Drought Monitoring Based on Vegetation Type and Reanalysis Data in Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. Reanalysis Data
2.1.2. Observation and Estimated Drought Data
2.2. Methods
2.2.1. Drought Indices
2.2.2. Major Vegetation Types
2.2.3. Hit-Score
2.2.4. Water Balance Equation
2.2.5. Correlation
3. Results
3.1. Drought Cases (2010–2020)
3.2. Hit-Score
3.3. Drought According to Vegetation Type
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
VT 1 | VT 2 | VT 3 | VT 4 | VT 5 | VT 6 | VT 7 | VT 8 | ||
---|---|---|---|---|---|---|---|---|---|
1 | Value | −4.56 | −4.32 | −4.78 | −4.25 | −4.16 | −3.91 | −5.09 | −4.09 |
Date | Aug. 2000 | Aug. 2000 | May 2018 | Feb. 2004 | Feb. 2004 | Aug. 2000 | Nov. 1996 | Nov. 1993 | |
2 | Value | −4.35 | −4.28 | −4.70 | −4.09 | −4.12 | −3.90 | −4.34 | −4.09 |
Date | Aug. 1981 | Jul. 2010 | Feb. 2004 | May 2018 | Aug. 2000 | Dec. 2009 | Jan. 1982 | Sep. 2016 | |
3 | Value | −4.24 | −4.08 | −4.54 | −4.01 | −3.89 | −3.76 | −4.30 | −4.02 |
Date | Feb. 2004 | May 2018 | Aug. 2000 | Aug. 2000 | Jul. 2010 | Nov. 2017 | Jun. 2001 | Aug. 2000 | |
4 | Value | −4.10 | −4.03 | −4.33 | −3.92 | −3.87 | −3.70 | −4.30 | −3.98 |
Date | May 2018 | Aug. 1981 | May 2007 | Nov. 1996 | May 2018 | Oct. 1981 | Nov. 1993 | Oct. 1981 | |
5 | Value | −4.05 | −3.87 | −4.17 | −3.70 | −3.76 | −3.65 | −4.11 | −3.98 |
Date | Aug. 2013 | Oct. 1981 | Apr. 2011 | Jul. 2010 | Oct. 2016 | Nov. 1993 | Jun. 1979 | Jul. 2010 | |
6 | Value | −4.05 | −3.81 | −4.16 | −3.70 | −3.58 | −3.62 | −3.96 | −3.95 |
Date | Nov. 1996 | Feb. 2004 | Dec. 2004 | Mar. 2001 | Jan. 1982 | Feb. 2004 | May 2018 | Nov. 2017 | |
7 | Value | −3.97 | −3.80 | −4.08 | −3.61 | −3.51 | −3.58 | −3.93 | −3.77 |
Date | Jul. 2010 | Sep. 2000 | Apr. 2001 | Oct. 2016 | Apr. 2005 | Jan. 1997 | Jan. 2009 | May 2018 | |
8 | Value | −3.88 | −3.70 | −3.98 | −3.46 | −3.51 | −3.50 | −3.88 | −3.72 |
Date | Oct. 2016 | Sep. 2011 | Mar. 2001 | Jan. 2008 | Mar. 2001 | Dec. 2001 | Dec. 1991 | Apr. 1995 | |
9 | Value | −3.86 | −3.62 | −3.98 | −3.44 | −3.45 | −3.48 | −3.84 | −3.70 |
Date | Feb. 1990 | Apr. 1995 | Aug. 2013 | Aug. 2013 | May 2010 | Jun. 2001 | Jul. 2014 | Oct. 2016 | |
10 | Value | −3.83 | −3.53 | −3.98 | −3.42 | −3.38 | −3.47 | −3.82 | −3.68 |
Date | Nov. 2018 | Oct. 2016 | Nov. 1996 | Mar. 1988 | Mar. 1988 | Jan. 2008 | Jul. 2003 | Jun. 1999 |
VT 1 | VT 2 | VT 3 | VT 4 | VT 5 | VT 6 | VT 7 | VT 8 | |
---|---|---|---|---|---|---|---|---|
1 | Jan. 2006 | Jan. 1982 | Jan. 2017 | Sep. 2018 | Sep. 2018 | Jan. 1997 | Apr. 2017 | Jan. 1982 |
2 | Oct. 1981 | Oct. 1981 | Sep. 2018 | Oct. 2016 | Jan. 1982 | Mar. 2017 | Aug. 1994 | Feb. 2015 |
3 | Oct. 2016 | Jan. 2006 | Sep. 2014 | Feb. 2004 | Oct. 2016 | Feb. 2004 | Feb. 2015 | Mar. 2017 |
4 | Jan. 1982 | Sep. 2011 | Jan. 2008 | Jan. 1982 | Sep. 2014 | Feb. 1997 | Apr. 2014 | Feb. 1991 |
5 | Feb. 2004 | Sep. 2018 | Jan. 2014 | Jan. 2017 | Oct. 1981 | Feb. 1990 | Jan. 1982 | Feb. 1997 |
6 | Jan. 2015 | Feb. 2004 | Jan. 2006 | Jan. 2008 | Feb. 2004 | Feb. 2005 | Feb. 1991 | Feb. 1992 |
7 | Jul. 2004 | Jan. 1994 | Sep. 2001 | Jan. 2006 | Sep. 2011 | Feb. 1979 | Feb. 1980 | Feb. 2004 |
8 | Aug. 1981 | Aug. 1981 | Feb. 2004 | Jan. 1997 | Sep. 1983 | Jul. 2010 | Sep. 1979 | Feb. 1990 |
9 | Sep. 2011 | Feb. 2005 | Sep. 1986 | Sep. 2001 | Sep. 1982 | Mar. 2001 | Sep. 2018 | Feb. 1979 |
10 | Aug. 2000 | Sep. 2016 | Jul. 1991 | Oct. 1981 | Jul. 2010 | Feb. 1992 | Jan. 1994 | Mar. 2010 |
References
- American Meteorological Society. Glossary of Meteorology, American Meteorological Society. Available online: http://glossary.ametsoc.org/wiki/Drought (accessed on 1 November 2020).
- World Meteorological Organization (WMO); Global Water Partnership (GWP). Handbook of Drought Indicators and Indices; Svoboda, M., Fuchs, B.A., Eds.; Integrated Drought Management Programme (IDMP), Integrated Drought Management Tools and Guidelines Series 2; Drought Mitigation Center Faculty Publications: Geneva, Switzerland, 2016; ISBN 978-92-63-11173-9. [Google Scholar]
- Zarei, A.; Asadi, E.; Ebrahimi, A.; Jafary, M.M.; Malekian, A.; Tahmoures, M.; Alizadeh, E. Comparison of meteorological indices for spatio-temporal analysis of drought in Chahrmahal-Bakhtiyari Province in Iran. Hrvat. Meteorološki Časopis 2017, 52, 13–26. [Google Scholar]
- Ryu, J.H.; Lee, D.R.; Ahn, J.H.; Yoon, Y.N. A comparative study on the drought indices for drought evaluation. J. Korea Water Resour. Assoc. 2002, 35, 397–410. [Google Scholar] [CrossRef]
- Spinoni, J.; Barbosa, P.; de Jager, A.; McCormick, N.; Naumann, G.; Vogt, J.V.; Magni, D.; Masante, D.; Mazzeschi, M. A new global database of meteorological drought events from 1951 to 2016. J. Hydrol. Reg. Studies 2019, 22, 100593. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.H.; Nam, D.H.; Kim, B.S. Comparison of meteorological drought indices using past drought cases of Taebaek and Sokcho. J. Korean Soc. Civ. Eng. 2019, 39, 735–742. [Google Scholar]
- Saha, S.; Moorthi, S.; Pan, H.; Wu, X.; Wang, J. The NCEP Climate Forecast System Reanalysis. Bull. Am. Meteor. 2010, 91, 1015–1057. [Google Scholar] [CrossRef]
- Saha, S.; Moorthi, S.; Wu, X.; Wang, J. The NCEP Climate Forecast System Version 2. J. Clim. 2014, 27, 2185–2208. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Kobayashi, S.; Ota, Y.; Harada, Y.; Ebita, A.; Moriya, M.; Onoda, H. The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteorol. Soc. Jpn. Ser. II 2015, 93, 5–48. [Google Scholar] [CrossRef] [Green Version]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef] [PubMed]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L. The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. 1997, 77, 437–472. [Google Scholar] [CrossRef] [Green Version]
- Kanamitsu, M.; Ebisuzaki, W.; Woollen, J.; Yang, S.K.; Hnilo, J.J.; Fiorino, M.; Potter, G.L. Ncep–doe amip-ii reanalysis (r-2). Bull. Amer. Meteor. 2002, 83, 1631–1644. [Google Scholar] [CrossRef]
- National Drought Information Portal. Available online: http://www.drought.go.kr/menu/m30/m32.do (accessed on 20 July 2020).
- Hydrological Weather Drought Information System. Available online: https://hydro.kma.go.kr/droughtU/droughtGis.do (accessed on 20 July 2020).
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 179–183. [Google Scholar]
- Byun, H.R.; Wilhite, D.A. Objective quantification of drought severity and duration. J. Clim. 1999, 12, 2747–2756. [Google Scholar] [CrossRef]
- Deo, R.C.; Şahin, M. Application of the extreme learning machine algorithm for the prediction of monthly Effective Drought Index in eastern Australia. Atmos. Res. 2015, 153, 512–525. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Hayes, M.J.; Weiss, A.; Hu, Q. An evaluation of the Standardized Precipitation Index, the China-Z Index and the statistical Z-Score. Int. J. Climatol. 2001, 21, 745–758. [Google Scholar] [CrossRef]
- Morid, S.; Smakhtin, V.; Moghaddasi, M. Comparison of seven meteorological indices for drought monitoring in Iran. Int. J. Climatol. 2006, 26, 971–985. [Google Scholar] [CrossRef]
- Kraus, E. Subtropical droughts and cross-equatorial energy transports. Mon. Weather Rev. 1977, 105, 1009–1018. [Google Scholar] [CrossRef] [Green Version]
- van Rooy, M.P. A Rainfall Anomaly Index (RAI), independent of the time and space, Notos. Weather Bur. S. Afr. 1965, 14, 43–48. [Google Scholar]
- Gibbs, W.J.; Maher, J.V. Rainfall Deciles as Drought Indicators; Bureau of Meteorology: Melbourne, Australian, 1967. [Google Scholar]
- Triola, M.F. Elementary Statistics; Addison-Wesley: Reading, MA, USA, 1995. [Google Scholar]
- Woo, S.B.; Nam, W.H.; Kim, T. Spatiotemporal Agricultural Drought Damage and Its Relationship with Hydrometeorological Characteristics of Historical Drought Events for Recent 40 Years. In Proceedings of the Korea Water Resources Association Conference, Seoul, Korea, 24 June 2020; p. 392. [Google Scholar]
CFSR 1 [7,8] | ERA5 [9] | JRA55 2 [10] | MERRA2 3 [11] | NCEP1 4 [12] | NCEP2 5 [13] | |
---|---|---|---|---|---|---|
Resolution (degree) | 0.312 × 0.312 | 0.25 × 0.25 | 0.562 × 0.562 | 0.5 × 0.625 | 2.5 × 2.5 | T62Gau. |
Period | 01/1980–05/2020 | 01/1979–06/2020 | 01/1958–05/2020 | 01/1980–04/2020 | 01/1948–05/2020 | 01/1979–05/2020 |
Vegetation classification | Yes | Yes (high/low) | Yes | No | No | No |
Index | Full Name | References |
---|---|---|
SPI | Standardized Precipitation Index | McKee et al. [16] |
EDI | Effective Drought Index | Byun and Wilhite [17] Deo and Sahin [18] |
CZI | China-Z Index | Wu et al. [19] Morid et al. [20] |
MCZI | Modified CZI | Wu et al. [19] Morid et al. [20] |
RAI | Rainfall Anomaly Index | Kraus [21] van Rooy [22] |
RD | Rainfall Deciles | Gibb and Maher [23] |
ZSI | Z-Score Index | Triola [24] |
SPI 6 | CZI | DI | EDI | MCZI | RAI | ZSI | ||
---|---|---|---|---|---|---|---|---|
KMA | Hit | 26.7% | 13.3% | 43.3% | 68.4% | 1.1% | 74.4% | 20.4% |
Fail | 8.4% | 7.5% | 17.0% | 31.1% | 14.0% | 25.6% | 7.7% | |
ERA5 | Hit | 29.8% | 14.6% | 43.2% | 66.5% | 2.7% | 74.1% | 24.9% |
Fail | 11.4% | 9.3% | 18.2% | 32.9% | 15.2% | 25.9% | 10.5% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Lee, S.-J.; Jang, K.; Chun, J.-H. Drought Monitoring Based on Vegetation Type and Reanalysis Data in Korea. Atmosphere 2021, 12, 170. https://doi.org/10.3390/atmos12020170
Lee S, Lee S-J, Jang K, Chun J-H. Drought Monitoring Based on Vegetation Type and Reanalysis Data in Korea. Atmosphere. 2021; 12(2):170. https://doi.org/10.3390/atmos12020170
Chicago/Turabian StyleLee, Seoyeon, Seung-Jae Lee, Keunchang Jang, and Jung-Hwa Chun. 2021. "Drought Monitoring Based on Vegetation Type and Reanalysis Data in Korea" Atmosphere 12, no. 2: 170. https://doi.org/10.3390/atmos12020170
APA StyleLee, S., Lee, S. -J., Jang, K., & Chun, J. -H. (2021). Drought Monitoring Based on Vegetation Type and Reanalysis Data in Korea. Atmosphere, 12(2), 170. https://doi.org/10.3390/atmos12020170