Estimation of Biogas Generated in Two Landfills in South-Central Ecuador
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.3. LandGEM Biogas Model Version 3.03
- = annual methane generation in the year of calculation (m3/year).
- I = 1-year increments.
- n = (year of time calculation)—(initial year of waste acceptance).
- j = 0.1-year time increment.
- k = methane generation rate (1/year).
- L0 = potential methane generation capacity (m3/mg).
- Mi = mass of waste deposited in the year ith (mg/year).
- tij = age of the jth section of waste mass Mi accepted in the ith year (decimal years, e.g., 3.2 years).
- Year of opening and closing of the landfill.
- Landfill operating capacity.
- CH4 generation rate (k).
- CH4 generation power (L0).
- Concentration of other gases (NMOC).
- Percentage of CH4.
- The amount of (MSW) (ton/year).
2.4. Estimation of the Electricity Production Potential
- Edispo. = available electrical power.
- PCIbiogas = internal calorific value of biogas.
- Qb.r. = recoverable biogas flow (m3/year).
- = biogas energy efficiency, 38% of energy per m3 of biogas was considered, an assumed yield of 50%, which depends on the technical specifications of the ICM.
- = conversion factor from MJ to kWh (1 MJ = 0.28 kWh).
- 1000 kcal = 1.163 kWh
- = 20 MJ = 4775 kcal/m3
- Kcal = 0.000001163 MWh
- % = concentration (56 and 58%).
- = internal calorific value of CH4 (internal calorific value 35.8 (MJ/m3), superior 39.8 (MJ/m3) or 35,846.071 [kJ/m3].
3. Results and Discussion
3.1. Amount of Municipal Solid Waste Disposed of in Sanitary Landfills
3.2. Characterization of Municipal Solid Waste
3.3. Production of Biogas Generated from the Sanitary Landfill
3.4. Estimation of the Biogas Produced LandGEM Version 3.03
3.5. Estimated Electricity Production from Biogas
3.6. Pichacay and Las Iguanas Landfill Gas Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Piñas, J.A.V.; Venturini, O.J.; Lora, E.E.S.; de Oliveira, M.A.; Roalcaba, O.D.C. Aterros sanitários para geração de energia elétrica a partir da produção de biogás no Brasil: Comparação dos modelos LandGEM (EPA) e Biogás (Cetesb). Rev. Bras. Estud. Popul. 2016, 33, 175–188. [Google Scholar] [CrossRef] [Green Version]
- Kaza, S.; Yao, L.; Tata, P.; Woerden, F. A Global Snapshot of Solid Waste Management to 2050; Primera; The World Bank Group: Washington, DC, USA, 2018; ISBN 978-1-4648-1347-4. [Google Scholar]
- Río, P.; Resch, G.; Ortner, A.; Liebmann, L.; Busch, S.; Panzer, C. A techno-economic analysis of EU renewable electricity policy pathways in 2030. Energy Policy 2017, 104, 484–493. [Google Scholar] [CrossRef]
- Sun, W.; Wang, X.; DeCarolis, J.F.; Barlaz, M.A. Evaluation of optimal model parameters for prediction of methane generation from selected U.S. landfills. Waste Manag. 2019, 91, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Lima, R.M.; Santos, A.H.M.; Pereira, C.R.S.; Flauzino, B.K.; Pereira, A.C.O.S.; Nogueira, F.J.H.; Valverde, J.A.R. Spatially distributed potential of landfill biogas production and electric power generation in Brazil. Waste Manag. 2018, 74, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Chickering, G.W.; Krause, M.J.; Townsend, T.G. Determination of as-discarded methane potential in residential and commercial municipal solid waste. Waste Manag. 2018, 76, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Martínez, E.; Rodríguez, J. Aplicación de las metodologías EPA, mexicano e IPCC para la estimación de biogás, caso de estudio relleno sanitario Doña Juana, Bogotá-Colombia. Univ. Salud 2016, 18, 338. [Google Scholar] [CrossRef]
- Imbiriba, B.C.d.O.; Ramos, J.R.d.S.; de Sousa Silva, R.; Cattanio, J.H.; do Couto, L.L.; Mitschein, T.A. Estimates of methane emissions and comparison with gas mass burned in CDM action in a large landfill in Eastern Amazon. Waste Manag. 2020, 101, 28–34. [Google Scholar] [CrossRef]
- Halliday, M.A.K.; Matthiessen, C.M.I.M.; Santosa, R.; Priyanto, A.D.; Nuraeni, A.; Ellyawati, H.C.; Rohmawati, I.; Alvionita, R.; Iedema, R.; Feez, S.; et al. Análisis y actualización del sistema de gestión ambiental mediante los rquisistos de la NTC ISO 14001:2015. Nusa 2016, 5, 1689–1699. [Google Scholar] [CrossRef]
- Solíz, F.; Durango, S.; Solano, J.; Yépez, M. Cartografía de los Residuos Sólidos en Ecuador 2020; Solíz, M., Ed.; Primera; Pato Chávez: Quito, Ecuador, 2020; ISBN 9789942837295. [Google Scholar]
- Fallahizadeh, S.; Rahmatinia, M.; Mohammadi, Z.; Vaezzadeh, M.; Tajamiri, A.; Soleimani, H. Estimation of methane gas by LandGEM model from Yasuj municipal solid waste landfill, Iran. MethodsX 2019, 6, 391–398. [Google Scholar] [CrossRef]
- Jeyaseelan, S. A simple mathematical model for anaerobic digestion process. Water Sci. Technol. 1997, 35, 185–191. [Google Scholar] [CrossRef]
- Paulina Rebeca, C.M.; Fabián, R.M.; Francisco José, C.M.; Ana Belem, P.G. Herramientas para la evaluación de riesgos sobre el ambiente y salud, por la disposición final de residuos sólidos urbanos. Rev. Int. Contam. Ambient. 2016, 32, 47–62. [Google Scholar] [CrossRef]
- Yuridia, S.G.; Rene, C.C.; Ana, J.L.; María, S.R.; José, R.A.; Julio, R.A. Emisiones de Gases de Efecto Invernadero en Vertederos de Residuos Sólidos Urbanos. Parte B: Mitigación de Biogás en Acapulco, México. Rev. Iberoam. Cienc. 2017, 4, 12. [Google Scholar]
- Hosseini, S.S.; Yaghmaeian, K.; Yousefi, N.; Mahvi, A.H. Estimation of landfill gas generation in a municipal solid waste disposal site by LandGEM mathematical model. Glob. J. Environ. Sci. Manag. 2018, 4, 493–506. [Google Scholar] [CrossRef]
- Rentería, G.; Fernando, F.; García, A.; Alberto, R. Determinación de la emisión de sustancias tóxicas gaseosas en el relleno sanitario Curva de Rodas de la ciudad de Medellín. Rev. Fac. Ing. Univ. Antioq. 2005, 33, 70–83. [Google Scholar]
- Reinhart, D. A review of recent studies on the sources of Hazardous compounds emitted from solid waste Landfills: A U.S. Experience. Waste Manag. Res. 1993, 11, 257–268. [Google Scholar] [CrossRef]
- Andrade, A.; Tibaquirá, J.E.; Restrepo, A. Estimación de biogás de relleno sanitario, caso de estudio: Colombia. Entre Cienc. Ing. 2018, 12, 40. [Google Scholar] [CrossRef] [Green Version]
- Mokhtari, M.; Ebrahimi, A.A.; Rezaeinia, S. Prediction of Greenhouse Gas Emissions in Municipal Solid Waste Landfills Using LandGEM and IPCC Methods in Yazd, Iran. J. Environ. Health Sustain. Dev. 2020, 5, 1145–1154. [Google Scholar]
- Durango, J.; Saqalli, M.; Laplanche, C.; Locquet, M.; Elger, A. Spatial analysis of accidental oil spills using heterogeneous data: A case study from the North-Eastern Ecuadorian Amazon. Sustainability 2018, 10, 4719. [Google Scholar] [CrossRef] [Green Version]
- Madrigal, G.; Quispe, J.; Vargas, Y. Calculo de la generación de biogás para el relleno sanitario de la ciudad de Juliaca, utilizando el modelo LandGEM Versión 3.02 de la USEPA y estimación del potencial de producción eléctrica. Rev. Investig. Cienc. Tecnol. Desarro. 2018, 4, 42–55. [Google Scholar] [CrossRef]
- Cesari, D.; Merico, E.; Grasso, F.M.; Decesari, S.; Belosi, F.; Manarini, F.; de Nuntiis, P.; Rinaldi, M.; Volpi, F.; Gambaro, A.; et al. Source apportionment of PM2.5 and of its oxidative potential in an industrial suburban site in South Italy. Atmosphere 2019, 10, 758. [Google Scholar] [CrossRef] [Green Version]
- Mukai, S.; Sano, I.; Nakata, M. Improved algorithms for remote sensing-based aerosol retrieval during extreme biomass burning events. Atmosphere 2021, 12, 403. [Google Scholar] [CrossRef]
- Pillai, J.; Riverol, C. Estimation of gas emission and derived electrical power generation from landfills. Trinidad and Tobago as study case. Sustain. Energy Technol. Assess. 2018, 29, 139–146. [Google Scholar] [CrossRef]
- Rodrigue, K.A.; Essi, K.; Cyril, K.M.; Albert, T. Estimation of Methane Emission from Kossihouen Sanitary Landfill and Its Electricity Generation Potential. J. Power Energy Eng. 2018, 06, 22–31. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, Q.; González, P.; Benítez, S. Modelo mexicano para la estimación de la generación de biogás Mexican model for the estimation of the generation of biogas. Ingenieria 2011, 15, 37–45. [Google Scholar]
- Lattanzi, I.; Prata, D.; Quelhas, O. Modelagem da geração de biogás aplicando metodologia CDM para redução de emissões de gases de efeito estufa: Estudo de caso do Aterro MTR Santa Maria Madalena, RJ, Brasil. Sist. Gestão 2020, 14, 483–491. [Google Scholar] [CrossRef]
- Rodrigo IIarri, J.; Rodrigo Clavero, M.E. Optimal Management of Municipal Solid Waste Landfill Leachate Using Mathematical Modeling: A Case Study in Valencia; Springer: Singapore; Nat. Pte Ltd.: Singapore, 2021. [Google Scholar] [CrossRef]
- Rodrigo-Ilarri, J.; Rodrigo-Clavero, M.E. Mathematical modeling of the biogas production in msw landfills. Impact of the implementation of organic matter and food waste selective collection systems. Atmosphere 2020, 11, 1306. [Google Scholar] [CrossRef]
- Rodrigo-Ilarri, J.; Rodrigo-clavero, M.E.; Cassiraga, E. Bioleach: A new decision support model for the real-time management of municipal solid waste bioreactor landfills. Int. J. Environ. Res. Public Health 2020, 17, 1675. [Google Scholar] [CrossRef] [Green Version]
- Huo, J.; Qu, X.; Zhu, D.; Yuan, Z.; Tang, Y. Impacts of Climate Change on Blue and Green Water Resources in the Middle and Upper Yarlung Zangbo River, China. Atmosphere 2021, 12, 1280. [Google Scholar] [CrossRef]
- Saghir, M.; Chbihi, M.; Tahiri, M.; Naimi, Y. Estimated Production of Electrical Energy for the Controlled Landfill in Fez ( Morocco ) by the Land-GEM Model of US EPA. Am. J. Earth Sci. Eng. 2018, 1, 137–142. [Google Scholar] [CrossRef]
- Muñoz, E.; Solano, L. Informe de Caracterización de Residuos Sólidos en el cantón Cuenca; Universidad Católica de Cuenca: Cuenca, Spain, 2018. [Google Scholar]
- Pazmiño, J.P.W.; Arévalo, L.F.C. Análisis Estadístico De Los Residuos Sólidos Domésticos De La Parroquia San Sebastian Del Coca Del Cantón Joya De Los Sachas. Eur. Sci. J. ESJ 2018, 14, 7. [Google Scholar] [CrossRef]
- Hidalgo, J.; Coello, S.; Crespo, T.; Amaya, J.; Soto, M.; Jervis, F.; Moreira, C. Waste to energy potential of domestic waste cooking oil in guayaquil: A review. LACCEI Int. Multi-Conf. Eng. Educ. Technol. 2020, 1–7. [Google Scholar] [CrossRef]
- Espinosa, J.; Moreno, J.; Bernal, G. World Soils Book Series Series Editor; Espinosa, J., Moreno, J., Bernal, G., Eds.; Springer International Publishing AG: Quito, Ecuador, 2018; ISBN 978-3-319-25317-6. [Google Scholar]
- Marín, J.C.; Pozo, L.; Colina, G.; Rincón, N.; Behling, E.; Díaz, A.; Fernández, N. Optimización de un método para la determinación simultánea de H2 y CH4 por cromatografía gas-sólido en biorreactores anaeróbicos Optimization of a Method for Simultaneous Determination of H2 and CH4 in Anaerobic Bioreactors Using Solid-Gas Chromatogra. Multiciencias 2007, 7, 266–275. [Google Scholar]
- Bakkaloglu, S.; Lowry, D.; Fisher, R.; France, J.; Brunner, D.; Chen, H.; Nisbet, E. Quantification of methane emissions.pdf. Waste Manag. 2021, 83–93. [Google Scholar] [CrossRef]
- Ohnmacht, B.; Lemmer, A.; Oechsner, H.; Kress, P. Demand-oriented biogas production and biogas storage in digestate by flexibly feeding a full-scale biogas plant. Bioresour. Technol. 2021, 332, 125099. [Google Scholar] [CrossRef] [PubMed]
- Barragán-Escandón, A.; Ruiz, J.M.O.; Tigre, J.D.C.; Zalamea-León, E.F. Assessment of power generation using biogas from landfills in an equatorial tropical context. Sustainability 2020, 12, 2669. [Google Scholar] [CrossRef] [Green Version]
- Cárdenas-Moreno, P.R.; Piña-Guzmán, A.B.; Robles-Martínez, F. Estimación del Biogás Generado en Sitios de Disposición Final del Estado de México. Rev. Int. Contam. Ambient. 2020, 37, 27–38. [Google Scholar] [CrossRef]
- Aguilar-Virgen, Q.; Taboada-González, P.; Ojeda-Benítez, S. Analysis of the feasibility of the recovery of landfill gas: A case study of Mexico. J. Clean. Prod. 2014, 79, 53–60. [Google Scholar] [CrossRef]
- Barragán, E.A.; Arias, P.D.; Terrados, J. Fomento Del Metabolismo Energético Circular Mediante Generación Eléctrica Proveniente De Rellenos Sanitarios. Ingenius 2016, 36–42. [Google Scholar] [CrossRef] [Green Version]
- Moya, D.; Aldás, C.; Jaramillo, D.; Játiva, E.; Kaparaju, P. Waste-To-Energy Technologies: An opportunity of energy recovery from Municipal Solid Waste, using Quito-Ecuador as case study. Energy Procedia 2017, 134, 327–336. [Google Scholar] [CrossRef]
- Johari, A.; Ahmed, S.I.; Hashim, H.; Alkali, H.; Ramli, M. Economic and environmental benefits of landfill gas from municipal solid waste in Malaysia. Renew. Sustain. Energy Rev. 2012, 16, 2907–2912. [Google Scholar] [CrossRef]
- Shen, Y.; Linville, J.L.; Urgun-Demirtas, M.; Mintz, M.M.; Snyder, S.W. An overview of biogas production and utilization at full-scale wastewater treatment plants (WWTPs) in the United States: Challenges and opportunities towards energy-neutral WWTPs. Renew. Sustain. Energy Rev. 2015, 50, 346–362. [Google Scholar] [CrossRef] [Green Version]
- Shenai-Tirodkar, P.S.; Gauns, M.U.; Ansari, Z.A. Evaluation of surface water and sediment quality in Chicalim Bay, Nerul Creek, and Chapora Bay from Goa coast, India—A statistical approach. Environ. Monit. Assess. 2016, 188, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Briceño, I.; Valencia, J.; Posso, M. Potencial de generación de energía de ka agroindustria de la palma de aceite Colombia. Palma 2015, 36, 43–53. [Google Scholar]
- Venegas, J.; Aryal, D.; Ruíz, R. Biogás, la energía renovable para el desarrollo de granjas porcícolas en el estado de Chiapas. Análisis Económico 2018, 34, 169–187. [Google Scholar] [CrossRef]
- Martínez, C.; García, Y. Use of basic and specific pre-treatments for the biogas production. Revision and analysis. Rev. Ciencias Técnicas Agropecu. 2016, 25, 81–92. [Google Scholar] [CrossRef]
- Andrea, L.; García, M.; David, Á.; Vargas, R.; Enrique, H.; Cubides, R. Computational Model of An Electric Power Generation System Based on Biogas Obtained From Cattle Manureodelo. Pist. Educ. 2020, 42, 1091–1110. [Google Scholar]
- Das, D.; Majhi, B.; Pal, S.; Jash, T. Estimation of Land-fill Gas Generation from Municipal Solid Waste in Indian Cities. Energy Procedia 2016, 90, 50–56. [Google Scholar] [CrossRef]
- Opio, R.; Mugume, I.; Nakatumba-nabende, J. Understanding the Trend of NO2, SO2 and CO over East Africa from 2005 to 2020. Atmosphere 2021, 12, 1283. [Google Scholar] [CrossRef]
- Villacres, A. Estudio Técnico de un Sistema para Producir Energía Eléctrica a partir del Biogás Generado por la Descomposición de la Basura en la Ciudad de Guayaquil; Universidad de Guayaquil: Guayaquil, Ecuador, 2018. [Google Scholar]
- Cairampoma, G. Propuesta de generación de energía eléctrica mediante biogás obtenido por la materia orgánica del Relleno Sanitario “Santa Cruz”-Concepción. Ingenium 2017, 2, 21–33. [Google Scholar] [CrossRef] [Green Version]
- Ayodele, T.; Ogunjuyigbe, A. Effect of collection efficiency and oxidation factor on greenhouse gas emission and life cycle cost of landfill distributed energy generation. Sustain. Cities Soc. 2019, 52, 1–10. [Google Scholar] [CrossRef]
- Vera, I.; Martínez, J.; Estrada, M.; Ortiz, A. Potencial de generación de biogás y energía eléctrica. Parte II: Residuos sólidos urbanos Potential of Power Generation from Biogas. Part II: Municipal Solid Waste. Ing. Investig. Tecnol. 2015, 16, 471–478. [Google Scholar]
- Andrei, F.; Barbieri, M.; Sappa, G. Application of2h and18o isotopes for tracing municipal solid waste landfill contamination of groundwater: Two Italian case histories. Water 2021, 13, 1065. [Google Scholar] [CrossRef]
Emissions Concentration Type | Landfill Type | K (1/Year) | L0 (m3/mg) |
---|---|---|---|
CAA | Conventional | 0.05 | 170 |
CAA | Arid zone | 0.02 | 170 |
Inventory | Conventional | 0.04 | 100 |
Inventory | Arid zone | 0.02 | 100 |
Inventory | Wet (Bioreactor) | 0.7 | 96 |
Precipitation (mm/Year) | K | L0 | ||
---|---|---|---|---|
≤50% | ≥60% | ≤50% | ≥60% | |
0–249 | 0.04 | 0.043 | 60 | 62 |
250–499 | 0.05 | 0.053 | 80 | 83 |
500–999 | 0.065 | 0.69 | 84 | 87 |
1000–1999 | 0.08 | 0.085 | 84 | 87 |
2000 + saturated | 0.08 | 0.085 | 84 | 87 |
Components | Weight % |
---|---|
Year 2018 | |
Organic material | 61.22 |
Cardboard paper | 5.81 |
Metals | 1.14 |
Plastic White | 7.57 |
Rigid Plastic | 4.13 |
Rubber | 1.37 |
Inert matter | 1.21 |
Glass | 2.0 |
Wood | 0.38 |
Textiles | 3.12 |
Toilet paper, towels and diapers | 10.67 |
Tetrapak | 0.36 |
Others | 1.02 |
Total | 100 |
Components | Weight (%) |
---|---|
Year 2017 | |
Organic material | 67 |
Tetra pack | 0.6 |
Toilet paper | 1.2 |
Notebook paper | 1.2 |
Newspaper | 0.8 |
Paperboard | 2.6 |
Plastic household line | 1.2 |
Pet plastic | 1.6 |
Plastic cases | 10.6 |
Plastic wrap | 1.6 |
Glass | 1.4 |
Metal | 0.4 |
Rubber | 0.2 |
Wood, plant residues | 3.2 |
Stone | 1.0 |
Others (diaper, clothes, leather) | 5.4 |
Nr. | Source | Country | City | Electric Energy (MWh/año) | Year | Reference |
---|---|---|---|---|---|---|
1 | Sanitary landfill | Mexico | Ensenada | 19,000 | 2004 | [16] |
Sanitary landfill | Mexico | Baja California | 760,492.8 | 2014 | [42] | |
2 | Sanitary landfill | Peru | Puno | 5980.728 | 2018 | [19] |
3 | Sanitary landfill | Ecuador | Cuenca | 5844.3 | 2016 | [21] |
4 | Sanitary landfill | Colombia | Pereira | 60,000 | 2018 | [43] |
5 | Sanitary landfill | Ecuador | Quito | 5.97 | 2017 | [22] |
6 | Sanitary landfill | Malaysia | Putrajaya | 1,900,000 | 2016 | [44] |
7 | Sanitary landfill | Austria | Vienna | 0.0235 | 2017 | [45] |
8 | Agricultural industry | Colombia | Bogotá | 340 | 2012 | [46] |
9 | Agricultural industry | Mexico | Chiapas | 7593 | 2018 | [47,48] |
10 | Agricultural industry | Argentina | Buenos Aires | 0.0021 | 2015 | [49] |
11 | Animal | Colombia | Antioquia | 2952 | 2019 | [50] |
12 | Sanitary landfill | Bolivia | Santa Cruz | 0.00928 | 2017 | [51] |
13 | Sanitary landfill | Colombia | Cúcuta | 3.000 | 2017 | [52] |
Pichacay-Cuenca | Las Iguanas-Guayaquil | ||||||||
---|---|---|---|---|---|---|---|---|---|
Pozos | %CH4 | %CO2 | %O2 | %H2S | Wells/Chimney | %CH4 | %CO2 | %O2 | H2S (ppm) |
1 | 54.5 | 45.5 | 0 | 37 | 1 | 60.2 | 39.8 | 0.0 | 656 |
2 | 55.8 | 44.2 | 0 | 63 | 2 | 56.7 | 3.2 | 0.8 | 485 |
3 | 55.4 | 44.2 | 0 | 16 | 9 | 57.6 | 38.8 | 1.0 | 258 |
4 | 51.9 | 37.9 | 2.5 | 27 | 9 | 53.9 | 39.2 | 1.0 | 45 |
5 | 55.7 | 44.1 | 0 | 24 | 9 | 58.6 | 37.6 | 1.1 | 136 |
6 | 56.2 | 43.9 | 0 | 31 | 10EB | 52.1 | 39.9 | 2.1 | 380 |
7 | 58.6 | 41.5 | 0 | 20 | 10EC | 52.8 | 37.1 | 2.0 | 120 |
8 | 42.6 | 30 | 5.7 | 13 | 10ED | 51.2 | 35.4 | 3.2 | 101 |
9 | 36.8 | 28.5 | 6.4 | 11 | 11EC | 52.9 | 37.1 | 2.4 | 67 |
10 | 55.1 | 44.8 | 0.2 | 29 | 12EF | 50.1 | 39.2 | 2.2 | 55 |
11 | 54.2 | 42.7 | 0 | 20 | 10 | 35,6 | 22.6 | 7.4 | 191 |
12 | 54.4 | 45.7 | 0 | 11 | 10 | 60.9 | 39.1 | 0 | 225 |
13 | 54.8 | 45.2 | 0 | 39 | 10 | 47.9 | 29.7 | 1.7 | 142 |
14 | 53.6 | 46.4 | 0 | 21 | 11 | 50.1 | 30.6 | 3.2 | 262 |
15 | 53.8 | 46.1 | 6 | 6 | 21 | 59.2 | 39.9 | 0.0 | 169 |
16 | 56.4 | 43 | 0.5 | 13 | 22 | 53.7 | 36.8 | 1.3 | 158 |
17 | 45.0 | 37.1 | 0.9 | 1 | 25 | 56.7 | 43.3 | 0.0 | 100 |
18 | 55.5 | 44.2 | 0 | 24 | 26 | 56.7 | 47.2 | 0.0 | 226 |
19 | 55.4 | 44.5 | 0 | 13 | 28 | 58.8 | 39.4 | 0.3 | 222 |
20 | 56.5 | 43.1 | 0.5 | 11 | 30 | 58.3 | 41.7 | 0.0 | 142 |
21 | 57.2 | 40.7 | 0.9 | 4 | 31 | 57.5 | 42.1 | 0.0 | 253 |
22 | 54 | 45.9 | 0 | 18 | 32 | 56.7 | 43.3 | 0.0 | 172 |
23 | 56 | 43.7 | 0 | 3 | 33 | 57.5 | 42.5 | 0,0 | 82 |
24 | 56.3 | 43.1 | 0.8 | 33 | 36 | 58.3 | 41.7 | 0.0 | 107 |
25 | 56.2 | 43.2 | 0.5 | 15 | 37 | 59.5 | 40.5 | 0.0 | 408 |
26 | 25.3 | 19.1 | 10.7 | 2 | 38 | 60.5 | 39.2 | 0.0 | 392 |
27 | 49.1 | 36.4 | 3.2 | 1 | 39 | 57.9 | 41.9 | 0.2 | 228 |
28 | 45.2 | 33.1 | 4.8 | 10 | 40 | 58.7 | 41.3 | 0.1 | 103 |
29 | 45.4 | 35 | 3.6 | 6 | 41 | 57.4 | 42.6 | 0.0 | 132 |
30 | 55.4 | 44 | 0.7 | 33 | 42 | 57.2 | 42.7 | 0.0 | 198 |
31 | 51.6 | 38.5 | 2.4 | 2.6 | 43 | 41.3 | 31.3 | 4.6 | 42 |
32 | 33.9 | 26.1 | 6.0 | 12 | 44 | 57.5 | 42.5 | 0.0 | 121 |
BIO | 51.49 | 40.35 | 1.75 | 17.8 | BIO | 51.88 | 36.62 | 1.01 | 187.58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poma, P.; Usca, M.; Polanco, M.; Toulkeridis, T.; Mestanza-Ramón, C. Estimation of Biogas Generated in Two Landfills in South-Central Ecuador. Atmosphere 2021, 12, 1365. https://doi.org/10.3390/atmos12101365
Poma P, Usca M, Polanco M, Toulkeridis T, Mestanza-Ramón C. Estimation of Biogas Generated in Two Landfills in South-Central Ecuador. Atmosphere. 2021; 12(10):1365. https://doi.org/10.3390/atmos12101365
Chicago/Turabian StylePoma, Paulina, Marco Usca, María Polanco, Theofilos Toulkeridis, and Carlos Mestanza-Ramón. 2021. "Estimation of Biogas Generated in Two Landfills in South-Central Ecuador" Atmosphere 12, no. 10: 1365. https://doi.org/10.3390/atmos12101365
APA StylePoma, P., Usca, M., Polanco, M., Toulkeridis, T., & Mestanza-Ramón, C. (2021). Estimation of Biogas Generated in Two Landfills in South-Central Ecuador. Atmosphere, 12(10), 1365. https://doi.org/10.3390/atmos12101365