Limitations of GC-QTOF-MS Technique in Identification of Odorous Compounds from Wastewater: The Application of GC-IMS as Supplement for Odor Profiling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Sampling
2.3. GC-QTOF-MS Analysis
2.3.1. SPME Conditions
2.3.2. Chromatographic Conditions
2.3.3. Qualitative Screening Protocol
2.3.4. Quantitative Method Performance
2.4. GC-IMS Analysis
2.4.1. Instrument Parameters
2.4.2. Data Analysis
3. Results and Discussion
3.1. GC-QTOF-MS
3.1.1. Nontarget Analysis
3.1.2. Target Analysis
Precision
Accuracy
Selectivity and Linearity
Limits of Detection (LODs) and Limits of Quantification (LOQs)
Analysis of Samples
3.2. GC-IMS
3.2.1. Profile Analysis
3.2.2. Identification Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gostelow, P.; Parsons, S.A.; Stuetz, R.M. Odour Measurements for Sewage Treatment Works. Water Res. 2001, 35, 579–597. [Google Scholar] [CrossRef]
- Lebrero, R.; Bouchy, L.; Stuetz, R.; Muñoz, R. Odor Assessment and Management in Wastewater Treatment Plants: A Review. Crit. Rev. Environ. Sci. Technol. 2011, 41, 915–950. [Google Scholar] [CrossRef]
- Agus, E.; Zhang, L.; Sedlak, D.L. A framework for identifying characteristic odor compounds in municipal wastewater effluent. Water Res. 2012, 46, 5970–5980. [Google Scholar] [CrossRef]
- Dincer, F.; Muezzinoglu, A. Odor-causing volatile organic compounds in wastewater treatment plant units and sludge management areas. J. Environ. Sci. Health Part A 2008, 43, 1569–1574. [Google Scholar] [CrossRef]
- Hudson, N.; Ayoko, G.A. Odour sampling. 2. Comparison of physical and aerodynamic characteristics of sampling devices: A review. Bioresour. Technol. 2008, 99, 3993–4007. [Google Scholar] [CrossRef] [Green Version]
- Sekyiamah, K.; Kim, H.; McConnell, L.L.; Torrents, A.; Ramirez, M. Identification of Seasonal Variations in Volatile Sulfur Compound Formation and Release from the Secondary Treatment System at a Large Wastewater Treatment Plant. Water Environ. Res. 2008, 80, 2261–2267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarra, T.; Naddeo, V.; Belgiorno, V.; Reiser, M.; Kranert, M. Odour monitoring of small wastewater treatment plant located in sensitive environment. Water Sci. Technol.-Wst 2008, 58, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Karageorgos, P.; Latos, M.; Kotsifaki, C.; Lazaridis, M.; Kalogerakis, N. Treatment of unpleasant odors in municipal wastewater treatment plants. Water Sci. Technol.-Wst 2010, 61, 2635–2644. [Google Scholar] [CrossRef]
- Lehtinen, J.; Veijanen, A. Odour Monitoring by Combined TD–GC–MS–Sniff Technique and Dynamic Olfactometry at the Wastewater Treatment Plant of Low H2S Concentration. Water Air Soil Pollut. 2010, 218, 185–196. [Google Scholar] [CrossRef]
- Olujimi, O.O.; Fatoki, O.S.; Odendaal, J.P.; Daso, A.P. Chemical monitoring and temporal variation in levels of endocrine disrupting chemicals (priority phenols and phthalate esters) from selected wastewater treatment plant and freshwater systems in Republic of South Africa. Microchem. J. 2012, 101, 11–23. [Google Scholar] [CrossRef]
- Skoczko, I.; Struk-Sokolowska, J.; Ofman, P. Seasonal Changes in Nirtogen, Phosphorus, BOD AND COD Removal in Bystre Wastewater Treatment Plant. J. Ecol. Eng. 2017, 18, 185–191. [Google Scholar] [CrossRef]
- Skoczko, I.; Struk-Sokolowska, J.; Ofman, P. Modelling Changes in the Parameters of Treated Sewage Using Artificial Neural Networks. Rocz. Ochr. Srodowiska 2017, 19, 633–650. [Google Scholar]
- Fisher, R.M.; Le-Minh, N.; Sivret, E.C.; Alvarez-Gaitan, J.P.; Moore, S.J.; Stuetz, R.M. Distribution and sensorial relevance of volatile organic compounds emitted throughout wastewater biosolids processing. Sci. Total Environ. 2017, 599–600, 663–670. [Google Scholar] [CrossRef]
- Jiang, G.M.; Melder, D.; Keller, J.; Yuan, Z.G. Odor emissions from domestic wastewater: A review. Crit. Rev. Environ. Sci. Technol. 2017, 47, 1581–1611. [Google Scholar] [CrossRef]
- Lambert, S.D.; Beaman, A.L.; Winter, P. Olfactometric characterisation of sludge odours. Water Sci. Technol. 2000, 41, 49–55. [Google Scholar] [CrossRef]
- Dincer, F.; Muezzinoglu, A. Odor Determination at Wastewater Collection Systems: Olfactometry versus H2S Analyses. Clean-Soil Air Water 2007, 35, 565–570. [Google Scholar] [CrossRef]
- Burlingame, G.A.; Suffet, I.H.; Khiari, D.; Bruchet, A.L. Development of an odor wheel classification scheme for wastewater. Water Sci. Technol. 2004, 49, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Suffet, I.H.; Burlingame, G.A.; Rosenfeld, P.E.; Bruchet, A. The value of an odor-quality-wheel classification scheme for wastewater treatment plants. Water Sci. Technol. 2004, 50, 25–32. [Google Scholar] [CrossRef]
- Decottignies, V.; Huyard, A.; Kelly, R.F.; Barillon, B. Development of a diagnostic tool: The wastewater collection network odour wheel. Water Sci. Technol. 2013, 68, 839–847. [Google Scholar] [CrossRef] [PubMed]
- Fisher, R.M.; Barczak, R.J.; Suffet, I.H.M.; Hayes, J.E.; Stuetz, R.M. Framework for the use of odour wheels to manage odours throughout wastewater biosolids processing. Sci. Total Environ. 2018, 634, 214–223. [Google Scholar] [CrossRef]
- Koch, E.; Winneke, G.; Sucker, K.; Both, R. Odour intensity and hedonic tone - important parameters to describe odour annoyance to residents? Water Sci. Technol. 2004, 50, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Jarmusch, A.K.; Kerian, K.S.; Pirro, V.; Peat, T.; Thompson, C.A.; Ramos-Vara, J.A.; Childress, M.O.; Cooks, R.G. Characteristic lipid profiles of canine non-Hodgkin’s lymphoma from surgical biopsy tissue sections and fine needle aspirate smears by desorption electrospray ionization-mass spectrometry. Analyst 2015, 140, 6321–6329. [Google Scholar] [CrossRef]
- Jjunju, F.P.M.; Maher, S.; Li, A.; Badu-Tawiah, A.K.; Taylor, S.; Cooks, R.G. Analysis of Polycyclic Aromatic Hydrocarbons Using Desorption Atmospheric Pressure Chemical Ionization Coupled to a Portable Mass Spectrometer. J. Am. Soc. Mass Spectrom. 2015, 26, 271–280. [Google Scholar] [CrossRef] [Green Version]
- Fedick, P.W.; Pu, F.; Morato, N.M.; Cooks, R.G. Identification and Confirmation of Fentanyls on Paper using Portable Surface Enhanced Raman Spectroscopy and Paper Spray Ionization Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2020, 31, 735–741. [Google Scholar] [CrossRef] [PubMed]
- Escalas, A.; Guadayol, J.M.; Cortina, M.; Rivera, J.; Caixach, J. Time and space patterns of volatile organic compounds in a sewage treatment plant. Water Res. 2003, 37, 3913–3920. [Google Scholar] [CrossRef]
- Kotowska, U.; Zalikowski, M.; Isidorov, V.A. HS-SPME/GC-MS analysis of volatile and semi-volatile organic compounds emitted from municipal sewage sludge. Environ. Monit. Assess. 2012, 184, 2893–2907. [Google Scholar] [CrossRef] [Green Version]
- Kleeberg, K.K.; Liu, Y.; Jans, M.; Schlegelmilch, M.; Streese, J.; Stegmann, R. Development of a simple and sensitive method for the characterization of odorous waste gas emissions by means of solid-phase microextraction (SPME) and GC-MS/olfactometry. Waste Manag. 2005, 25, 872–879. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Hallis, S.A.; Vitko, T.; Suffet, I.H. Identification, quantification and treatment of fecal odors released into the air at two wastewater treatment plants. J. Environ. Manag. 2016, 180, 257–263. [Google Scholar] [CrossRef]
- Zhu, Y.L.; Zheng, G.D.; Gao, D.; Chen, T.B.; Wu, F.K.; Niu, M.J.; Zou, K.H. Odor composition analysis and odor indicator selection during sewage sludge composting. J. Air Waste Manag. Assoc. 2016, 66, 930–940. [Google Scholar] [CrossRef]
- Gonzalez, D.; Colon, J.; Sanchez, A.; Gabriel, D. A systematic study on the VOCs characterization and odour emissions in a full-scale sewage sludge composting plant. J. Hazard. Mater. 2019, 373, 733–740. [Google Scholar] [CrossRef]
- Nie, E.; Zheng, G.D.; Gao, D.; Chen, T.B.; Yang, J.X.; Wang, Y.W.; Wang, X.K. Emission characteristics of VOCs and potential ozone formation from a full-scale sewage sludge composting plant. Sci. Total Environ. 2019, 659, 664–672. [Google Scholar] [CrossRef]
- Kanu, A.B.; Hill, H.H., Jr. Ion mobility spectrometry detection for gas chromatography. J. Chromatogr. A 2008, 1177, 12–27. [Google Scholar] [CrossRef] [PubMed]
- Armenta, S.; Alcala, M.; Blanco, M. A review of recent, unconventional applications of ion mobility spectrometry (IMS). Anal. Chim. Acta 2011, 703, 114–123. [Google Scholar] [CrossRef]
- Vautz, W.; Franzke, J.; Zampolli, S.; Elmi, I.; Liedtke, S. On the potential of ion mobility spectrometry coupled to GC pre-separation-A tutorial. Anal. Chim. Acta 2018, 1024, 52–64. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Delgado, R.; Mercader-Trejo, F.; Sielemann, S.; de Bruyn, W.; Arce, L.; Valcarcel, M. Direct classification of olive oils by using two types of ion mobility spectrometers. Anal. Chim. Acta 2011, 696, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Delgado, R.; Arce, L.; Valcarcel, M. Multi-capillary column-ion mobility spectrometry: A potential screening system to differentiate virgin olive oils. Anal. Bioanal. Chem. 2012, 402, 489–498. [Google Scholar] [CrossRef]
- Garrido-Delgado, R.; Dobao-Prieto Mdel, M.; Arce, L.; Valcarcel, M. Determination of volatile compounds by GC-IMS to assign the quality of virgin olive oil. Food Chem. 2015, 187, 572–579. [Google Scholar] [CrossRef]
- Junger, M.; Bodeker, B.; Baumbach, J.I. Peak assignment in multi-capillary column-ion mobility spectrometry using comparative studies with gas chromatography-mass spectrometry for VOC analysis. Anal. Bioanal. Chem. 2010, 396, 471–482. [Google Scholar] [CrossRef] [PubMed]
- Vautz, W.; Hariharan, C.; Weigend, M. Smell the change: On the potential of gas-chromatographic ion mobility spectrometry in ecosystem monitoring. Ecol. Evol. 2018, 8, 4370–4377. [Google Scholar] [CrossRef]
- Sivret, E.C.; Wang, B.; Parcsi, G.; Stuetz, R.M. Prioritisation of odorants emitted from sewers using odour activity values. Water Res. 2016, 88, 308–321. [Google Scholar] [CrossRef]
- Fisher, R.M.; Le-Minh, N.; Alvarez-Gaitan, J.P.; Moore, S.J.; Stuetz, R.M. Emissions of volatile sulfur compounds (VSCs) throughout wastewater biosolids processing. Sci. Total Environ. 2018, 616–617, 622–631. [Google Scholar] [CrossRef]
- Van Gemert, L.J. Odour Thresholds: Compilations of Odour Threshold Values in Air, Water and Other Media; Oliemans Punter & Partners BV: Utrecht, The Netherlands, 2011. [Google Scholar]
- Han, Z.L.; Qi, F.; Li, R.Y.; Wang, H.; Sun, D.Z. Health impact of odor from on-situ sewage sludge aerobic composting throughout different seasons and during anaerobic digestion with hydrolysis pretreatment. Chemosphere 2020, 249, 1–10. [Google Scholar] [CrossRef]
- Portoles, T.; Pitarch, E.; Lopez, F.J.; Hernandez, F. Development and validation of a rapid and wide-scope qualitative screening method for detection and identification of organic pollutants in natural water and wastewater by gas chromatography time-of-flight mass spectrometry. J. Chromatogr. A 2011, 1218, 303–315. [Google Scholar] [CrossRef] [PubMed]
- Vera, L.; Companioni, E.; Meacham, A.; Gygax, H. Real Time Monitoring of VOC and Odours Based on GC-IMS at Wastewater Treatment Plants. Chem. Eng. Trans. 2016, 54, 79–84. [Google Scholar] [CrossRef]
- Lewkowska, P.; Cieslik, B.; Dymerski, T.; Konieczka, P.; Namiesnik, J. Characteristics of odors emitted from municipal wastewater treatment plant and methods for their identification and deodorization techniques. Environ. Res. 2016, 151, 573–586. [Google Scholar] [CrossRef] [PubMed]
- Fan, F.; Xu, R.; Wang, D.; Meng, F. Application of activated sludge for odor control in wastewater treatment plants: Approaches, advances and outlooks. Water Res. 2020, 181, 115915. [Google Scholar] [CrossRef]
References | [25] | [26] | [27] | [28] | [29] | [30] | [31] |
---|---|---|---|---|---|---|---|
Methods | CLSA/ GC-MS | HS-SPME/ GC-MS | SPME/ GC-MS SPME/ GC-FID/O | LGIS/ GC-MS | TSPS/ GC-MS | TD/ GC-MS | Portable GC-MS |
Numbers | 47 | 164 | 56 | 2 | 83 | 35 | 33 |
Odor Categories | Odor Descriptor | Chemical Compounds | References |
---|---|---|---|
Earthy/Musty | Earthy/Musty/Moldy | Geosmin | |
2-Methylisoborneol | |||
Trichloro anisole | |||
Oxidant/Chlorinous | Chlorinous | Monochloramine | |
Dichloramine | |||
Grassy/Woody | Green/Grassy/ Hay | cis-3-Hexen-1-ol | [27] |
Formaldehyde | |||
Sulfide/Cabbage/Garlic | Rotten Eggs/ | Hydrogen sulfide | [29] |
Decaying Vegetation | Dimethyl trisulfide | [25,26] | |
Dimethyl sulfide | [26,29,30,31] | ||
Thiophene | |||
Methyl mercaptan | [29] | ||
Dimethyl disulfide | [25,26,29,30,31] | ||
Rancid/Putrid | Sour Milk/ | Methyl thiobutyrate | |
Putrid/ | Valeric acid | ||
Rancid | Isovaleric acid | ||
Butyric acid | |||
Heptanal | [26] | ||
Amyl mercaptan | |||
Fragrant/Fruity | Soapy/ | 1-Dodecanal | |
Fruity/ | Acetaldehyde | [27] | |
Citrusy | Ethyl acetate | [26] | |
d-Limonene | [25,26,27,31] | ||
Ammonia/Fishy | Ammonia/ | Ammonia | [29] |
Cat Urine/ | Pyridine | [26] | |
Fishy | Butylamine | ||
Triethylamine | |||
Solventy/Hydrocarbon | Solventy/ Gasoline | Benzene | [25,26,29,31] |
Toluene | [25,26,27,29,31] | ||
m-Xylene | [25,26,27,29,31] | ||
Styrene | [25,26,27,29] | ||
Heptane | [25,26] | ||
Medicinal/Alcohol | Medicinal/Alcohol | 1-Hexanol | [26] |
Phenol | [26,30,31] | ||
1-Butanol | [26] | ||
Fecal/Sewery | Fecal | Indole | [26,28,30] |
Skatole | [28,30] | ||
Nose feel | Pungent/ | Ammonia | |
Irritating/ | Ozone | ||
Sharp | Chlorine dioxide |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, W.; Yang, X.; Zhu, X.; Jiao, R.; Zhao, S.; Yu, J.; Wang, D. Limitations of GC-QTOF-MS Technique in Identification of Odorous Compounds from Wastewater: The Application of GC-IMS as Supplement for Odor Profiling. Atmosphere 2021, 12, 265. https://doi.org/10.3390/atmos12020265
Gao W, Yang X, Zhu X, Jiao R, Zhao S, Yu J, Wang D. Limitations of GC-QTOF-MS Technique in Identification of Odorous Compounds from Wastewater: The Application of GC-IMS as Supplement for Odor Profiling. Atmosphere. 2021; 12(2):265. https://doi.org/10.3390/atmos12020265
Chicago/Turabian StyleGao, Wei, Xiaofang Yang, Xinmeng Zhu, Ruyuan Jiao, Shan Zhao, Jianwei Yu, and Dongsheng Wang. 2021. "Limitations of GC-QTOF-MS Technique in Identification of Odorous Compounds from Wastewater: The Application of GC-IMS as Supplement for Odor Profiling" Atmosphere 12, no. 2: 265. https://doi.org/10.3390/atmos12020265
APA StyleGao, W., Yang, X., Zhu, X., Jiao, R., Zhao, S., Yu, J., & Wang, D. (2021). Limitations of GC-QTOF-MS Technique in Identification of Odorous Compounds from Wastewater: The Application of GC-IMS as Supplement for Odor Profiling. Atmosphere, 12(2), 265. https://doi.org/10.3390/atmos12020265