Spatial Distributions of Atmospheric Ammonia in a Rural Area in South Korea and the Associated Impact on a Nearby Urban Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Monitoring Sites
2.2. Atmospheric NH3 Measurements
2.3. Modeling of NH3 Origin
3. Results and Discussion
3.1. Spatial Distributions of Atmospheric NH3 in the Rural Area
3.2. Comparisons of Atmospheric NH3 Concentrations in Different Environments
3.3. Impact on NH3 Levels in Nearby Urban Area
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Park, R.S.; Lee, S.; Shin, S.-K.; Song, C.H. Contribution of ammonium nitrate to aerosol optical depth and direct radiative forcing by aerosols over East Asia. Atmos. Chem. Phys. Discuss. 2014, 14, 2185–2201. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Penner, J.E. Global simulations of nitrate and ammonium aerosols and their radiative effects. Atmos. Chem. Phys. Discuss. 2012, 12, 9479–9504. [Google Scholar] [CrossRef] [Green Version]
- Bhattarai, G.; Lee, J.B.; Kim, M.-H.; Ham, S.; So, H.-S.; Oh, S.; Sim, H.-J.; Lee, J.-C.; Song, M.; Kook, S.-H. Maternal exposure to fine particulate matter during pregnancy induces progressive senescence of hematopoietic stem cells under preferential impairment of the bone marrow microenvironment and aids development of myeloproliferative disease. Leukemia 2019, 34, 1481–1484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, R.; Tian, H.; Pan, S.; Prior, S.; Feng, Y.; Batchelor, W.D.; Chen, J.; Yang, J. Global ammonia emissions from synthetic nitrogen fertilizer applications in agricultural systems: Empirical and process-based estimates and uncertainty. Glob. Chang. Biol. 2018, 25, 314–326. [Google Scholar] [CrossRef] [Green Version]
- Bouwman, L.; Lee, D.S.; Asman, W.A.H.; Dentener, F.J.; Van Der Hoek, K.W.; Olivier, J.G.J. A global high-resolution emission inventory for ammonia. Glob. Biogeochem. Cycles 1997, 11, 561–587. [Google Scholar] [CrossRef]
- Paulot, F.; Jacob, D.J.; Pinder, R.W.; Bash, J.O.; Travis, K.; Henze, D.K. Ammonia emissions in the United States, European Union, and China derived by high-resolution inversion of ammonium wet deposition data: Interpretation with a new agricultural emissions inventory (MASAGE_NH3). J. Geophys. Res. Atmos. 2014, 119, 4343–4364. [Google Scholar] [CrossRef]
- Ianniello, A.; Spataro, F.; Esposito, G.; Allegrini, I.; Rantica, E.; Ancora, M.P.; Hu, M.; Zhu, T. Occurrence of gas phase ammonia in the area of Beijing (China). Atmos. Chem. Phys. Discuss. 2010, 10, 9487–9503. [Google Scholar] [CrossRef] [Green Version]
- Pandolfi, M.; Amato, F.; Reche, C.; Alastuey, A.; Otjes, R.P.; Blom, M.J.; Querol, X. Summer ammonia measurements in a densely populated Mediterranean city. Atmos. Chem. Phys. Discuss. 2012, 12, 7557–7575. [Google Scholar] [CrossRef] [Green Version]
- Aas, W.; Mortier, A.; Bowersox, V.; Cherian, R.; Faluvegi, G.; Fagerli, H.; Hand, J.; Klimont, Z.; Galy-Lacaux, C.; Lehmann, C.M.B.; et al. Global and regional trends of atmospheric sulfur. Sci. Rep. 2019, 9, 953. [Google Scholar] [CrossRef]
- Georgoulias, A.K.; van der A, R.J.; Stammes, P.; Boersma, K.F.; Eskes, H.J. Trends and trend reversal detection in 2 decades of tropospheric NO2 satellite observations. Atmos. Chem. Phys. Discuss. 2019, 19, 6269–6294. [Google Scholar] [CrossRef] [Green Version]
- Warner, J.X.; Dickerson, R.R.; Wei, Z.; Strow, L.L.; Wang, Y.; Liang, Q. Increased atmospheric ammonia over the world’s major agricultural areas detected from space. Geophys. Res. Lett. 2017, 44, 2875–2884. [Google Scholar] [CrossRef]
- Sutton, M.A.; Reis, S.; Riddick, S.N.; Dragosits, U.; Nemitz, E.; Theobald, M.R.; Tang, Y.S.; Braban, C.; Vieno, M.; Dore, A.J.; et al. Towards a climate-dependent paradigm of ammonia emission and deposition. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20130166. [Google Scholar] [CrossRef]
- Xu, W.; Zheng, K.; Liu, X.; Meng, L.; Huaitalla, R.M.; Shen, J.; Hartung, E.; Gallmann, E.; Roelcke, M.; Zhang, F. Atmospheric NH3 dynamics at a typical pig farm in China and their implications. Atmos. Pollut. Res. 2014, 5, 455–463. [Google Scholar] [CrossRef] [Green Version]
- Kubota, T.; Kuroda, H.; Watanabe, M.; Takahashi, A.; Nakazato, R.; Tarui, M.; Matsumoto, S.; Nakagawa, K.; Numata, Y.; Ouchi, T.; et al. Role of advection in atmospheric ammonia: A case study at a Japanese lake basin influenced by agricultural ammonia sources. Atmos. Environ. 2020, 243, 117856. [Google Scholar] [CrossRef]
- Phan, N.-T.; Kim, K.-H.; Shon, Z.-H.; Jeon, E.-C.; Jung, K.; Kim, N.-J. Analysis of ammonia variation in the urban atmosphere. Atmos. Environ. 2013, 65, 177–185. [Google Scholar] [CrossRef]
- Lonati, G.; Cernuschi, S. Temporal and spatial variability of atmospheric ammonia in the Lombardy region (Northern Italy). Atmos. Pollut. Res. 2020, 11, 2154–2163. [Google Scholar] [CrossRef]
- Meng, Z.Y.; Lin, W.L.; Jiang, X.M.; Yan, P.; Wang, Y.; Zhang, Y.M.; Jia, X.F.; Yu, X.L. Characteristics of atmospheric ammonia over Beijing, China. Atmos. Chem. Phys. Discuss. 2011, 11, 6139–6151. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Zhou, H.; Holsen, T.M.; Hopke, P.K.; Edgerton, E.S.; Schwab, J.J. Ambient Ammonia Concentrations Across New York State. J. Geophys. Res. Atmos. 2019, 124, 8287–8302. [Google Scholar] [CrossRef] [Green Version]
- Clean Air Policy Support System (CAPSS). 2017 Korea National Air Pollutants Emission. 2019. Available online: https://airemiss.nier.go.kr (accessed on 1 May 2021).
- Korean Statistical Information Service (KOSIS). Available online: https://kosis.kr (accessed on 1 May 2021).
- Chang, Y.; Zou, Z.; Zhang, Y.; Deng, C.; Hu, J.; Shi, Z.; Dore, A.J.; Collett, J.L. Assessing Contributions of Agricultural and Nonagricultural Emissions to Atmospheric Ammonia in a Chinese Megacity. Environ. Sci. Technol. 2019, 53, 1822–1833. [Google Scholar] [CrossRef]
- Pan, Y.; Gu, M.; He, Y.; Wu, D.; Liu, C.; Song, L.; Tian, S.; Lü, X.; Sun, Y.; Song, T.; et al. Revisiting the Concentration Observations and Source Apportionment of Atmospheric Ammonia. Adv. Atmos. Sci. 2020, 37, 933–938. [Google Scholar] [CrossRef]
- Kure, J.L.; Krabben, J.; Pedersen, S.V.; Carozzi, M.; Sommer, S.G. An Assessment of Low-Cost Techniques to Measure Ammonia Emission from Multi-Plots: A Case Study with Urea Fertilization. Agronomy 2018, 8, 245. [Google Scholar] [CrossRef] [Green Version]
- Puchalski, M.A.; Sather, M.E.; Walker, J.; Lehmann, C.M.B.; Gay, D.A.; Mathew, J.; Robarge, W.P. Passive ammonia monitoring in the United States: Comparing three different sampling devices. J. Environ. Monit. 2011, 13, 3156–3167. [Google Scholar] [CrossRef]
- Pan, Y.; Gu, M.; Song, L.; Tian, S.; Wu, D.; Walters, W.W.; Yu, X.; Lü, X.; Ni, X.; Wang, Y.; et al. Systematic low bias of passive samplers in characterizing nitrogen isotopic composition of atmospheric ammonia. Atmos. Res. 2020, 243, 105018. [Google Scholar] [CrossRef]
- Park, J.; Ryoo, J.; Jee, J.; Song1, M. Origins and Distributions of Atmospheric Ammonia in Jeonju during 2019~2020. J. Korean Soc. Atmos. Environ. 2020, 36, 262–274. [Google Scholar] [CrossRef]
- Picarro Inc. G2103 Analyzer Datasheet—G2103-DS20-V1.2-AHDS-190917. 2019. Available online: http://www.picarro.com (accessed on 1 May 2021).
- Polissar, A. The aerosol at Barrow, Alaska: Long-term trends and source locations. Atmos. Environ. 1999, 33, 2441–2458. [Google Scholar] [CrossRef]
- Sen, A.; Ahammed, Y.N.; Banerjee, T.; Chatterjee, A.; Choudhuri, A.K.; Das, T.; Deb, N.C.; Dhir, A.; Goel, S.; Khan, A.H.; et al. Spatial variability in ambient atmospheric fine and coarse mode aerosols over Indo-Gangetic plains, India and adjoining oceans during the onset of summer monsoons. Atmos. Pollut. Res. 2016, 7, 521–532. [Google Scholar] [CrossRef]
- Wang, S.; Nan, J.; Shi, C.; Fu, Q.; Gao, S.; Wang, D.; Cui, H.; Saiz-Lopez, A.; Zhou, B. Atmospheric ammonia and its impacts on regional air quality over the megacity of Shanghai, China. Sci. Rep. 2015, 5, 15842. [Google Scholar] [CrossRef] [Green Version]
- Meng, Z.; Xu, X.; Lin, W.; Ge, B.; Xie, Y.; Song, B.; Jia, S.; Zhang, R.; Peng, W.; Wang, Y.; et al. Role of ambient ammonia in particulate ammonium formation at a rural site in the North China Plain. Atmos. Chem. Phys. Discuss. 2018, 18, 167–184. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Wu, Q.; Liu, X.; Tang, A.; Dore, A.J.; Heal, M. Characteristics of ammonia, acid gases, and PM2.5 for three typical land-use types in the North China Plain. Environ. Sci. Pollut. Res. 2015, 23, 1158–1172. [Google Scholar] [CrossRef] [Green Version]
- Sung, M.Y.; Park, J.S.; Lim, J.H.; Park, H.Y.; Cho, S.Y. A Long Term Trend of Gaseous and Particulate Acid/Base Species and Effects of Ammonia Reduction on Nitrate Contained in PM~2018. J. Korean Soc. Atmos. Environ. 2020, 36, 249–261. [Google Scholar] [CrossRef]
- Redwine, J.S.; Lacey, R.E.; Mukhtar, S.; Carey, J.B. Concentration and emissions of ammonia and particulate matter in tunnel–ventilated broiler houses under summer conditions in Texas. Trans. ASAE 2002, 45, 1101. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Xin, H.; Tanaka, A.; Lee, S.H.; Li, H.; Wheeler, E.F.; Gates, R.S.; Zajaczkowski, J.S.; Topper, P.; Casey, K.D. Ammonia emissions from U.S. poultry houses: Part II—Layer houses. In Proceedings of the 3rd International Conference on Air Pollution from Agricultural Operations, Raleigh, NC, USA, 12–15 October 2003; pp. 147–158. [Google Scholar]
- Coufal, C.D.; Chavez, C.; Niemeyer, P.R.; Carey, J.B. Nitrogen emissions from broilers measured by mass balance over eighteen consecutive flocks. Poult. Sci. 2006, 85, 384–391. [Google Scholar] [CrossRef] [PubMed]
- Carr, L.E.; Wheaton, F.W.; Douglass, L.W. Empirical models to determine ammonia concentrations from broiler chicken litter. Trans. ASAE 1990, 33, 1337–1342. [Google Scholar] [CrossRef]
- Knížatová, M.; Mihina, Š.; Brouček, J.; Karandušovská, I.; Mačuhová, J. The influence of litter age, litter temperature and ventilation rate on ammonia emissions from a broiler rearing facility. Czech J. Anim. Sci. 2010, 55, 337–345. [Google Scholar] [CrossRef] [Green Version]
- Jang, D.H.; Kwon, K.S.; Kim, J.B.; Kim, J.K.; Yang, K.Y.; Choi, S.M.; Jang, Y. Investigation and Analysis of Particulate-matters and Ammonia Concentrations in Mechanically Ventilated Broiler House According to Seasonal Change, Measurement Locations and Age of Broilers. J. Korean Soc. Agric. Eng. 2021, 63, 75–87. [Google Scholar]
- Jeong, D.-H.; Lee, Y.; Lee, C.; Choi, S.-A.; Kim, M.; Lee, Y.; Kim, M.; Yu, S. Environmental impact of livestock manure and organic fertilizer use on the Masan stream watershed. J. Environ. Impact Assess. 2014, 23, 75–87. [Google Scholar] [CrossRef] [Green Version]
- García-Gómez, H.; Aguillaume, L.; Rojano, S.I.; Valiño, F.; Avila, A.; Elustondo, D.; Santamaría, J.M.; Alastuey, A.; Calvete, H.; Fernández, I.G.; et al. Atmospheric pollutants in peri-urban forests of Quercus ilex: Evidence of pollution abatement and threats for vegetation. Environ. Sci. Pollut. Res. 2015, 23, 6400–6413. [Google Scholar] [CrossRef] [Green Version]
- Loftus, C.; Yost, M.G.; Sampson, P.D.; Torres, E.; Arias, G.; Vasquez, V.B.; Hartin, K.; Armstrong, J.L.; Tchong-French, M.; Vedal, S.; et al. Ambient Ammonia Exposures in an Agricultural Community and Pediatric Asthma Morbidity. Epidemiology 2015, 26, 794–801. [Google Scholar] [CrossRef]
- Park, J.; Oh, S.-M.; Bae, M.-S.; Lim, Y.-J.; Chang, Y.; Song, M. Spatial Distribution of Atmospheric Ammonia using Passive Samplers in Jeollabuk-do. J. Korean Soc. Atmos. Environ. 2021, 37, 626–636. [Google Scholar] [CrossRef]
- Frati, L.; Santoni, S.; Nicolardi, V.; Gaggi, C.; Brunialti, G.; Guttova, A.; Gaudino, S.; Pati, A.; Pirintsos, S.; Loppi, S. Lichen biomonitoring of ammonia emission and nitrogen deposition around a pig stockfarm. Environ. Pollut. 2007, 146, 311–316. [Google Scholar] [CrossRef]
- Theobald, M.R.; Sanz-Cobena, A.; Vallejo, A.; Sutton, A. Suitability and uncertainty of two models for the simulation of ammonia dispersion form a pig farm located in an area with frequent calm conditions. Atmos. Environ. 2015, 102, 167–175. [Google Scholar] [CrossRef] [Green Version]
- López-Aizpún, M.; Arango-Mora, C.; Santamaría, C.; Lasheras, E.; Santamaría, J.; Ciganda, V.; Cárdenas, L.; Elustondo, D. Atmospheric ammonia concentration modulates soil enzyme and microbial activity in an oak forest affecting soil microbial biomass. Soil Biol. Biochem. 2018, 116, 378–387. [Google Scholar] [CrossRef]
- Yao, X.; Zhang, L. Trends in atmospheric ammonia at urban, rural, and remote sites across North America. Atmos. Chem. Phys. Discuss. 2016, 16, 11465–11475. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Seo, J.; Kim, J.Y.; Lee, J.Y.; Kim, H.; Kim, B.M. Characterization of PM2.5 and identification of transported secondary and biomass burning contribution in Seoul, Korea. Environ. Sci. Pollut. Res. 2017, 25, 4330–4343. [Google Scholar] [CrossRef]
- Payne, B.F.; Ackley, R.; Wicker, A.P.; Hildenbrand, Z.L.; Carlton, D.D.; Schug, K.A. Characterization of methane plumes downwind of natural gas compressor stations in Pennsylvania and New York. Sci. Total Environ. 2017, 580, 1214–1221. [Google Scholar] [CrossRef]
- Wang, R.; Ye, X.; Liu, Y.; Li, H.; Yang, X.; Chen, J.; Gao, W.; Yin, Z. Characteristics of atmospheric ammonia and its relationship with vehicle emissions in a megacity in China. Atmos. Environ. 2018, 182, 97–104. [Google Scholar] [CrossRef]
- Huang, C.; Chen, C.H.; Li, L.; Cheng, Z.; Wang, H.L.; Huang, H.Y.; Streets, D.G.; Wang, Y.J.; Zhang, G.F.; Chen, Y.R. Emission inventory of anthropogenic air pollutants and VOC species in the Yangtze River Delta region, China. Atmos. Chem. Phys. Discuss. 2011, 11, 4105–4120. [Google Scholar] [CrossRef] [Green Version]
- Seinfeld, J.H.; Pandis, S.N.; Noone, K. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Phys. Today 1998, 51, 88–90. [Google Scholar] [CrossRef]
- Behera, S.N.; Betha, R.; Balasubramanian, R. Insights into Chemical Coupling among Acidic Gases, Ammonia and Secondary Inorganic Aerosols. Aerosol Air Qual. Res. 2013, 13, 1282–1296. [Google Scholar] [CrossRef]
- Li, Y.; Thompson, T.M.; Van Damme, M.; Chen, X.; Benedict, K.B.; Shao, Y.; Day, D.; Boris, A.; Sullivan, A.P.; Ham, J.; et al. Temporal and spatial variability of ammonia in urban and agricultural regions of northern Colorado, United States. Atmos. Chem. Phys. Discuss. 2017, 17, 6197–6213. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.; Zou, Z.; Deng, C.; Huang, K.; Collett, J.L.; Lin, J.; Zhuang, G. The importance of vehicle emissions as a source of atmospheric ammonia in the megacity of Shanghai. Atmos. Chem. Phys. Discuss. 2016, 16, 3577–3594. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Tian, S.; Zhao, Y.; Zhang, L.; Zhu, X.; Gao, J.; Huang, W.; Zhou, Y.; Song, Y.; Zhang, Q.; et al. Identifying Ammonia Hotspots in China Using a National Observation Network. Environ. Sci. Technol. 2018, 52, 3926–3934. [Google Scholar] [CrossRef] [Green Version]
- Song, M.; Kim, M.; Kim, M.; Lee, K.-H.; Bae, M.-S. Relationship between Long-range Transport of Ammonia and Ammonium in Wintertime in Suburban Area. J. Korean Soc. Atmos. Environ. 2020, 36, 543–557. [Google Scholar] [CrossRef]
- Rodelas, R.R.; Perdrix, E.; Herbin, B.; Riffault, V. Characterization and variability of inorganic aerosols and their gaseous precursors at a suburban site in northern France over one year (2015–2016). Atmos. Environ. 2018, 200, 142–157. [Google Scholar] [CrossRef]
- Liu, T.; Wang, X.; Wang, B.; Ding, X.; Deng, W.; Lü, S.; Zhang, Y. Emission factor of ammonia (NH3) from on-road vehicles in China: Tunnel tests in urban Guangzhou. Environ. Res. Lett. 2014, 9, 064027. [Google Scholar] [CrossRef]
- Phillips, F.A.; Naylor, T.; Forehead, H.; Griffith, D.W.T.; Kirkwood, J.; Paton-Walsh, C. Vehicle Ammonia Emissions Measured in An Urban Environment in Sydney, Australia, Using Open Path Fourier Transform Infra-Red Spectroscopy. Atmosphere 2019, 10, 208. [Google Scholar] [CrossRef] [Green Version]
- Kotnala, G.; Sharma, S.K.; Mandal, T.K. Influence of Vehicular Emissions (NO, NO2, CO and NMHCs) on the Mixing Ratio of Atmospheric Ammonia (NH3) in Delhi, India. Arch. Environ. Contam. Toxicol. 2019, 78, 79–85. [Google Scholar] [CrossRef]
- Xu, W.; Luo, X.S.; Pan, Y.P.; Zhang, L.; Tang, A.H.; Shen, J.L.; Zhang, Y.; Li, K.H.; Wu, Q.H.; Yang, D.W.; et al. Quantifying atmospheric nitrogen deposition through a nationwide monitoring network across China. Atmos. Chem. Phys. Discuss. 2015, 15, 12345–12360. [Google Scholar] [CrossRef] [Green Version]
- Hansen, K.; Pryor, S.; Boegh, E.; Hornsby, K.; Jensen, B.; Sørensen, L. Background concentrations and fluxes of atmospheric ammonia over a deciduous forest. Agric. For. Meteorol. 2015, 214–215, 380–392. [Google Scholar] [CrossRef]
- Xu, J.; Chen, J.; Zhao, N.; Wang, G.; Yu, G.; Li, H.; Huo, J.; Lin, Y.; Fu, Q.; Guo, H.; et al. Importance of Ammonia Gas-Particle Conversion Ratio in Haze Formation in the Rural Agricultural Environment. Atmos. Chem. Phys. Discuss. 2020, 3, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Saraswati; Sharma, S.; Saxena, M.; Mandal, T. Characteristics of gaseous and particulate ammonia and their role in the formation of secondary inorganic particulate matter at Delhi, India. Atmos. Res. 2018, 218, 34–49. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, A.; Wang, D.; Wang, Q.; Benedict, K.; Zhang, L.; Liu, D.; Li, Y.; Collett, J.L., Jr.; Sun, Y.; et al. The vertical variability of ammonia in urban Beijing, China. Atmos. Chem. Phys. Discuss. 2018, 18, 16385–16398. [Google Scholar] [CrossRef] [Green Version]
- Dammers, E.; Schaap, M.; Haaima, M.; Palm, M.; Kruit, R.W.; Volten, H.; Hensen, A.; Swart, D.; Erisman, J. Measuring atmospheric ammonia with remote sensing campaign: Part 1—Characterisation of vertical ammonia concentration profile in the centre of The Netherlands. Atmos. Environ. 2017, 169, 97–112. [Google Scholar] [CrossRef]
- Shephard, M.W.; Dammers, E.; Cady-Pereira, K.E.; Kharol, S.K.; Thompson, J.; Gainariu-Matz, Y.; Zhang, J.; McLinden, C.A.; Kovachik, A.; Moran, M.; et al. Ammonia measurements from space with the Cross-track Infrared Sounder: Characteristics and applications. Atmos. Chem. Phys. Discuss. 2020, 20, 2277–2302. [Google Scholar] [CrossRef] [Green Version]
- Zöll, U.; Brümmer, C.; Schrader, F.; Ammann, C.; Ibrom, A.; Flechard, C.R.; Nelson, D.D.; Zahniser, M.; Kutsch, W.L. Surface–atmosphere exchange of ammonia over peatland using QCL-based eddy-covariance measurements and inferential modeling. Atmos. Chem. Phys. Discuss. 2016, 16, 11283–11299. [Google Scholar] [CrossRef] [Green Version]
Rural | Urban | |||
---|---|---|---|---|
Sites | R1 | R2 | R3 | U1 |
Site description | Boundary of a large-scale pig farm | ~1 km north of R1 | ~1 km south of R1 | Jeonbuk National University, Jeonju |
Methodology | Passive sampler | Passive sampler | Passive sampler | CRDS |
Spring | 100.5 ± 43.0 (9) | 15.8 ± 9.4 (9) | 27.5 ± 11.0 (9) | - |
Summer | 128.6 ± 36.9 (9) | 28.5 ± 13.6 (9) | 38.2 ± 13.9 (9) | 18.6 ± 7.8 * |
Autumn | 60.3 ± 12.8 (3) | 11.2 ± 1.7 (3) | 38.7 ± 2.0 (2) | - |
Winter | 141.6 ± 57.5 (11) | 13.6 ± 5.6 (11) | 25.0 ± 7.6 (11) | - |
Average during whole periods | 118.7 ± 51.7 (32) | 18.2 ± 11.5 (32) | 30.4 ± 12.1 (31) | 18.6 ± 7.8 * |
Location | Period | Method | NH3 Conc. (Mean ± Std) (unit: ppb) | Reference |
---|---|---|---|---|
Rural (Livestock Villages) | ||||
Jeongeup, Korea | 2019.9–2020.8 | Passive sampler | 24.2 ± 13.3 | This study |
Beijing, China | 2009.4–2011.9 | Passive sampler | 37.0 ± 17.2 | Xu et al., 2014 [13] |
Gucheng, China | 2013.5–9 | LGR | 36.2 ± 56.4 | Meng et al., 2018 [31] |
Gyeonggi, Korea | 2009.1–2018.12 | 3-stages filter pack | 52.9 | Sung et al., 2020 [33] |
Navarre, Spain | 2013.7–2015.7 | Passive sampler | 33.8 ± 24.0 | López-Aizpú et al., 2018 [46] |
Colorado, USA | 2010.5–2015.9 | Passive sampler | 61.9 ± 10.1 | Li et al., 2017 [54] |
Shanghai, China | 2017.3–2018.2 | MARGA | 27.4 ± 17.8 | Xu et al., 2020 [64] |
Urban | ||||
Jeonju, Korea | 2020.6 | CRDS | 18.6 ± 7.8 | This study |
Seoul, Korea | 2010.9–2011.8 | CRDS | 11.6 ± 4.2 | Phan et al., 2013 [15] |
New York, USA | 2016.4–2017.10 | Active & Passive sampler | 3.2 ± 2.2 | Zhou et al., 2019 [18] |
Jeonju, Korea | 2019.5–2020.1 | CRDS | 10.5 ± 5.1 | Park et al., 2020 [26] |
Shanghai, China | 2014.4–2015.4 | MARGA | 7.8 ± 5.5 | Chang et al., 2016 [55] |
Nanjing, China | 2015.9–2016.8 | Passive sampler | 15.2 ± 3.7 | Pan et al., 2018 [56] |
Mokpo, Korea | 2019.12 | CRDS | 8.6 ± 3.3 | Song et al., 2020 [57] |
Douai, France | 2015.8–2016.7 | MARGA | 4.2 ± 1.8 | Rodelas et al., 2019 [58] |
Delhi, India | 2013.1–2015.12 | Online NH3- analyzer | 19.6 ± 3.5 | Saraswati et al., 2019 [65] |
Remote | ||||
Saemangeum, Korea | 2020.6–12 | Passive sampler | 4.9 ± 1.8 | Park et al., 2021 [43] |
New York, USA | 2008.8–2015.7 | Passive sampler | 0.5 ± 0.4 | Yao et al., 2016 [47] |
Chengdu, China | 2015.9–2016.8 | Passive sampler | 2.6 ± 0.6 | Pan et al., 2018 [56] |
Wuyin, Genhe, and Bayinbuluke, China | 2010.5–2011.9 | Active & Passive sampler | 1.7 ± 0.7 | Xu et al., 2015 [62] |
Southern Indiana, USA | 2013.6–2013.10 | Online NH3- analyzer | 0.6 ± 0.6 | Hansen et al., 2015 [63] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, S.; Kim, S.-G.; Lee, J.B.; Park, J.; Jee, J.-B.; Hong, S.-W.; Kwon, K.-S.; Song, M. Spatial Distributions of Atmospheric Ammonia in a Rural Area in South Korea and the Associated Impact on a Nearby Urban Area. Atmosphere 2021, 12, 1411. https://doi.org/10.3390/atmos12111411
Oh S, Kim S-G, Lee JB, Park J, Jee J-B, Hong S-W, Kwon K-S, Song M. Spatial Distributions of Atmospheric Ammonia in a Rural Area in South Korea and the Associated Impact on a Nearby Urban Area. Atmosphere. 2021; 12(11):1411. https://doi.org/10.3390/atmos12111411
Chicago/Turabian StyleOh, Sangmin, Seung-Gi Kim, Jae Bong Lee, Junsu Park, Joon-Bum Jee, Se-Woon Hong, Kyeong-Seok Kwon, and Mijung Song. 2021. "Spatial Distributions of Atmospheric Ammonia in a Rural Area in South Korea and the Associated Impact on a Nearby Urban Area" Atmosphere 12, no. 11: 1411. https://doi.org/10.3390/atmos12111411
APA StyleOh, S., Kim, S. -G., Lee, J. B., Park, J., Jee, J. -B., Hong, S. -W., Kwon, K. -S., & Song, M. (2021). Spatial Distributions of Atmospheric Ammonia in a Rural Area in South Korea and the Associated Impact on a Nearby Urban Area. Atmosphere, 12(11), 1411. https://doi.org/10.3390/atmos12111411