Is the Urban Form a Driver of Heavy Metal Pollution in Road Dust? Evidence from Mexico City
Abstract
:1. Introduction
2. Literature Review
3. Study Site
4. Materials and Methods
4.1. Data Collection
4.2. Spatial Autocorrelation
4.3. Regression Models
5. Results
5.1. Spatial Autocorrelation
5.2. Factors Influencing the Heavy Metal Concentrations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- CONAPO; SEDESOL. Catálogo Sistema Urbano Nacional 2012. Available online: http://www.conapo.gob.mx/work/models/CONAPO/Resource/1539/1/images/PartesIaV.pdf (accessed on 16 February 2021).
- Molina, L.T.; Madronich, S.; Gaffney, J.S.; Apel, E.; De Foy, B.; Fast, J.; Ferrare, R.; Herndon, S.; Jimenez, J.L.; Lamb, B.; et al. An overview of the MILAGRO 2006 Campaign: Mexico City emissions and their transport and transformation. Atmos. Chem. Phys. 2010, 10, 8697–8760. [Google Scholar] [CrossRef] [Green Version]
- Dash, D.P.; Behera, S.R.; Rao, D.T.; Sethi, N.; Loganathan, N. Governance, urbanization, and pollution: A cross-country analysis of global south region. Cogent Econ. Finance 2020, 8, 1742023. [Google Scholar] [CrossRef] [Green Version]
- WHO. The Power of Cities: Tackling Noncommicable Diseases and Road Traffic Injuries. Switzerland. 2019. Available online: https://www.who.int/ncds/publications/tackling-ncds-in-cities/en/ (accessed on 16 February 2021).
- Aguilera, A.; Bautista, F.; Goguitchaichvili, A.; Garcia-Oliva, F. Health risk of heavy metals in street dust. Front. Biosci. 2021, 26, 327–345. [Google Scholar] [CrossRef]
- Safiur Rahman, M.; Khan, M.D.H.; Jolly, Y.N.; Kabir, J.; Akter, S.; Salam, A. Assessing risk to human health for heavy metal contamination through street dust in the Southeast Asian Megacity: Dhaka, Bangladesh. Sci. Total Environ. 2019, 660, 1610–1622. [Google Scholar] [CrossRef]
- Zhao, H.; Shao, Y.; Yin, C.; Jiang, Y.; Li, X. An index for estimating the potential metal pollution contribution to atmospheric particulate matter from road dust in Beijing. Sci. Total Environ. 2016, 550, 167–175. [Google Scholar] [CrossRef]
- Jung, M.C.; Park, J.; Kim, S. Spatial relationships between urban structures and air pollution in Korea. Sustainability 2019, 11, 476. [Google Scholar] [CrossRef] [Green Version]
- Liang, L.; Wang, Z.; Li, J. The effect of urbanization on environmental pollution in rapidly developing urban agglomerations. J. Clean. Prod. 2019, 237, 117649. [Google Scholar] [CrossRef]
- Selden, T.M.; Song, D. Environmental Quality and Development: Is There a Kuznets Curve for Air Pollution Emissions? J. Environ. Econ. Manage. 1994, 27, 147–162. [Google Scholar] [CrossRef]
- Cole, M.A. Development, Trade, and the Environment: How Robust is the Environmental Kuznets Curve? Environ. Dev. Econ. 2004, 8, 557–579. [Google Scholar] [CrossRef]
- Aguilera, A.; Bautista, F.; Gogichaichvili, A.; Gutiérrez-Ruiz, M.E.; Ceniceros-Gómez, A.E.; López-Santiago, N.R. Spatial distribution of manganese concentration and load in street dust in Mexico City. Salud Publica Mex. 2020, 62, 147–155. [Google Scholar] [CrossRef]
- Aguilera, A.; Armendariz, C.; Quintana, P.; García-Oliva, F.; Bautista, F. Influence of Land Use and Road Type on the Elemental Composition of Urban Dust in a Mexican Metropolitan Area. Polish J. Environ. Stud. 2019, 28, 1535–1547. [Google Scholar] [CrossRef]
- Alharbi, B.H.; Pasha, M.J.; Al-Shamsi, M.A.S. Influence of Different Urban Structures on Metal Contamination in Two Metropolitan Cities. Sci. Rep. 2019, 9, 4920. [Google Scholar] [CrossRef]
- Men, C.; Liu, R.; Xu, F.; Wang, Q.; Guo, L.; Shen, Z. Pollution characteristics, risk assessment, and source apportionment of heavy metals in road dust in Beijing, China. Sci. Total Environ. 2018, 612, 138–147. [Google Scholar] [CrossRef]
- Jan, A.T.; Azam, M.; Siddiqui, K.; Ali, A.; Choi, I.; Haq, Q.M.R. Heavy metals and human health: Mechanistic insight into toxicity and counter defense system of antioxidants. Int. J. Mol. Sci. 2015, 16, 29592–29630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamayo y Ortiz, M.; Téllez-Rojo, M.M.; Hu, H.; Hernández-Ávila, M.; Wright, R.; Amarasiriwardena, C.; Lupoli, N.; Mercado-García, A.; Pantic, I.; Lamadrid-Figueroa, H. Lead in candy consumed and blood lead levels of children living in Mexico City. Environ. Res. 2016, 147, 497–502. [Google Scholar] [CrossRef]
- Liu, Y.; Peterson, K.E.; Montgomery, K.; Sánchez, B.N.; Zhang, Z.; Afeiche, M.C.; Cantonwine, D.E.; Ettinger, A.S.; Cantoral, A.; Schnaas, L.; et al. Early lead exposure and childhood adiposity in Mexico city. Int. J. Hyg. Environ. Health 2019, 222, 965–970. [Google Scholar] [CrossRef]
- Kim, J.J.; Kim, Y.S.; Kumar, V. Heavy metal toxicity: An update of chelating therapeutic strategies. J. Trace Elem. Med. Biol. 2019, 54, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Leung, A.O.; Duzgoren-Aydin, N.S.; Cheung, K.C.; Wong, M.H. Heavy metals concentrations of surface dust from e-waste recycling and its human health implications in southeast China. Environ. Sci. Technol. 2008, 42, 2674–2680. [Google Scholar] [CrossRef]
- Lin, M.; Gui, H.; Wang, Y.; Peng, W. Pollution characteristics, source apportionment, and health risk of heavy metals in street dust of Suzhou, China. Environ. Sci. Pollut. Res. 2017, 24, 1987–1998. [Google Scholar] [CrossRef]
- Tapia, J.S.; Valdés, J.; Orrego, R.; Tchernitchin, A.; Dorador, C.; Bolados, A.; Harrod, C. Geologic and anthropogenic sources of contamination in settled dust of a historic mining port city in northern Chile: Health risk implications. PeerJ 2018, 6, e4699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bañuelos, S.; Ajwa, H.A. Trace elements in soils and plants: An overview. J. Environ. Sci. Health A 1999, 34, 951–974. [Google Scholar] [CrossRef]
- Taşpınar, F.; Bozkurt, Z. Heavy metal pollution and health risk assessment of road dust on selected highways in Düzce, Turkey. Environ. Forensics 2018, 19, 298–314. [Google Scholar] [CrossRef]
- Budai, P.; Clement, A. Spatial distribution patterns of four traffic-emitted heavy metals in urban road dust and the resuspension of brake-emitted particles: Findings of a field study. Transp. Res. D Transp. Environ. 2018, 62, 179–185. [Google Scholar] [CrossRef]
- Gunawardena, J.; Ziyath, A.M.; Egodawatta, P.; Ayoko, G.A.; Goonetilleke, A. Mathematical relationships for metal build-up on urban road surfaces based on traffic and land use characteristics. Chemosphere 2014, 99, 267–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Świetlik, R.; Trojanowska, M.; Strzelecka, M.; Bocho-Janiszewska, A. Fractionation and mobility of Cu, Fe, Mn, Pb and Zn in the road dust retained on noise barriers along expressway-A potential tool for determining the effects of driving conditions on speciation of emitted particulate metals. Environ. Pollut. 2015, 196, 404–413. [Google Scholar] [CrossRef]
- Amato, F.; Alastuey, A.; Karanasiou, A.; Lucarelli, F.; Nava, S.; Calzolai, G.; Severi, M.; Becagli, S.; Gianelle, V.L.; Colombi, C.; et al. AIRUSE-LIFE+: A harmonized PM speciation and source apportionment in five southern European cities. Atmos. Chem. Phys. 2016, 16, 3289–3309. [Google Scholar] [CrossRef] [Green Version]
- Sternbeck, J.; Sjödin, A.; Andréasson, K. Metal emissions from road traffic and the influence of resuspension—results from two tunnel studies. Atmos. Environ. 2002, 36, 4735–4744. [Google Scholar] [CrossRef]
- Viana, M.; Kuhlbusch, T.A.J.; Querol, X.; Alastuey, A.; Harrison, R.M.; Hopke, P.K.; Winiwarter, W.; Vallius, M.; Szidat, S.; Prévôt, A.S.H.; et al. Source apportionment of particulate matter in Europe: A review of methods and results. J. Aerosol Sci. 2008, 39, 827–849. [Google Scholar] [CrossRef]
- Lee, P.K.; Chang, H.J.; Yu, S.; Chae, K.H.; Bae, J.H.; Kang, M.J.; Chae, G. Characterization of Cr (VI)–Containing solid phase particles in dry dust deposition in Daejeon, South Korea. Environ. Pollut. 2018, 243, 1637. [Google Scholar] [CrossRef]
- Legalley, E.; Krekeler, M.P.S. A mineralogical and geochemical investigation of street sediment near a coal-fired power plant in Hamilton, Ohio: An example of complex pollution and cause for community health concerns. Environ. Pollut. 2013, 176, 26–35. [Google Scholar] [CrossRef]
- Zhang, J.J.Y.; Sun, L.; Barrett, O.; Bertazzon, S.; Underwood, F.E.; Johnson, M. Development of land-use regression models for metals associated with airborne particulate matter in a North American city. Atmos. Environ. 2015, 106, 165. [Google Scholar] [CrossRef]
- Muñiz, I.; Sanchez, V. Urban Spatial Form and Structure and Greenhouse-gas Emissions From Commuting in the Metropolitan Zone of Mexico Valley. Ecol. Econ. 2018, 147, 353–364. [Google Scholar] [CrossRef]
- Delgado, C.; Bautista, F.; Gogichaishvili, A.; Cortés, J.L.; Quintana, P.; Aguilar, D.; Cejudo, R. Identificación de las zonas contaminadas con metales pesados en el polvo urbano de la Ciudad de México. Rev. Int. Contam. Ambient. 2019, 35, 81–100. [Google Scholar] [CrossRef] [Green Version]
- UN DESA. World Urbanization Prospects. The 2018 Revision. New York. 2019. Available online: http://www.demographic-research.org/volumes/vol12/9/ (accessed on 16 February 2021).
- Vallejo, M.; Jáuregui-Renaud, K.; Hermosillo, A.G.; Márquez, M.F.; Cárdenas, M. Efectos de la contaminación atmosférica en la salud y su importancia en la ciudad de México. Gac. Med. Mex. 2003, 139, 57–63. [Google Scholar]
- Rodríguez-Salazar, M.T.; Morton-Bermea, O.; Hernández-Álvarez, E.; Lozano, R.; Tapia-Cruz, V. The study of metal contamination in urban topsoils of Mexico City using GIS. Environ. Earth Sci. 2011, 62, 899. [Google Scholar] [CrossRef]
- Pradilla, C.E. Zona Metropolitana del Valle de México: Neoliberalismo y contradicciones urbanas. Sociologias 2016, 18, 54–89. [Google Scholar]
- Delgado, J. El patrón de ocupación territorial de la Ciudad de Mexico al año 2000. In Estructura Territorial de la Ciudad de México; Terrazas, O., Preciat, E., Eds.; CDMX: Plaza y Valdez, Mexico, 1988. [Google Scholar]
- CONAGUA. Servicio Meteorológico Nacional (2017). Resumen Mensual de Temperatura y Lluvias 2017. 2017. Available online: https://smn.conagua.gob.mx/es/climatologia/temperaturas-y-lluvias/resumenes-mensuales-de-temperaturas-y-lluvias (accessed on 2 February 2021).
- Gunier, R.B.; Jerrett, M.; Smith, D.R.; Jursa, T.; Yousefi, P.; Camacho, J.; Hubbard, A.; Eskenazi, B.; Bradman, A. Determinants of manganese levels in house dust samples from the CHAMACOS cohort. Sci. Total Environ. 2014, 497, 360–368. [Google Scholar] [CrossRef] [Green Version]
- Amato, F.; Pandolfi, M.; Moreno, T.; Furger, M.; Pey, J.; Alastuey, A.; Bukowiecki, N.; Prevot, A.S.H.; Baltensperger, U.; Querol, X. Sources and variability of inhalable road dust particles in three European cities. Atmos. Environ. 2011, 45, 6777–6787. [Google Scholar] [CrossRef]
- Jadoon, W.A.; Khpalwak, W.; Chidya, R.C.G.; Abdel-Dayem, S.M.M.A.; Takeda, K.; Makhdoom, M.A.; Sakugawa, H. Evaluation of Levels, Sources and Health Hazards of Road-Dust Associated Toxic Metals in Jalalabad and Kabul Cities, Afghanistan. Arch. Environ. Contam. Toxicol. 2018, 74, 32–45. [Google Scholar] [CrossRef]
- Li, N.; Han, W.; Tang, J.; Bian, J.; Sun, S.; Song, T. Pollution Characteristics and Human Health Risks of Elements in Road Dust in Changchun, China. Int. J. Environ. Res. Public Health 2018, 15, 1843. [Google Scholar] [CrossRef] [Green Version]
- Sobhanardakani, S. Ecological and Human Health Risk Assessment of Heavy Metal Content of Atmospheric Dry Deposition, a Case Study: Kermanshah, Iran. Biol. Trace Elem. Res. 2019, 187, 602–610. [Google Scholar] [CrossRef]
- Aguilera, A.; Bautista, F.; Gutiérrez-Ruiz, M.; Ceniceros-Gómez, A.E.; Cejudo, R.; Goguitchaichvili, A. Assessment of pollution, sources, and human health risk from heavy metal analyses in street dust of Mexico City. (In review).
- Tomlinson, D.L.; Wilson, J.G.; Harris, C.R.; Jeffrey, D.W. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgol. Meeresunters. 1980, 33, 566–575. [Google Scholar] [CrossRef] [Green Version]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press: Boca Raton, FL, USA; Taylor and Francis Group, LLC: New York, NY, USA, 2010. [Google Scholar] [CrossRef]
- Rastegari Mehr, M.; Keshavarzi, B.; Moore, F.; Sharifi, R.; Lahijanzadeh, A.; Kermani, M. Distribution, source identification and health risk assessment of soil heavy metals in urban areas of Isfahan province, Iran. J. Afr. Earth Sci. 2017, 132, 16–26. [Google Scholar] [CrossRef]
- INEGI. Censo General de Población y Vivienda. Mexico. 2010. Available online: https://www.inegi.org.mx/programas/ccpv/2010/ (accessed on 16 February 2021).
- INEGI. Origin-Destination Survey in Households of the Metropolitan Zone of the Valley of Mexico (EOD). 2017. Available online: http://en.www.inegi.org.mx/programas/eod/2017/default.html#Microdata (accessed on 28 October 2020).
- INEGI. Instituto Nacional De Estadística y Geografía. 2018. Available online: www.inegi.gob.mx (accessed on 16 February 2021).
- Gobierno de la Ciudad de México. Portal de Datos Abiertos de la CDMX Retrieved March 15. 2020. Available online: https://datos.cdmx.gob.mx/explore/dataset/uo-de-suelo/table/ (accessed on 25 February 2020).
- CONAPO. Indice de Marginacion por AGEB Urbana 2000–2010 [WWW Document]. Available online: http://www.conapo.gob.mx/es/CONAPO/Datos_Abiertos_del_Indice_de_Marginacion (accessed on 8 June 2020).
- Moran, P.A.P. Notes on Continuous Stochastic Phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Anselin, L. Exploring Spatial Data with GeoDaTM: A Workbook, Revised Version; Center for Spatially Integrated Social Science: Santa Barbara, CA, USA, 2005. [Google Scholar]
- Darmofal, D. Spatial Analysis for the Social Sciences; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- UN DESA. World Population Prospects 2019. United Nations. Department of Economic and Social Affairs. World Population Prospects 2019. Available online: http://www.ncbi.nlm.nih.gov/pubmed/12283219 (accessed on 16 February 2021).
Heavy Metal | Global 1 Background | Minimum | Maximum | Median | Mean | Standard Deviation |
---|---|---|---|---|---|---|
Cr | 59.5 | 15.0 | 441.0 | 43.7 | 51.4 | 34.3 |
Cu | 38.9 | 6.2 | 847.1 | 81.2 | 99.7 | 75.8 |
Ni | 29 | 13.7 | 148.7 | 35.0 | 36.3 | 13.9 |
Pb | 27 | 8.8 | 1907.8 | 101.2 | 128.2 | 134.6 |
Zn | 70 | 18.7 | 4827.6 | 229.9 | 280.7 | 294.4 |
PLI 2 | 0.3 | 6.3 | 2.0 | 1.9 | 0.8 | |
Dust load 3 | 5.4 | 173.3 | 43.0 | 46.4 | 23.2 |
Covariate | Minimum | Maximum | Median | Mean | Standard Deviation |
---|---|---|---|---|---|
Population density (hab/ha) | 0.0 | 443.1 | 132.4 | 139.8 | 81.1 |
Job density (jobs/ha) | 4.2 | 349.7 | 30.0 | 43.9 | 50.7 |
Street intersections | 0.0 | 162.0 | 38.0 | 45.4 | 29.2 |
Road surface (m2) | 2922.8 | 99,909.4 | 47,475.6 | 47,196.8 | 15,477.1 |
Distance to the airport (m) | 803.2 | 25,424.3 | 12,792.8 | 12,571.7 | 5329.5 |
Distance to the city center (m) | 633.9 | 24,361.9 | 10,304.1 | 10,977.3 | 5245.1 |
Manufacturing units | 0.0 | 377.0 | 13.0 | 15.5 | 21.1 |
Potentially polluting units | 0.0 | 24.0 | 1.0 | 1.4 | 2.7 |
Gray area (ha) | 0.0 | 15.7 | 0.0 | 0.3 | 1.4 |
Entropy index | 0.0 | 0.8 | 0.3 | 0.3 | 0.2 |
Vegetation (%) | 0.0 | 65.6 | 5.5 | 10.0 | 11.9 |
Distance to vegetation (m) | 0.0 | 329.3 | 22.0 | 40.2 | 48.2 |
Median strip area (m2) | 0.0 | 67,855.0 | 1498.0 | 4531.3 | 8161.5 |
Marginalization index | −1.4 | 1.3 | −0.7 | −0.7 | 0.5 |
Variable | 1600 m | p-Value | 5000 m | p-Value | 10,000 m | p-Value | 15,000 m | p-Value |
---|---|---|---|---|---|---|---|---|
Cr | 0.05 | 0.07 | 0.03 | 0.00 *** | 0.00 | 0.41 | 0.00 | 0.72 |
Cu | 0.08 | 0.00 ** | 0.05 | 0.00 *** | 0.02 | 0.00 *** | 0.01 | 0.00 *** |
Ni | 0.00 | 0.11 | 0.02 | 0.06 | 0.01 | 0.01 * | 0.01 | 0.00 *** |
Pb | 0.06 | 0.02 | 0.03 | 0.00 ** | 0.00 | 0.14 | 0.00 | 0.49 |
Zn | 0.06 | 0.01 * | 0.01 | 0.14 | 0.01 | 0.01 * | 0.01 | 0.00 *** |
PLI | 0.13 | 0.00 *** | 0.06 | 0.00 *** | 0.02 | 0.00 *** | 0.01 | 0.00 *** |
Road dust load | 0.18 | 0.00 *** | 0.16 | 0.00 *** | 0.10 | 0.00 *** | 0.04 | 0.00 *** |
Test | Cr | Cu | Ni | Pb | Zn | PLI | Dust Load |
---|---|---|---|---|---|---|---|
Lm (lag) | 0.11 | 0.15 | 0.51 | 0.51 | 0.89 | 0.65 | 0.50 |
LM (error) | 0.06 | 0.24 | 0.75 | 0.14 | 0.56 | 0.47 | 0.24 |
Robust LM (lag) | 0.11 | 0.35 | 0.14 | 0.07 | 0.31 | 0.50 | 0.18 |
Robust LM (error) | 0.06 | 0.65 | 0.17 | 0.02 * | 0.24 | 0.38 | 0.10 |
Covariate | Cr | Cu | Ni | Pb | ||||||||
beta | p | beta | p | beta | p | beta | p | |||||
Intercept | 4.94 | 0.00 | *** | 3.64 | 0.03 | * | 3.30 | 0.00 | *** | 6.76 | 0.00 | ** |
Population density (inhabitants/ha) | 0.00 | 0.98 | −0.03 | 0.40 | −0.02 | 0.36 | 0.03 | 0.49 | ||||
Job density (jobs/ha) | −0.04 | 0.46 | 0.11 | 0.10 | . | −0.01 | 0.76 | 0.04 | 0.61 | |||
Street intersections | 0.02 | 0.71 | −0.06 | 0.49 | 0.02 | 0.63 | 0.01 | 0.93 | ||||
Road surface (m2) | −0.07 | 0.48 | 0.03 | 0.85 | −0.07 | 0.35 | −0.09 | 0.59 | ||||
Distance to the airport (m) | −0.06 | 0.38 | 0.05 | 0.57 | 0.10 | 0.06 | . | −0.18 | 0.11 | |||
Distance to the city center (m) | 0.01 | 0.87 | −0.04 | 0.71 | 0.02 | 0.79 | −0.03 | 0.84 | ||||
Manufacturing units | 0.04 | 0.34 | 0.10 | 0.04 | * | 0.02 | 0.37 | 0.07 | 0.27 | |||
Potentially polluting units | 0.08 | 0.12 | −0.03 | 0.62 | −0.02 | 0.58 | 0.00 | 0.96 | ||||
Gray area (ha) | 0.00 | 0.97 | 0.08 | 0.45 | 0.05 | 0.43 | −0.03 | 0.81 | ||||
Entropy index | 0.02 | 0.93 | -0.17 | 0.46 | 0.37 | 0.01 | ** | 0.15 | 0.60 | |||
Vegetation (%) | −0.01 | 0.82 | −0.03 | 0.60 | −0.05 | 0.10 | −0.01 | 0.90 | ||||
Distance to vegetation (m) | −0.01 | 0.68 | 0.02 | 0.53 | −0.03 | 0.21 | 0.01 | 0.84 | ||||
Median strip area (m2) | 0.01 | 0.10 | . | 0.02 | 0.09 | . | 0.01 | 0.09 | . | 0.02 | 0.08 | . |
Marginalization index | −0.01 | 0.67 | −0.01 | 0.80 | 0.01 | 0.80 | −0.06 | 0.26 | ||||
r2 | −0.01 | 0.06 | 0.02 | 0.05 | ||||||||
Covariate | Zn | PLI | Dust Load | |||||||||
beta | p | beta | p | beta | p | |||||||
Intercept | 2.98 | 0.07 | . | 0.59 | 0.62 | 8.13 | 0.00 | *** | ||||
Population density (inhabitants/ha) | −0.02 | 0.59 | -0.01 | 0.77 | −0.01 | 0.81 | ||||||
Job density (jobs/ha) | 0.08 | 0.22 | 0.04 | 0.43 | −0.16 | 0.01 | ** | |||||
Street intersections | −0.11 | 0.16 | -0.02 | 0.69 | 0.09 | 0.25 | ||||||
Road surface (m2) | 0.23 | 0.09 | . | 0.00 | 0.98 | −0.30 | 0.02 | * | ||||
Distance to the airport (m) | 0.03 | 0.76 | −0.01 | 0.84 | −0.06 | 0.44 | ||||||
Distance to the city center (m) | −0.03 | 0.78 | −0.01 | 0.86 | −0.03 | 0.79 | ||||||
Manufacturing units | 0.08 | 0.10 | 0.06 | 0.08 | . | −0.04 | 0.43 | |||||
Potentially polluting units | −0.03 | 0.65 | 0.00 | 0.99 | 0.12 | 0.05 | . | |||||
Gray area (ha) | 0.05 | 0.60 | 0.03 | 0.69 | −0.01 | 0.91 | ||||||
Entropy index | −0.15 | 0.51 | 0.04 | 0.79 | 0.39 | 0.07 | . | |||||
Vegetation (%) | −0.04 | 0.43 | −0.03 | 0.46 | −0.13 | 0.00 | ** | |||||
Distance to vegetation (m) | 0.03 | 0.37 | 0.01 | 0.84 | 0.01 | 0.77 | ||||||
Median strip area (m2) | 0.01 | 0.21 | 0.01 | 0.04 | * | 0.01 | 0.28 | |||||
Marginalization index | −0.04 | 0.29 | −0.02 | 0.41 | 0.02 | 0.51 | ||||||
r2 | 0.07 | 0.04 | 0.10 |
Covariate | Pb | |
---|---|---|
beta | p | |
Intercept | 7.12 | 0.00 |
Population density (inhabitants/ha) | 0.03 | 0.41 |
Job density (jobs/ha) | 0.03 | 0.68 |
Street intersections | 0.01 | 0.88 |
Road surface (m2) | −0.10 | 0.56 |
Distance to the airport (m) | −0.19 | 0.08 |
Distance to the city center (m) | −0.05 | 0.68 |
Manufacturing units | 0.08 | 0.19 |
Potentially polluting units | 0.00 | 0.96 |
Gray area (ha) | −0.01 | 0.94 |
Entropy index | 0.17 | 0.54 |
Vegetation (%) | 0.00 | 0.95 |
Distance to vegetation (m) | 0.01 | 0.87 |
Median strip area (m2) | 0.02 | 0.08 |
Marginalization index | −0.06 | 0.20 |
AIC | 757.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguilera, A.; Bautista-Hernández, D.; Bautista, F.; Goguitchaichvili, A.; Cejudo, R. Is the Urban Form a Driver of Heavy Metal Pollution in Road Dust? Evidence from Mexico City. Atmosphere 2021, 12, 266. https://doi.org/10.3390/atmos12020266
Aguilera A, Bautista-Hernández D, Bautista F, Goguitchaichvili A, Cejudo R. Is the Urban Form a Driver of Heavy Metal Pollution in Road Dust? Evidence from Mexico City. Atmosphere. 2021; 12(2):266. https://doi.org/10.3390/atmos12020266
Chicago/Turabian StyleAguilera, Anahi, Dorian Bautista-Hernández, Francisco Bautista, Avto Goguitchaichvili, and Rubén Cejudo. 2021. "Is the Urban Form a Driver of Heavy Metal Pollution in Road Dust? Evidence from Mexico City" Atmosphere 12, no. 2: 266. https://doi.org/10.3390/atmos12020266
APA StyleAguilera, A., Bautista-Hernández, D., Bautista, F., Goguitchaichvili, A., & Cejudo, R. (2021). Is the Urban Form a Driver of Heavy Metal Pollution in Road Dust? Evidence from Mexico City. Atmosphere, 12(2), 266. https://doi.org/10.3390/atmos12020266