaro, T.; Kummerow, C.; et al. The Chuva Project: How Does Convection Vary across Brazil? Bull. Am. Meteorol. Soc. 2014, 95, 1365–1380. [Google Scholar] [CrossRef]
- Fuentes, J.D.; Chamecki, M.; dos Santos, R.M.N.; Randow, C.V.; Stoy, P.C.; Katul, G.; Fitzjarrald, D.; Manzi, A.; Gerken, T.; Trowbridge, A.; et al. Linking Meteorology, Turbulence, and Air Chemistry in the Amazon Rain Forest. Bull. Am. Meteorol. Soc. 2016, 97, 2329–2342. [Google Scholar] [CrossRef]
- Emanuel, K.A. Atmospheric Convection; Oxford University Press on Demand: Oxford, UK, 1994. [Google Scholar]
- Vickers, D.; Mahrt, L. Quality Control and Flux Sampling Problems for Tower and Aircraft Data. J. Atmos. Oceanic Technol. 1997, 14, 512–526. [Google Scholar] [CrossRef]
- Sun, J.; Mahrt, L.; Banta, R.M.; Pichugina, Y.L. Turbulence Regimes and Turbulence Intermittency in the Stable Boundary Layer during CASES-99. J. Atmos. Sci. 2012, 69, 338–351. [Google Scholar] [CrossRef] [Green Version]
- Arya, P.S. Introduction to Micrometeorology; Elsevier: Amsterdam, The Netherlands, 2001; Volume 79. [Google Scholar]
- Stull, R.B. An Introduction to Boundary Layer Meteorology; Springer: Dordrecht, The Netherlands, 1988. [Google Scholar]
- Kaimal, J.C.; Finnigan, J.J. Atmospheric Boundary Layer Flows: Their Structure and Measurement; Oxford University Press: New York, NY, USA, 1994. [Google Scholar]
- Dias-Júnior, C.Q.; Sá, L.D.; Filho, E.P.M.; Santana, R.A.; Mauder, M.; Manzi, A.O. Turbulence regimes in the stable boundary layer above and within the Amazon forest. Agric. For. Meteorol. 2017, 233, 122–132. [Google Scholar] [CrossRef]
- Bolzan, M.J.A.; Vieira, P.C. Wavelet analysis of the wind velocity and temperature variability in the Amazon Forest. Braz. J. Phys. 2006, 36, 1217–1222. [Google Scholar] [CrossRef]
- Rao, V.B.; Sá, L.D.; Franchito, S.H.; Hada, K. Interannual variations of rainfall and corn yields in Northeast Brazil. Agric. For. Meteorol. 1997, 85, 63–74. [Google Scholar] [CrossRef]
- Betts, A.; Fisch, G.; Von Randow, C.; Silva Dias, M.; Cohen, J.; Da Silva, R.; Fitzjarrald, D. The Amazonian boundary layer and mesoscale circulations. In Amazonia and Global Change; AGU: Washington, DC, USA, 2009. [Google Scholar]
- Melo, A.M.; Dias-Junior, C.Q.; Cohen, J.C.; Sá, L.D.; Cattanio, J.H.; Kuhn, P.A. Ozone transport and thermodynamics during the passage of squall line in Central Amazon. Atmos. Environ. 2019, 206, 132–143. [Google Scholar] [CrossRef]
- Miranda, F.O.; Ramos, F.M.; von Randow, C.; Dias-Júnior, C.Q.; Chamecki, M.; Fuentes, J.D.; Manzi, A.O.; de Oliveira, M.E.; de Souza, C.M. Detection of Extreme Phenomena in the Stable Boundary Layer over the Amazonian Forest. Atmosphere 2020, 11, 952. [Google Scholar] [CrossRef]
- Santana, R.A.; Dias-Júnior, C.Q.; Tóta, J.; Fuentes, J.D.; do Vale, R.S.; Alves, E.G.; dos Santos, R.M.N.; Manzi, A.O. Air turbulence characteristics at multiple sites in and above the Amazon rainforest canopy. Agric. For. Meteorol. 2018, 260–261, 41–54. [Google Scholar] [CrossRef]
- Kruijt, B.; Malhi, Y.; Lloyd, J.; Norbre, A.D.; Miranda, A.C.; Pereira, M.G.P.; Culf, A.; Grace, J. Turbulence Statistics Above And Within Two Amazon Rain Forest Canopies. Bound. Layer Meteorol. 2000, 94, 297–331. [Google Scholar] [CrossRef]
- von Randow, C.; Manzi, A.O.; Kruijt, B.; de Oliveira, P.J.; Zanchi, F.B.; Silva, R.L.; Hodnett, M.G.; Gash, J.H.C.; Elbers, J.A.; Waterloo, M.J.; et al. Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in South West Amazonia. Theor. Appl. Climatol. 2004, 78, 5–26. [Google Scholar] [CrossRef]
- Fitzjarrald, D.R.; Moore, K.E. Mechanisms of nocturnal exchange between the rain forest and the atmosphere. J. Geophys. Res. Atmos. 1990, 95, 16839–16850. [Google Scholar] [CrossRef]
- Mallat, S.G. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 1989, 11, 674–693. [Google Scholar] [CrossRef] [Green Version]
- Vickers, D.; Mahrt, L. The Cospectral Gap and Turbulent Flux Calculations. J. Atmos. Sci. 2003, 20, 660–672. [Google Scholar] [CrossRef]
- Sun, J.; Lenschow, D.H.; LeMone, M.A.; Mahrt, L. The Role of Large-Coherent-Eddy Transport in the Atmospheric Surface Layer Based on CASES-99 Observations. Bound. Layer Meteorol. 2016, 160, 83–111. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bezerra, V.L.; Dias-Júnior, C.Q.; Vale, R.S.; Santana, R.A.; Botía, S.; Manzi, A.O.; Cohen, J.C.P.; Martins, H.S.; Chamecki, M.; Fuentes, J.D. Near-Surface Atmospheric Turbulence in the Presence of a Squall Line above a Forested and Deforested Region in the Central Amazon. Atmosphere 2021, 12, 461. https://doi.org/10.3390/atmos12040461
Bezerra VL, Dias-Júnior CQ, Vale RS, Santana RA, Botía S, Manzi AO, Cohen JCP, Martins HS, Chamecki M, Fuentes JD. Near-Surface Atmospheric Turbulence in the Presence of a Squall Line above a Forested and Deforested Region in the Central Amazon. Atmosphere. 2021; 12(4):461. https://doi.org/10.3390/atmos12040461
Chicago/Turabian StyleBezerra, Valéria L., Cléo Q. Dias-Júnior, Roseilson S. Vale, Raoni A. Santana, Santiago Botía, Antônio O. Manzi, Julia C. P. Cohen, Hardiney S. Martins, Marcelo Chamecki, and Jose D. Fuentes. 2021. "Near-Surface Atmospheric Turbulence in the Presence of a Squall Line above a Forested and Deforested Region in the Central Amazon" Atmosphere 12, no. 4: 461. https://doi.org/10.3390/atmos12040461
APA StyleBezerra, V. L., Dias-Júnior, C. Q., Vale, R. S., Santana, R. A., Botía, S., Manzi, A. O., Cohen, J. C. P., Martins, H. S., Chamecki, M., & Fuentes, J. D. (2021). Near-Surface Atmospheric Turbulence in the Presence of a Squall Line above a Forested and Deforested Region in the Central Amazon. Atmosphere, 12(4), 461. https://doi.org/10.3390/atmos12040461