Estimation of Elements’ Concentration in Air in Kosovo through Mosses as Biomonitors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling
2.3. Digestion and Chemical Analysis
2.4. Instrumentation
2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Needleman, H.L.; Gatsonis, C.A. Low-Level Lead Exposure and the IQ of Children: A Meta-analysis of Modern Studies. JAMA J. Am. Med. Assoc. 1990. [Google Scholar] [CrossRef]
- Perlstein, M.A.; Attala, R. Neurologic Sequelae of Plumbism in Children. Clin. Pediatr. 1966. [Google Scholar] [CrossRef]
- Tyroler, H.A. Epidemiology of hypertension as a public health problem: An overview as background for evaluation of Blood Lead-Blood Pressure Relationship. Environ. Health Perspect. 1988. [Google Scholar] [CrossRef]
- Clarkson, T.W.; Magos, L.; Myers, G.J. The Toxicology of Mercury—Current Exposures and Clinical Manifestations. N. Engl. J. Med. 2003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friberg, L.; Elinder, C.; Kjellstrom, T.; Nordberg, G.F. Cadmium and Health: A Toxicological and Epidemiological Appraisal Volume II: Effects and Response; CRC: Boca Raton, FL, USA, 1985. [Google Scholar]
- Hughes, M.F. Arsenic toxicity and potential mechanisms of action. Toxicol. Lett. 2002. [Google Scholar] [CrossRef] [Green Version]
- Kapusta, P.; Sobczyk, Ł. Effects of heavy metal pollution from mining and smelting on enchytraeid communities under different land management and soil conditions. Sci. Total Environ. 2015. [Google Scholar] [CrossRef]
- Golokhvast, K.S.; Chernyshev, V.V.; Chaika, V.V.; Ugay, S.M.; Zelinskaya, E.V.; Tsatsakis, A.M.; Karakitsios, S.P.; Sarigiannis, D.A. Size-segregated emissions and metal content of vehicle-emitted particles as a function of mileage: Implications to population exposure. Environ. Res. 2015. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Liu, Z.; Liu, Z.; Zhang, J.; Lu, M.; Zhou, J.; Qian, G. Rapid evaluation of leaching potential of heavy metals from municipal solid waste incineration fly ash. J. Environ. Manag. 2019, 238, 144–152. [Google Scholar] [CrossRef]
- Seignez, N.; Gauthier, A.; Bulteel, D.; Damidot, D.; Potdevin, J.L. Leaching of lead metallurgical slags and pollutant mobility far from equilibrium conditions. Appl. Geochem. 2008, 23, 3699–3711. [Google Scholar] [CrossRef]
- Pi, H.; Sharratt, B.; Schillinger, W.F.; Bary, A.; Cogger, C. Chemical composition of windblown dust emitted from agricultural soils amended with biosolids. Aeolian Res. 2018, 32, 102–115. [Google Scholar] [CrossRef]
- Ferati, F.; Kerolli-Mustafa, M.; Kraja-Ylli, A. Assessment of heavy metal contamination in water and sediments of Trepça and Sitnica rivers, Kosovo, using pollution indicators and multivariate cluster analysis. Environ. Monit. Assess. 2015, 187. [Google Scholar] [CrossRef] [PubMed]
- Gashi, F.; Frančišković-Bilinski, S.; Bilinski, H.; Kika, L. Assessment of the effects of urban and industrial development on water and sediment quality of the Drenica River in Kosovo. Environ. Earth Sci. 2016, 75. [Google Scholar] [CrossRef]
- Stafilov, T.; Aliu, M.; Sajn, R. Arsenic in surface soils affected by mining and metallurgical processing in K. Mitrovica region, Kosovo. Int. J. Environ. Res. Public Health 2010, 7, 4050–4061. [Google Scholar] [CrossRef] [PubMed]
- Kerolli-Mustafa, M.; Ćurković, L.; Fajković, H.; Rončević, S. Ecological risk assessment of jarosite waste disposal. Croat. Chem. Acta 2015. [Google Scholar] [CrossRef]
- Borgna, L.; Di Lella, L.A.; Nannoni, F.; Pisani, A.; Pizzetti, E.; Protano, G.; Riccobono, F.; Rossi, S. The high contents of lead in soils of northern Kosovo. J. Geochem. Explor. 2009, 101, 137–146. [Google Scholar] [CrossRef]
- Šajn, R.; Aliu, M.; Stafilov, T.; Alijagić, J. Heavy metal contamination of topsoil around a lead and zinc smelter in Kosovska Mitrovica/Mitrovicë, Kosovo/Kosovë. J. Geochem. Explor. 2013, 134, 1–16. [Google Scholar] [CrossRef]
- Nannoni, F.; Rossi, S.; Protano, G. Potentially toxic element contamination in soil and accumulation in maize plants in a smelter area in Kosovo. Environ. Sci. Pollut. Res. 2016, 23, 11937–11946. [Google Scholar] [CrossRef] [PubMed]
- Arditsoglou, A.; Samara, C. Levels of total suspended particulate matter and major trace elements in Kosovo: A source identification and apportionment study. Chemosphere 2005, 59, 669–678. [Google Scholar] [CrossRef]
- De Nicola, F.; Spagnuolo, V.; Baldantoni, D.; Sessa, L.; Alfani, A.; Bargagli, R.; Monaci, F.; Terracciano, S.; Giordano, S. Improved biomonitoring of airborne contaminants by combined use of holm oak leaves and epiphytic moss. Chemosphere 2013, 92, 1224–1230. [Google Scholar] [CrossRef]
- Sardans, J.; Peñuelas, J. Trace element accumulation in the moss Hypnum cupressiforme Hedw. and the trees Quercus ilex L. and Pinus halepensis Mill. in Catalonia. Chemosphere 2005, 60, 1293–1307. [Google Scholar] [CrossRef]
- Gerdol, R.; Marchesini, R.; Iacumin, P.; Brancaleoni, L. Monitoring temporal trends of air pollution in an urban area using mosses and lichens as biomonitors. Chemosphere 2014, 108, 388–395. [Google Scholar] [CrossRef]
- Calzoni, G.L.; Antognoni, F.; Pari, E.; Fonti, P.; Gnes, A.; Speranza, A. Active biomonitoring of heavy metal pollution using Rosa rugosa plants. Environ. Pollut. 2007, 149, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Ngayila, N.; Basly, J.P.; Lejeune, A.H.; Botineau, M.; Baudu, M. Myriophyllum alterniflorum DC., biomonitor of metal pollution and water quality. Sorption/accumulation capacities and photosynthetic pigments composition changes after copper and cadmium exposure. Sci. Total Environ. 2007, 373, 564–571. [Google Scholar] [CrossRef] [PubMed]
- Rühling, Å.; Tyler, G.; Ruhling, A. Sorption and Retention of Heavy Metals in the Woodland Moss Hylocomium splendens (Hedw.) Br. et Sch. Oikos 1970. [Google Scholar] [CrossRef]
- Čeburnis, D.; Steinnes, E.; Kvietkus, K. Estimation of metal uptake efficiencies from precipitation in mosses in Lithuania. Chemosphere 1999, 38, 445–455. [Google Scholar] [CrossRef]
- Di Palma, A.; González, A.G.; Adamo, P.; Giordano, S.; Reski, R.; Pokrovsky, O.S. Biosurface properties and lead adsorption in a clone of Sphagnum palustre (Mosses): Towards a unified protocol of biomonitoring of airborne heavy metal pollution. Chemosphere 2019, 236. [Google Scholar] [CrossRef] [PubMed]
- Fernández, J.A.; Carballeira, A. Biomonitoring metal deposition in Galicia (NW Spain) with mosses: Factors affecting bioconcentration. Chemosphere 2002, 46, 535–542. [Google Scholar] [CrossRef]
- Harmens, H.; Norris, D.A.; Steinnes, E.; Kubin, E.; Piispanen, J.; Alber, R.; Aleksiayenak, Y.; Blum, O.; Coşkun, M.; Dam, M.; et al. Mosses as biomonitors of atmospheric heavy metal deposition: Spatial patterns and temporal trends in Europe. Environ. Pollut. 2010, 158, 3144–3156. [Google Scholar] [CrossRef]
- Nickel, S.; Schröder, W. Reorganisation of a long-term monitoring network using moss as biomonitor for atmospheric deposition in Germany. Ecol. Indic. 2017, 76, 194–206. [Google Scholar] [CrossRef]
- Calabrese, S.; D’Alessandro, W.; Bellomo, S.; Brusca, L.; Martin, R.S.; Saiano, F.; Parello, F. Characterization of the Etna volcanic emissions through an active biomonitoring technique (moss-bags): Part 1—Major and trace element composition. Chemosphere 2015, 119, 1447–1455. [Google Scholar] [CrossRef] [Green Version]
- Kapusta, P.; Stanek, M.; Szarek-Łukaszewska, G.; Godzik, B. Long-term moss monitoring of atmospheric deposition near a large steelworks reveals the growing importance of local non-industrial sources of pollution. Chemosphere 2019, 230, 29–39. [Google Scholar] [CrossRef]
- Di Palma, A.; Capozzi, F.; Spagnuolo, V.; Giordano, S.; Adamo, P. Atmospheric particulate matter intercepted by moss-bags: Relations to moss trace element uptake and land use. Chemosphere 2017, 176, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Balabanova, B.; Stafilov, T.; Šajn, R.; Bačeva, K. Comparison of response of moss, lichens and attic dust to geology and atmospheric pollution from copper mine. Int. J. Environ. Sci. Technol. 2014, 11, 517–528. [Google Scholar] [CrossRef]
- Qarri, F.; Lazo, P.; Stafilov, T.; Frontasyeva, M.; Harmens, H.; Bekteshi, L.; Baceva, K.; Goryainova, Z. Multi-elements atmospheric deposition study in Albania. Environ. Sci. Pollut. Res. 2014, 21, 2506–2518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barandovski, L.; Frontasyeva, M.V.; Stafilov, T.; Šajn, R.; Ostrovnaya, T.M. Multi-element atmospheric deposition in Macedonia studied by the moss biomonitoring technique. Environ. Sci. Pollut. Res. 2015, 22, 16077–16097. [Google Scholar] [CrossRef] [PubMed]
- Stafilov, T.; Šajn, R.; Barandovski, L.; Andonovska, K.B.; Malinovska, S. Moss biomonitoring of atmospheric deposition study of minor and trace elements in Macedonia. Air Qual. Atmos. Health 2018, 11, 137–152. [Google Scholar] [CrossRef]
- Maxhuni, A.; Lazo, P.; Kane, S.; Qarri, F.; Marku, E.; Harmens, H. First survey of atmospheric heavy metal deposition in Kosovo using moss biomonitoring. Environ. Sci. Pollut. Res. 2016, 23, 744–755. [Google Scholar] [CrossRef] [PubMed]
- Steinnes, E.; Rühling, Å.; Lippo, H.; Mäkinen, A. Reference materials for large-scale metal deposition surveys. Accredit. Qual. Assur. 1997, 2, 243–249. [Google Scholar] [CrossRef]
- Lazo, P.; Stafilov, T.; Qarri, F.; Allajbeu, S.; Bekteshi, L.; Frontasyeva, M.; Harmens, H. Spatial distribution and temporal trend of airborne trace metal deposition in Albania studied by moss biomonitoring. Ecol. Indic. 2019, 101, 1007–1017. [Google Scholar] [CrossRef]
- Barandovski, L.; Stafilov, T.; Šajn, R.; Frontasyeva, M.; Andonovska, K.B. Atmospheric heavy metal deposition in north macedonia from 2002 to 2010 studied by moss biomonitoring technique. Atmosphere 2020, 11, 929. [Google Scholar] [CrossRef]
- Vasilevska, S.; Stafilov, T.; Šajn, R. Distribution of trace elements in sediments and soil from Crn Drim River Basin, Republic of Macedonia. SN Appl. Sci. 2019, 1. [Google Scholar] [CrossRef] [Green Version]
- Kittner, N.; Fadadu, R.P.; Buckley, H.L.; Schwarzman, M.R.; Kammen, D.M. Trace Metal Content of Coal Exacerbates Air-Pollution-Related Health Risks: The Case of Lignite Coal in Kosovo. Environ. Sci. Technol. 2018, 52, 2359–2367. [Google Scholar] [CrossRef] [Green Version]
- Adamiec, E. Chemical fractionation and mobility of traffic-related elements in road environments. Environ. Geochem. Health 2017, 39, 1457–1468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazo, P.; Steinnes, E.; Qarri, F.; Allajbeu, S.; Kane, S.; Stafilov, T.; Frontasyeva, M.V.; Harmens, H. Origin and spatial distribution of metals in moss samples in Albania: A hotspot of heavy metal contamination in Europe. Chemosphere 2018, 190, 337–349. [Google Scholar] [CrossRef] [Green Version]
- Barać, N.; Škrivanj, S.; Bukumirić, Z.; Živojinović, D.; Manojlović, D.; Barać, M.; Petrović, R.; Ćorac, A. Distribution and mobility of heavy elements in floodplain agricultural soils along the Ibar River (Southern Serbia and Northern Kosovo). Chemometric investigation of pollutant sources and ecological risk assessment. Environ. Sci. Pollut. Res. 2016, 23, 9000–9011. [Google Scholar] [CrossRef] [PubMed]
- Ávila-Pérez, P.; Ortiz-Oliveros, H.B.; Zarazúa-Ortega, G.; Tejeda-Vega, S.; Villalva, A.; Sánchez-Muñoz, R. Determining of risk areas due to exposure to heavy metals in the Toluca Valley using epiphytic mosses as a biomonitor. J. Environ. Manag. 2019, 241, 138–148. [Google Scholar] [CrossRef]
- Morina, I.; Dragusha, B.; Dvorani, S.; Riesbeck, F. Chemical characteristics of lignite ash from Power Plant Kosova a and local geological settings in Kosova near Prishtina. WSEAS Trans. Environ. Dev. 2013, 8, 168–178. [Google Scholar]
- Santos, A.P.M.; Segura-Muñoz, S.I.; Nadal, M.; Schuhmacher, M.; Domingo, J.L.; Martinez, C.A.; Magosso Takayanagui, A.M. Traffic-related air pollution biomonitoring with Tradescantia pallida (Rose) Hunt. cv. purpurea Boom in Brazil. Environ. Monit. Assess. 2015, 187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreira, T.C.L.; Amato-Lourenço, L.F.; da Silva, G.T.; de André, C.D.S.; de André, P.A.; Barrozo, L.V.; Singer, J.M.; Saldiva, P.H.N.; Saiki, M.; Locosselli, G.M. The use of tree barks to monitor traffic related air pollution: A case study in São Paulo-Brazil. Front. Environ. Sci. 2018, 6, 1–12. [Google Scholar] [CrossRef]
Element | X | X(BC) | Md | Min | Max | P10 | P90 | S | CV | SX | MAD | A | E | A(BC) | E(BC) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Al a | 1100 | 910 | 890 | 480 | 2700 | 600 | 1900 | 520 | 48 | 77 | 230 | 1.32 | 1.26 | 0.10 | −0.82 |
As b | 0.54 | 0.18 | 0.17 | 0.087 | 6.8 | 0.10 | 0.47 | 1.4 | 260 | 0.21 | 0.067 | 4.16 | 16.82 | 0.24 | −0.49 |
Ba a | 38 | 34 | 34 | 16 | 120 | 24 | 66 | 18 | 47 | 2.7 | 8.8 | 2.23 | 6.92 | −0.00 | 0.27 |
Ca a | 8700 | 8800 | 8500 | 5100 | 12,000 | 6500 | 11,000 | 1700 | 19 | 250 | 1300 | −0.32 | −0.49 | −0.09 | −0.66 |
Cd b | 0.48 | 0.36 | 0.36 | 0.16 | 2.1 | 0.23 | 0.80 | 0.38 | 78 | 0.056 | 0.11 | 2.59 | 7.69 | 0.08 | −0.39 |
Co b | 1.4 | 1.3 | 1.4 | 0.095 | 3.2 | 0.54 | 2.7 | 0.85 | 60 | 0.13 | 0.69 | 0.38 | −1.09 | −0.12 | −0.87 |
Cr a | 3.1 | 2.6 | 2.6 | 0.93 | 10.1 | 1.5 | 5.5 | 1.8 | 58 | 0.27 | 1.0 | 1.64 | 3.90 | 0.03 | −0.67 |
Cu a | 3.9 | 3.7 | 3.9 | 2.6 | 8.1 | 2.9 | 4.6 | 0.94 | 24 | 0.14 | 0.52 | 2.14 | 8.00 | −0.01 | 0.09 |
Fe a | 920 | 820 | 820 | 430 | 2000 | 530 | 1400 | 390 | 42 | 58 | 200 | 1.09 | 0.47 | 0.06 | −0.73 |
Hg b | 0.10 | 0.090 | 0.088 | 0.069 | 0.45 | 0.073 | 0.12 | 0.056 | 55 | 0.008 | 0.012 | 5.54 | 34.10 | 0.12 | −0.27 |
K a | 6400 | 6200 | 6500 | 3900 | 14,000 | 4500 | 7800 | 1600 | 25 | 240 | 790 | 1.73 | 7.30 | −0.02 | 0.98 |
Li b | 1.8 | 0.74 | 0.49 | 0.25 | 6.0 | 0.27 | 5.2 | 2.0 | 110 | 0.30 | 0.23 | 1.00 | −0.72 | 0.25 | −1.56 |
Mg a | 2300 | 2100 | 2200 | 1400 | 3900 | 1600 | 3200 | 600 | 26 | 89 | 410 | 0.81 | 0.11 | 0.05 | −0.82 |
Mn a | 110 | 87 | 88 | 41 | 360 | 50 | 210 | 74 | 67 | 11 | 28 | 2.01 | 3.98 | 0.07 | −0.53 |
Mo b | 0.14 | 0.11 | 0.10 | 0.054 | 0.44 | 0.064 | 0.30 | 0.10 | 71 | 0.015 | 0.024 | 1.91 | 2.86 | 0.12 | −0.57 |
Na a | 93 | 93 | 92 | 51 | 150 | 73 | 120 | 18 | 19 | 2.7 | 11 | 0.18 | 0.88 | 0.03 | 0.78 |
Ni b | 4.4 | 1.7 | 1.7 | 0.46 | 79 | 0.82 | 6.1 | 12 | 270 | 1.8 | 0.75 | 5.98 | 37.83 | 0.05 | 0.10 |
P a | 810 | 770 | 760 | 270 | 1500 | 430 | 1200 | 310 | 38 | 46 | 180 | 0.42 | −0.60 | −0.03 | −0.57 |
Pb b | 6.6 | 5.2 | 7.3 | 0.58 | 38 | 0.63 | 10 | 6.0 | 90 | 0.89 | 2.5 | 3.24 | 16.78 | −0.03 | 0.51 |
Sb b | 0.17 | 0.16 | 0.16 | 0.073 | 0.35 | 0.12 | 0.25 | 0.056 | 33 | 0.008 | 0.030 | 1.08 | 1.34 | −0.00 | 0.50 |
Sr a | 18 | 15 | 14 | 7.5 | 50 | 9.1 | 30 | 9.9 | 56 | 1.5 | 3.8 | 1.66 | 2.51 | 0.09 | −0.73 |
Ti b | 16 | 14 | 15 | 7.6 | 36 | 9.3 | 25 | 5.9 | 38 | 0.88 | 2.6 | 1.57 | 2.93 | 0.01 | −0.00 |
Tl b | 0.021 | 0.016 | 0.017 | 0.008 | 0.12 | 0.009 | 0.034 | 0.018 | 89 | 0.003 | 0.004 | 4.02 | 19.12 | −0.01 | 0.27 |
V a | 2.4 | 2.3 | 2.2 | 0.48 | 5.9 | 1.2 | 3.7 | 1.1 | 45 | 0.16 | 0.71 | 0.84 | 1.28 | 0.02 | 0.42 |
Zn a | 36 | 30 | 31 | 20 | 150 | 23 | 49 | 21 | 58 | 3.1 | 5.2 | 3.97 | 18.82 | 0.12 | −0.17 |
Kosovo 2019, n = 45 | Albania 2015, n = 55 | North Macedonia, 2015, n = 72 | Norway 2015, n = 464 | |||||
---|---|---|---|---|---|---|---|---|
Median | Range | Median | Range | Median | Range | Median | Range | |
Al | 890 | 480–2700 | 1521 | 486–9022 | 2100 | 750–7400 | 460 | 100–3050 |
As | 0.17 | 0.087–6.8 | 0.42 | 0.13–3.2 | 0.54 | 0.13–1.4 | 0.13 | 0.04–4.72 |
Ba | 34 | 16–120 | 18.2 | 8.4–43 | 42.0 | 9.7–180 | 25 | 5.3–130 |
Ca | 8500 | 5100–12,000 | 6509 | 3543–11,188 | 6900 | 3500–13,000 | 3030 | 1820–7230 |
Cd | 0.36 | 0.16–2.1 | 0.12 | 0.045–1.0 | 0.23 | 0.018–0.88 | 0.08 | 0.02–1.33 |
Co | 1.4 | 0.095–3.2 | 1.1 | 0.35–4.2 | 0.60 | 0.16–2.0 | 0.2 | 0.06–23 |
Cr | 2.6 | 0.93–10.1 | 9.3 | 2.21–66 | 5.7 | 1.8–31 | 0.7 | 0.2–17 |
Cu | 3.9 | 2.6–8.1 | 10.0 | 6.1–22 | 4.6 | 3.0–8.3 | 4.2 | 1.8–370 |
Fe | 820 | 430–2000 | 1735 | 685–6956 | 1700 | 510–4600 | 310 | 78–8125 |
Hg | 0.088 | 0.069–0.45 | 0.049 | 0.013–0.21 | 0.084 | 0.02–0.25 | 0.05 | 0.005–0.53 |
K | 6500 | 3900–14,000 | 2577 | 1435–5824 | 6000 | 3100–14,000 | 3560 | 1770–6400 |
Li | 0.49 | 0.25–6.0 | 1.35 | 0.37–4.3 | 0.79 | 0.32–3.51 | 0.16 | 0.04–2.02 |
Mg | 2200 | 1400–3900 | 1550 | 910–2970 | 1900 | 1200–3800 | 1350 | 470–3280 |
Mn | 88 | 41–360 | 63.2 | 25–244 | 160 | 33–510 | 400 | 40–1660 |
Mo | 0.10 | 0.054–0.44 | - | - | 0.17 | 0.085–0.51 | - | - |
Na | 92 | 51–150 | 114 | 76–297 | 190 | 140–380 | 210 | 60–800 |
Ni | 1.7 | 0.46–79 | 7.6 | 0.68–108 | 3.5 | 0.68–63 | 1.1 | 0.4–550 |
P | 760 | 270–1500 | - | - | - | - | - | - |
Pb | 7.3 | 0.58–38 | 2.38 | 0.51–14.5 | 4.9 | 2.2–14 | 0.05 | 0.001-0.4 |
Sb | 0.16 | 0.073–0.35 | - | - | - | - | 0.07 | 0.007–0.38 |
Sr | 14 | 7.5–50 | 19.7 | 8.0–54 | 25 | 6.5–220 | 13.6 | 3.8–60 |
Ti | 15 | 7.6–36 | - | - | - | - | 24 | 6–152 |
Tl | 0.017 | 0.008–0.12 | - | - | - | - | 1.6 | 0.28–22 |
V | 2.2 | 0.48–5.9 | 3.3 | 0.56–26 | 3.3 | 0.47–11 | 1.2 | 0.3–14 |
Zn | 31 | 20–150 | 18 | 10–108 | 30 | 12.1–66 | 31 | 8–409 |
Element | Al | As | Ba | Ca | Cd | Co | Cr | Cu | Fe | Hg | K | Li | Mg | Mn | Mo | Na | Ni | P | Pb | Sb | Sr | Ti | Tl | V | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Al | 1.00 | ||||||||||||||||||||||||
As | 0.31 | 1.00 | |||||||||||||||||||||||
Ba | 0.39 | 0.55 | 1.00 | ||||||||||||||||||||||
Ca | 0.50 | 0.35 | 0.28 | 1.00 | |||||||||||||||||||||
Cd | −0.11 | 0.48 | 0.32 | 0.04 | 1.00 | ||||||||||||||||||||
Co | 0.06 | 0.02 | −0.04 | 0.06 | 0.13 | 1.00 | |||||||||||||||||||
Cr | 0.67 | 0.08 | 0.07 | 0.20 | −0.16 | 0.22 | 1.00 | ||||||||||||||||||
Cu | 0.08 | 0.32 | 0.23 | 0.35 | 0.32 | −0.01 | −0.02 | 1.00 | |||||||||||||||||
Fe | 0.94 | 0.33 | 0.34 | 0.49 | −0.13 | 0.12 | 0.79 | 0.05 | 1.00 | ||||||||||||||||
Hg | 0.02 | −0.08 | −0.06 | −0.17 | 0.16 | 0.28 | 0.08 | −0.03 | 0.01 | 1.00 | |||||||||||||||
K | 0.29 | 0.27 | 0.33 | 0.36 | 0.21 | −0.02 | 0.03 | 0.46 | 0.24 | −0.20 | 1.00 | ||||||||||||||
Li | 0.44 | 0.08 | 0.13 | 0.17 | −0.21 | 0.21 | 0.42 | −0.24 | 0.44 | 0.10 | 0.06 | 1.00 | |||||||||||||
Mg | 0.36 | 0.02 | 0.15 | 0.06 | −0.23 | 0.06 | 0.54 | 0.09 | 0.46 | −0.22 | 0.36 | 0.38 | 1.00 | ||||||||||||
Mn | 0.16 | 0.47 | 0.49 | 0.00 | 0.26 | 0.01 | 0.02 | 0.39 | 0.19 | −0.01 | 0.41 | −0.06 | 0.09 | 1.00 | |||||||||||
Mo | −0.18 | −0.10 | −0.10 | 0.16 | −0.08 | −0.09 | −0.14 | −0.11 | −0.18 | −0.09 | −0.29 | 0.16 | −0.21 | −0.45 | 1.00 | ||||||||||
Na | 0.12 | 0.07 | 0.21 | 0.07 | 0.23 | −0.19 | 0.05 | −0.12 | 0.10 | −0.18 | 0.30 | 0.09 | 0.07 | 0.09 | −0.01 | 1.00 | |||||||||
Ni | 0.26 | 0.01 | −0.03 | −0.13 | −0.14 | 0.35 | 0.73 | −0.27 | 0.46 | 0.01 | −0.26 | 0.41 | 0.43 | 0.03 | −0.05 | 0.09 | 1.00 | ||||||||
P | 0.50 | 0.34 | 0.42 | 0.57 | 0.13 | −0.03 | 0.14 | 0.43 | 0.45 | −0.29 | 0.79 | 0.06 | 0.28 | 0.25 | −0.07 | 0.18 | −0.25 | 1.00 | |||||||
Pb | 0.11 | 0.19 | 0.17 | −0.10 | 0.21 | −0.10 | −0.01 | −0.00 | 0.07 | 0.04 | −0.06 | −0.06 | −0.19 | −0.00 | 0.14 | −0.01 | −0.12 | −0.02 | 1.00 | ||||||
Sb | −0.26 | 0.43 | 0.10 | 0.16 | 0.43 | 0.08 | −0.29 | 0.17 | −0.24 | 0.09 | −0.19 | −0.08 | −0.26 | 0.06 | 0.21 | 0.05 | −0.03 | −0.15 | −0.08 | 1.00 | |||||
Sr | 0.39 | 0.52 | 0.70 | 0.29 | 0.13 | −0.03 | 0.14 | 0.13 | 0.37 | −0.18 | 0.31 | 0.11 | 0.06 | 0.40 | −0.00 | 0.21 | −0.03 | 0.45 | 0.31 | 0.03 | 1.00 | ||||
Ti | 0.55 | −0.15 | 0.21 | 0.03 | −0.01 | 0.03 | 0.49 | −0.10 | 0.51 | 0.19 | 0.05 | 0.14 | 0.25 | −0.08 | −0.15 | 0.23 | 0.17 | 0.06 | 0.21 | −0.35 | 0.11 | 1.00 | |||
Tl | 0.38 | 0.54 | 0.54 | 0.19 | 0.34 | 0.20 | 0.13 | −0.04 | 0.36 | 0.19 | 0.10 | 0.16 | −0.07 | 0.17 | −0.05 | −0.02 | 0.01 | 0.13 | 0.40 | 0.20 | 0.56 | 0.33 | 1.00 | ||
V | 0.69 | 0.14 | 0.12 | 0.42 | −0.07 | 0.21 | 0.63 | 0.23 | 0.73 | 0.27 | 0.26 | 0.26 | 0.19 | 0.20 | −0.22 | 0.00 | 0.22 | 0.26 | 0.20 | −0.20 | 0.25 | 0.50 | 0.28 | 1.00 | |
Zn | −0.01 | 0.61 | 0.49 | 0.13 | 0.59 | 0.06 | −0.00 | 0.43 | 0.04 | −0.01 | 0.31 | −0.09 | 0.01 | 0.47 | −0.06 | 0.10 | 0.07 | 0.21 | 0.24 | 0.36 | 0.35 | −0.29 | 0.30 | 0.06 | 1.00 |
Element | F1 | F2 | F3 | F4 | Comm |
---|---|---|---|---|---|
Al | 0.87 | −0.07 | 0.35 | 0.01 | 96.7 |
Ba | 0.63 | 0.44 | 0.07 | −0.24 | 65.9 |
Cr | 0.79 | −0.12 | 0.01 | 0.23 | 75.9 |
Fe | 0.87 | −0.07 | 0.31 | 0.21 | 97.1 |
Sr | 0.53 | 0.41 | 0.13 | −0.37 | 61.8 |
Ti | 0.76 | −0.13 | −0.13 | −0.03 | 71.2 |
V | 0.67 | −0.10 | 0.40 | 0.33 | 79.2 |
As | −0.13 | 0.86 | −0.01 | −0.11 | 80.8 |
Cd | −0.09 | 0.85 | 0.19 | −0.00 | 81.8 |
Sb | −0.41 | 0.55 | 0.09 | 0.31 | 65.3 |
Tl | 0.17 | 0.83 | −0.14 | 0.06 | 79.7 |
Zn | −0.08 | 0.93 | 0.13 | 0.07 | 92.5 |
Ca | 0.21 | −0.07 | 0.73 | 0.13 | 65.2 |
Cu | −0.18 | 0.04 | 0.71 | 0.02 | 54.9 |
K | 0.34 | 0.28 | 0.66 | −0.21 | 71.5 |
P | 0.35 | 0.14 | 0.75 | −0.26 | 80.9 |
Co | 0.11 | 0.11 | 0.07 | 0.68 | 53.0 |
Ni | 0.08 | −0.02 | −0.15 | 0.72 | 70.7 |
Expl.Var | 24.4 | 21.4 | 14.2 | 9.1 | 69.1 |
EigenVal | 5.09 | 3.97 | 1.81 | 1.56 | |
Prp.Totl | 4.40 | 3.85 | 2.56 | 1.64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paçarizi, M.; Stafilov, T.; Šajn, R.; Tašev, K.; Sopaj, F. Estimation of Elements’ Concentration in Air in Kosovo through Mosses as Biomonitors. Atmosphere 2021, 12, 415. https://doi.org/10.3390/atmos12040415
Paçarizi M, Stafilov T, Šajn R, Tašev K, Sopaj F. Estimation of Elements’ Concentration in Air in Kosovo through Mosses as Biomonitors. Atmosphere. 2021; 12(4):415. https://doi.org/10.3390/atmos12040415
Chicago/Turabian StylePaçarizi, Musaj, Trajče Stafilov, Robert Šajn, Krste Tašev, and Flamur Sopaj. 2021. "Estimation of Elements’ Concentration in Air in Kosovo through Mosses as Biomonitors" Atmosphere 12, no. 4: 415. https://doi.org/10.3390/atmos12040415
APA StylePaçarizi, M., Stafilov, T., Šajn, R., Tašev, K., & Sopaj, F. (2021). Estimation of Elements’ Concentration in Air in Kosovo through Mosses as Biomonitors. Atmosphere, 12(4), 415. https://doi.org/10.3390/atmos12040415