Effectiveness of SOx, NOx, and Primary Particulate Matter Control Strategies in the Improvement of Ambient PM Concentration in Taiwan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Simulation
2.2. Emission
2.3. Scenarios
3. Results and Discussion
3.1. Baseline Conditions: Scenario I
3.2. Scenario II: The Taiwan Clean Air Act (TCAA) Plan Adopted
3.3. Scenario III: Conducted TCCA and More Control Strategies
3.4. Effectiveness of Pollutant Reductions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giannadaki, D.; Pozzer, A.; Lelieveld, J. Modeled global effects of airborne desert dust on air quality and premature mortality. Atmos. Chem. Phys. 2014, 14, 957–968. [Google Scholar] [CrossRef] [Green Version]
- Lelieveld, J.; Hadjinicolaou, P.; Kostopoulou, E.; Giannakopoulos, C.; Tanarhte, M.; Tyrlis, E. Model projected heat extremes and air pollution in the Eastern Mediterranean and Middle East in the twenty-first century. Reg. Environ. Chang. 2014, 14, 1937–1949. [Google Scholar] [CrossRef] [Green Version]
- Abdo, N.; Khader, Y.S.; Abdelrahman, M.; Graboski-Bauer, A.; Malkawi, M.; Al-Sharif, M.; Elbetieha, A.M. Respiratory health outcomes and air pollution in the Eastern Mediterranean region: A systematic review. Rev. Environ. Health 2016, 31, 259–280. [Google Scholar] [CrossRef] [PubMed]
- Khader, Y.S.; Abdo, N.; Abdelrahman, M.; Al-Sharif, M.; Bateiha, A.M.; Malkawi, M. The effect of air pollution on cancer in the Eastern Mediterranean region: A systematic literature review. J. Environ. Pollut. Hum. Health 2016, 4, 66–71. [Google Scholar]
- Dayan, U.; Ricaud, P.; Zinder, R.; Dulac, F. Atmospheric pollution over the eastern Mediterranean during summer—A review. Atmos. Chem. Phys. 2017, 17, 13233–13263. [Google Scholar] [CrossRef] [Green Version]
- Kushta, J.; Georgiou, G.K.; Proestos, Y.; Christoudias, T.; Thunis, P.; Savvides, C.; Papadopoulos, C.; Lelieveld, J. Evaluation of EU air quality standards through modeling and the FAIRMODE benchmarking methodology. Air Qual. Atmos. Health 2019, 12, 73–86. [Google Scholar] [CrossRef] [Green Version]
- WHO; Regional Office for Europe; OECD. EconomicCost of the Health Impact of Air Pollution in Europe: Clean Air, Health and Wealth; Regional Office for Europe: Copenhagen, Denmark; WHO: Geneva, Switzerland, 2015. [Google Scholar]
- EEA (European Environmental Agency). Air Quality in Europe–2018 Report; 12/2018; EEA: Luxembourg, 2018; p. 83. [Google Scholar] [CrossRef]
- The World Bank. The Cost of Air Pollution: Strengthening the Economic Case for Action; The World Bank: Washington, DC, USA, 2016. [Google Scholar]
- Health Effects Institute (HEI). Revised Analyses of the National Morbidity, Mortality and Air Pollution Study, Part II: Revised Analyses of Selected Time-Series Studies of Air Pollution and Health; Health Effects Institute: Cambridge, MA, USA, 2003. [Google Scholar]
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef] [Green Version]
- WHO. Review of Evidence on Health Aspects of Air Pollution-REVIHAAP Project; Final Technical Report; The WHO European Centre for Environment and Health: Bonn, Switzerland, 2013. [Google Scholar]
- Zhou, Y.; Li, L.; Hu, L. Correlation analysis of PM10 and the incidence of lung cancer in Nanchang, China. Int. J. Environ. Res. Public Health 2017, 14, 1253. [Google Scholar] [CrossRef] [Green Version]
- Burnett, R.T.; Cakmak, S.; Brook, J.R.; Krewski, D. The role of particulate size and chemistry in the association between summertime ambient air pollution and hospitalization for cardiorespiratory disease. Environ. Health Perspect. 1997, 105, 614–620. [Google Scholar] [CrossRef]
- Ostro, B.D.; Broadwin, R.; Lipsett, M.J. Coarse and fine particles and daily mortality in the Coachella Valley, California: A follow-up study. J. Expo. Anal. Environ. Epidemiol. 2000, 10, 412–419. [Google Scholar] [CrossRef]
- Brunekreef, B.; Forsberg, B. Epidemiological evidence of effects of coarse airborne particles on health. Eur. Resp. J. 2005, 26, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Kan, H.; London, S.J.; Chen, G.; Zhang, Y.; Song, G.; Zhao, N.; Jiang, L.; Chen, B. Differentiating the effects of fine and coarse particles on daily mortality in Shanghai, China. Environ. Int. 2007, 33, 376–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipsett, M.J.; Tsai, F.C.; Roger, L.; Woo, M.; Ostro, B.D. Coarse particles and heart rate variability among older adults with coronary artery disease in the Coachella Valley, California. Environ. Health Perspect. 2006, 114, 1215–1220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hapoo, M.S.; Salonen, R.O.; Hölinen, A.I.; Jalava, P.I.; Pennanen, A.S.; Kosma, V.M.; Sillanpää, M.; Hillamo, R.; Brunekreef, B.; Katsouyanni, K.; et al. Dose and time dependency of inflammatory responses in the mouse lung to urban air coarse, fine, and ultrafine particles from six European cities. Inhal. Toxicol. 2007, 19, 227–246. [Google Scholar] [CrossRef] [PubMed]
- Yeatts, K.; Svendsen, E.; Creason, J.; Alexis, N.; Herbst, M.; Scott, J.; Kupper, L.; Williams, R.; Neas, L.; Cascio, W.; et al. Coarse particulate matter (PM2.5–10) affects heart rate variability, blood lipids, and circulating eosinophils in adults with asthma. Environ. Health Perspect. 2007, 115, 709–714. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization (WHO). Health Risks of Particulate Matter from Long-Range Transboundary Air Pollution; World Health Organization: Copenhagen, Denmark, 2006. [Google Scholar]
- Pope, C.A., III; Majid, E.; Dogulas, D.W. Fine-particulate air pollution and life expectancy in the United States. N. Engl. J. Med. 2009, 360, 376–386. [Google Scholar] [CrossRef] [Green Version]
- Oberdorster, G.; Gelein, R.M.; Ferin, J.; Weiss, B. Association of particulate air pollution and acute mortality: Involvement of ultra-fine particles? Inhal. Toxicol. 1995, 7, 111–124. [Google Scholar] [CrossRef]
- Pope, C.A., III; Dockery, D.W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef]
- Naess, O.; Piro, F.N.; Nafstad, P.; Smith, G.D.; Leyland, A.H. Air pollution, social deprivation and mortality: A multilevel cohort study. Epidemiology 2007, 18, 686–694. [Google Scholar] [CrossRef]
- Brunekreef, B.; Beelen, R.; Hoek, G.; Schouten, L.; Bausch-Goldbohm, S.; Fischer, P.; Armstrong, B.; Hughes, E.; Jerrett, M.; van den Brandt, P. Effects of Long-Term Exposure to Traffic-Related Air Pollution on Respiratory and Cardiovascular Mortality in The Netherlands: The NLCS-AIR Study; Research Report Health Effects Institute: Boston, MA, USA, 2009; pp. 5–71. [Google Scholar]
- Boldo, E.; Linares, C.; Lumbreras, J.; Borge, R.; Narros, A.; Garćia-Pérez, J.; Fernández-Navarro, P.; Pérez-Gómez, B.; Aragonés, N.; Ramis, R.; et al. Health impact assessment of a reduction in ambient PM2.5 levels in Spain. Environ. Int. 2011, 37, 342–348. [Google Scholar] [CrossRef]
- Đorđevic, D.; Mihajlidi-Zelić, A.; Relić, D.; Ignjatović, L.J.; Huremović, J.; Stortini, A.M.; Gambaro, A. Size-segregated mass concentration and water soluble inorganic ions in an urban aerosol of the central Balkans (Belgrade). Atmos. Environ. 2012, 46, 309–317. [Google Scholar] [CrossRef]
- Galindo, N.; Yubero, E.; Clemente, Á.; Nicolás, J.F.; Varea, M.; Crespo, J. PM events and changes in the chemical composition of urban aerosols: A case study in the western Mediterranean. Chemosphere 2020, 244, 125520. [Google Scholar] [CrossRef]
- Dongarrà, G.; Manno, E.; Varrica, D.; Lombardo, M.; Vultaggio, M. Study on ambient concentrations of PM10, PM10–2.5, PM2.5 and gaseous pollutants. Trace elements and chemical speciation of atmospheric particulates. Atmos. Environ. 2010, 44, 5244–5257. [Google Scholar] [CrossRef]
- Andersson, C.; Bergstro, R.; Johansson, C. Population exposure and mortality due to regional background PM in Europe—Long-term simulations of source region and shipping contributions. Atmos. Environ. 2009, 43, 3614–3620. [Google Scholar] [CrossRef]
- Hvidtfeldt, U.A.; Geels, C.; Sorensen, M.; Ketzel, M.; Khan, J.; Tjonneland, A.; Christensen, J.H.; Brandt, J.; Raaschou-Nielsen, O. Long-term residential exposure to PM2.5 constituents and mortality in aDanish cohort. Environ. Int. 2019, 133, 105268. [Google Scholar] [CrossRef] [PubMed]
- Foltescu, V.L.; Selin Lindgern, E.; Isakson, J.; Öblad, M.; Pacyna, J.M.; Benson, S. Gas-to-particle conversion of sulfur and nitrogen compounds as studied at marine stations in northern European. Atmos. Environ. 1996, 30, 3129–3140. [Google Scholar] [CrossRef]
- Behera, S.N.; Sharma, M. Degradation of SO2, NO2 and NH3 leading to formation of secondary inorganic aerosols: An environmental chamber study. Atmos. Environ. 2011, 45, 4015–4024. [Google Scholar] [CrossRef]
- Gen, M.; Zhang, R.; Huang, D.D.; Li, Y.; Chan, C.K. Heterogeneous SO2 oxidation in sulfate formation by photolysis of particulate nitrate. Environ. Sci. Technol. Lett. 2019, 6, 86–91. [Google Scholar] [CrossRef]
- Meidan, D.; Holloway, J.S.; Edwards, P.M.; Dubé, W.P.; Middlebrook, A.M.; Liao, J.; Welti, A.; Graus, M.; Warneke, C.; Ryerson, T.B.; et al. Role of criegee intermediates in secondary sulfate aerosol formation in nocturnal power plant plumes in the Southeast US. ACS Earth Space Chem. 2019, 3, 748–759. [Google Scholar] [CrossRef]
- Yang, J.; Li, L.; Wang, S.; Li, H.; Francisco, J.S.; Zeng, X.C.; Gao, Y. Unraveling a new chemical mechanism of missing sulfate formation in aerosol haze: Gaseous NO2 with aqueous HSO3−/SO32−. J. Am. Chem. Soc. 2021. [Google Scholar] [CrossRef]
- US EPA. Available online: https://www.epa.gov/cmaq/modeling-toxic-air-pollutants-cmaq (accessed on 5 April 2020).
- Sarwar, G.; Gantt, B.; Foley, K.; Fahey, K.; Spero, T.L.; Kang, D.; Mathur, R.; Hosein, F.; Xing, J.; Sherwin, T.; et al. Influence of bromine and iodine chemistry on annual, seasonal, diurnal, and background ozone: CMAQ simulations over the Northern Hemisphere. Atmos. Environ. 2019, 213, 395–404. [Google Scholar] [CrossRef]
- Sommariva, R.; Hollis, L.D.J.; Sherwen, T.; Baker, A.R.; Ball, S.M.; Bandy, B.J.; Bell, T.G.; Chowdhury, M.N.; Cordell, R.L.; Evans, M.J.; et al. Seasonal and geographical variability of nitryl chloride and its precursors in Northern Europe. Atmos. Sci. Lett. 2018, 19, 844. [Google Scholar] [CrossRef] [Green Version]
- Jang, X.; Yoo, E.H. evaluating the effect of domain size of the community multiscale air quality (cmaq) model on regional PM2.5 simulations. In Global Perspectives on Health Geography; Lu, Y., Delmelle, E., Eds.; Springer Nature: Geneva, Switzerland, 2020. [Google Scholar]
- Yue, H.; He, C.; Huang, Q.; Yin, D.; Bryan, B.A. Stronger policy required to substantially reduce deaths from PM2.5 pollution in China. Nat. Commun. 2020, 11, 1462. [Google Scholar] [CrossRef] [Green Version]
- Hsu, C.H.; Cheng, F.Y.; Chang, H.Y.; Lin, N.H. Implementation of a dynamical NH3 emissions parameterization in CMAQ for improving PM2.5 simulation in Taiwan. Atmos. Environ. 2019, 218, 116923. [Google Scholar] [CrossRef]
- Cheng, F.Y.; Feng, C.Y.; Yang, Z.M.; Hsu, C.H.; Chan, K.W.; Lee, C.Y.; Chang, S.C. Evaluation of real-time PM2.5 forecasts with the WRF-CMAQ modeling system and weather-pattern-dependent bias-adjusted PM2.5 forecasts in Taiwan. Atmos. Environ. 2021, 244, 117909. [Google Scholar] [CrossRef]
- Chen, T.F.; Chang, K.H.; Lee, C.H. Simulation and analysis of causes of a haze episode by combining CMAQ-IPR and brute force source sensitivity method. Atmos. Environ. 2019, 218, 117006. [Google Scholar] [CrossRef]
- Byun, D.W.; Schere, K.L. Review of the governing equations, computational algorithms, and other components of the models-3 Community Multiscale Air Quality (CMAQ) modeling system. Appl. Mech. Rev. 2006, 59, 51–77. [Google Scholar] [CrossRef]
- Wong, D.C.; Pleim, J.; Mathur, R.; Binkowski, F.; Otte, T.; Gilliam, R. WRF-CMAQ two-way coupled system with aerosol feedback: Software development and preliminary results. Geosci. Model Dev. 2012, 5, 299–312. [Google Scholar] [CrossRef] [Green Version]
- Otte, T.L.; Pleim, J.E. The Meteorology-Chemistry Interface Processor (MCIP) for the CMAQ modeling system: Updates through MCIPv3.4.1. Geosci. Model Dev. 2010, 3, 243–256. [Google Scholar] [CrossRef] [Green Version]
- Yarwood, G.; Rao, S.; Yocke, M.; Whitten, G. Updates to the CarbonBond Chemical Mechanism: CB05; Final Report to the US EPA, RT-0400675; US EPA: Washington, DC, USA, 2005; Available online: http://www.camx.com/publ/pdfs/CB05_Final_Report_120805.pdf (accessed on 2 March 2021).
- Boylan, J.W.; Russell, A.G. PM and light extinction model performance metrics, goals, and criteria for three-dimensional air quality models. Atmos. Environ. 2006, 40, 4946–4959. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (USEPA). Guidance on the Use of Models and Other Analyses for Demonstrating Attainment of Air Quality Goals for Ozone, PM2.5, and Regional Haze; Publication No. EPA-454/B-07-002 April; Office of Air Quality Planning and Standards Air Quality Analysis Division: Research Triangle Park, NC, USA, 2007. [Google Scholar]
- Henneman, L.R.F.; Liu, C.; Hu, Y.; Mulholland, J.A.; Russell, A.G. Air quality modeling for accountability research: Operational, dynamic, and diagnostic evaluation. Atmos. Environ. 2017, 166, 551–565. [Google Scholar] [CrossRef]
- Eyth, A.; Pouliot, G.; Vukovich, J.; Strum, M.; Dolwick, P.; Allen, C.; Beidler, J.; Baek, B.H. Development of 2011 Hemispheric Emissions for CMAQ. Presented at the 2016 CMAS Conference, Chapel Hill, NC, USA, 24–26 October 2016; Available online: https://www.cmascenter.org/conference//2016/slides/eyth_development_hemispheric_2016.pptx (accessed on 4 May 2020).
- Tsai, Y.I.; Chen, C.L. Atmospheric aerosol composition and source apportionments to aerosol in southern Taiwan. Atmos. Environ. 2006, 40, 4751–4763. [Google Scholar] [CrossRef]
- Chou, C.C.K.; Lee, C.T.; Cheng, M.T.; Yuan, C.S.; Chen, S.J.; Wu, Y.L.; Hsu, W.C.; Lung, S.C.; Hsu, S.C.; Lin, C.Y.; et al. Seasonal variation and spatial distribution of carbonaceous aerosols in Taiwan. Atmos. Chem. Phys. 2010, 10, 9563–9578. [Google Scholar] [CrossRef] [Green Version]
Scenario | Strategies |
---|---|
Scenario I Year–2014 | Baseline year–2014 |
Scenario II Taiwan Clean Air Act (TCAA) 2020 |
|
Scenario III TCAA and implement more control strategies Year–2020 |
|
Precursor | PM Fraction | Scenario II | Scenario III |
---|---|---|---|
SOx | Sulfate | 1 | 1 |
NOx | Nitrate | 2.1 | 1.7 |
PM2.5 | Primary PM2.5 | 19 | 14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, J.-H.; Lee, M.-Y.; Chiang, H.-L. Effectiveness of SOx, NOx, and Primary Particulate Matter Control Strategies in the Improvement of Ambient PM Concentration in Taiwan. Atmosphere 2021, 12, 460. https://doi.org/10.3390/atmos12040460
Tsai J-H, Lee M-Y, Chiang H-L. Effectiveness of SOx, NOx, and Primary Particulate Matter Control Strategies in the Improvement of Ambient PM Concentration in Taiwan. Atmosphere. 2021; 12(4):460. https://doi.org/10.3390/atmos12040460
Chicago/Turabian StyleTsai, Jiun-Horng, Ming-Ye Lee, and Hung-Lung Chiang. 2021. "Effectiveness of SOx, NOx, and Primary Particulate Matter Control Strategies in the Improvement of Ambient PM Concentration in Taiwan" Atmosphere 12, no. 4: 460. https://doi.org/10.3390/atmos12040460
APA StyleTsai, J. -H., Lee, M. -Y., & Chiang, H. -L. (2021). Effectiveness of SOx, NOx, and Primary Particulate Matter Control Strategies in the Improvement of Ambient PM Concentration in Taiwan. Atmosphere, 12(4), 460. https://doi.org/10.3390/atmos12040460