Evaluation of Historical CMIP6 Model Simulations of Seasonal Mean Temperature over Pakistan during 1970–2014
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Methods
3. Results
3.1. Mean Temperature Annual Cycle
3.2. Summer Mean Temperature Climatology
3.3. Winter Mean Temperature Climatology
3.4. JJA Empirical Cumulative Distribution Function
3.5. Winter Empirical Cumulative Distribution Function
3.6. Summer and Winter Spatiotemporal Trend Analysis
3.7. Temporal Bias, Correlation, and RMSE
3.8. Summer Bias, RMSE, and Correlation Coefficient
3.9. Winter Spatial Bias, RMSE, and Correlation Coefficient Metrics
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IPCC. Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [CrossRef] [Green Version]
- Ahmed, K.; Sachindra, D.A.; Shahid, S.; Demirel, M.C.; Chung, E.-S. Selection of multi-model ensemble of general circulation models for the simulation of precipitation and maximum and minimum temperature based on spatial assessment metrics. Hydrol. Earth Syst. Sci. 2019, 23, 4803–4824. [Google Scholar] [CrossRef] [Green Version]
- Perkins-Kirkpatrick, S.E.; Gibson, P.B. Changes in regional heatwave characteristics as a function of increasing global temperature. Sci. Rep. 2017, 7, 1256. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013.
- Sivakumar, M.V.K.; Stefanski, R. Climate Change in South Asia, in Climate Change and Food Security in South Asia; Springer: Dordrecht, The Netherlands, 2010; pp. 13–30. [Google Scholar]
- Wester, P.; Mishra, A.; Mukherji, A.; Shrestha, A.B. The Hindu Kush Himalaya Assessment; Springer International Publishing: Cham, Switzerland, 2019. [Google Scholar]
- Kreft, S.; Eckstein, D.; Melchior, I. Global Climate Risk Index 2017: Who Suffers Most from Extreme Weather Events? Germanwatch e.V.: Bonn, Germany, 2017; ISBN 9783943704495. [Google Scholar]
- Haider, S.; Adnan, S. Classification and Assessment of Aridity Over Pakistan Provinces (1960–2009). Int. J. Environ. 2014, 3, 24–35. [Google Scholar] [CrossRef] [Green Version]
- Rasul, G.; Afzal, M.; Zahid, M.; Ali Bukhari, S.A. Climate Change in Pakistan Focused on Sindh Province. In Pakistan Meteorological Department Technical Report; No. PMD-25/2012; Pakistan Meteorological Department: Islamabad, Pakistan, 2012; p. 55. [Google Scholar]
- Afzaal, M.; Haroon, M.A. Interdecadal Oscillations and the Warming Trend in the Area-Weighted Annual Mean Temperature of Pakistan. Pak. J. Meteorol. 2009, 6, 13–19. [Google Scholar]
- McSweeney, C.; New, M.; Lizcano, G. Climate Change Country Profiles Documentation. National Communication Support Program. 2008; pp. 1–26. Available online: https://www.geog.ox.ac.uk/research/climate/projects/undp-cp/UNDP_reports/Pakistan/Pakistan.hires.report.pdf (accessed on 20 September 2020).
- Khan, N.; Shahid, S.; bin Ismail, T.; Wang, X.J. Spatial distribution of unidirectional trends in temperature and temperature extremes in Pakistan. Theor. Appl. Climatol. 2019, 136, 899–913. [Google Scholar] [CrossRef]
- Ullah, S.; You, Q.; Ali, A.; Ullah, W.; Jan, M.A.; Zhang, Y.; Xie, W.; Xie, X. Observed changes in maximum and minimum temperatures over China-Pakistan economic corridor during 1980–2016. Atmos. Res. 2019, 216, 37–51. [Google Scholar] [CrossRef]
- Adnan, S.; Ullah, K.; Gao, S.; Khosa, A.H.; Wang, Z. Shifting of agro-climatic zones, their drought vulnerability, and precipitation and temperature trends in Pakistan. Int. J. Climatol. 2017, 37, 529–543. [Google Scholar] [CrossRef]
- Balling, R.C.; Kiany, M.S.K.; Roy, S.S. Anthropogenic signals in Iranian extreme temperature indices. Atmos. Res. 2016, 169, 96–101. [Google Scholar] [CrossRef]
- Rasul, G.; Dahe, Q.; Chaudhry, Q.Z. Global Warmin and Melting Glaciers along Southern Slopes of HKH Ranges. Pak. J. Meteorol. 2008, 5, 63–76. [Google Scholar]
- Roy, S.S.; Keikhosravi Kiany, M.S.; Balling, R.C. A Significant Population Signal in Iranian Temperature Records. Int. J. Atmos. Sci. 2016, 2016, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Nie, S.; Fu, S.; Cao, W.; Jia, X. Comparison of monthly air and land surface temperature extremes simulated using CMIP5 and CMIP6 versions of the Beijing Climate Center climate model. Theor. Appl. Climatol. 2020, 140, 487–502. [Google Scholar] [CrossRef]
- Abbas, F.; Rehman, I.; Adrees, M.; Ibrahim, M.; Saleem, F.; Ali, S.; Rizwan, M.; Salik, M.R. Prevailing trends of climatic extremes across Indus-Delta of Sindh-Pakistan. Theor. Appl. Climatol. 2018, 131, 1101–1117. [Google Scholar] [CrossRef]
- Del Río, S.; Anjum Iqbal, M.; Cano-Ortiz, A.; Herrero, L.; Hassan, A.; Penas, A. Recent mean temperature trends in Pakistan and links with teleconnection patterns. Int. J. Climatol. 2013, 33, 277–290. [Google Scholar] [CrossRef]
- Fang, S.; Qi, Y.; Yu, W.; Liang, H.; Han, G.; Li, Q.; Shen, S.; Zhou, G.; Shi, G. Change in temperature extremes and its correlation with mean temperature in mainland China from 1960 to 2015. Int. J. Climatol. 2017, 37, 3910–3918. [Google Scholar] [CrossRef]
- Ahmadalipour, A.; Rana, A.; Moradkhani, H.; Sharma, A. Multi-criteria evaluation of CMIP5 GCMs for climate change impact analysis. Theor. Appl. Climatol. 2017, 128, 71–87. [Google Scholar] [CrossRef] [Green Version]
- Ramesh, K.V.; Goswami, P. Assessing reliability of regional climate projections: The case of Indian monsoon. Sci. Rep. 2014, 4. [Google Scholar] [CrossRef] [PubMed]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef] [Green Version]
- Hausfather, Z.; Peters, G.P. Emissions—The ‘business as usual’ story is misleading. Nature 2020, 577, 618–620. [Google Scholar] [CrossRef]
- Grose, M.R.; Narsey, S.; Delage, F.P.; Dowdy, A.J.; Bador, M.; Boschat, G.; Chung, C.; Kajtar, J.B.; Rauniyar, S.; Freund, M.B.; et al. Insights From CMIP6 for Australia’s Future Climate. Earth’s Future 2020, 8. [Google Scholar] [CrossRef] [Green Version]
- Almazroui, M.; Saeed, S.; Islam, M.; Ismail, M. Projections of Precipitation and Temperature over the South Asian Countries in CMIP6. Earth Syst. Environ. 2020, 4, 297–320. [Google Scholar] [CrossRef]
- Zhao, T.; Chen, L.; Ma, Z. Simulation of historical and projected climate change in arid and semiarid areas by CMIP5 models. Chin. Sci. Bull. 2014, 59, 412–429. [Google Scholar] [CrossRef]
- Tokarska, K.B.; Stolpe, M.B.; Sippel, S.; Fischer, E.M.; Smith, C.J.; Lehner, F.; Knutti, R. Past warming trend constrains future warming in CMIP6 models. Sci. Adv. 2020, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Research Council. Understanding Earth’s Deep Past: Lessons for Our Climate Future; National Academies Press: Washington, DC, USA, 2011; p. 20. [Google Scholar]
- O’Neill, B.C.; Tebaldi, C.; Van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.F.; Lowe, J.; et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef] [Green Version]
- Athar, U.A.H.; Latif, A.N.M. An AOGCM based assessment of interseasonal variability in Pakistan. Clim. Dyn. 2018, 50, 349–373. [Google Scholar] [CrossRef]
- Ali, S.; Eum, H.-I.; Jaepil, C.; Li, D.; Khan, F.; Dairaku, K.; Shrestha, M.L.; Hwang, S.; Naseem, W.; Khan, I.A.; et al. Assessment of climate extremes in future projections downscaled by multiple statistical downscaling methods over Pakistan. Atmos. Res. 2019, 222, 114–133. [Google Scholar] [CrossRef]
- Sajjad, H.; Ghaffar, A. Observed, simulated and projected extreme climate indices over Pakistan in changing climate. Theor. Appl. Climatol. 2018, 137, 255–281. [Google Scholar] [CrossRef]
- Babar, Z.A.; Zhi, X.; Ge, F.; Riaz, M.; Mahmood, A.; Sultan, S.; Shad, M.A.; Aslam, C.M.; Ahmad, M.F. Assessment of Southwest Asia Surface Temperature Changes: CMIP5 20th and 21st Century Simulations. Pak. J. Meteorol. 2016, 13, 1–15. [Google Scholar]
- Lelieveld, J.; Proestos, Y.; Hadjinicolaou, P.; Tanarhte, M.; Tyrlis, E.; Zittis, G. Strongly increasing heat extremes in the Middle East and North Africa (MENA) in the 21st century. Clim. Chang. 2016, 137, 245–260. [Google Scholar] [CrossRef] [Green Version]
- Knutti, R.; Sedláček, J. Robustness and uncertainties in the new CMIP5 climate model projections. Nat. Clim. Chang. 2013, 3, 369–373. [Google Scholar] [CrossRef]
- Zhang, B.; Soden, B.J. Constraining Climate Model Projections of Regional Precipitation Change. Geophys. Res. Lett. 2019, 46, 10522–10531. [Google Scholar] [CrossRef]
- Sarfaraz, S. The Sub-Regional Classification of Pakistan’s Winter Precipitation Based on Principal Components Analysis. Pak. J. Meteorol. 2014, 10, 57–66. [Google Scholar]
- Iqbal, Z.; Shahid, S.; Ahmed, K.; Ismail, T.; Nawaz, N. Spatial distribution of the trends in precipitation and precipitation extremes in the sub-Himalayan region of Pakistan. Theor. Appl. Climatol. 2019, 137, 2755–2769. [Google Scholar] [CrossRef]
- Farooqi, A.B.; Khan, A.H.; Mir, H. Climate Change Perspective in Pakistan. Pak. J. Meteorol. 2005, 2, 11–21. [Google Scholar]
- Ikram, F.; Afzaal, M.; Bukhari, S.A.A.; Ahmed, B. Past and Future Trends in Frequency of Heavy Rainfall Events over Pakistan. Pak. J. Meteorol. 2016, 12, 57–78. [Google Scholar]
- Vermeulen, J.L.; Hillebrand, A.; Geraerts, R. A comparative study of k-nearest neighbour techniques in crowd simulation. Comput. Animat. Virtual Worlds 2017, 28. [Google Scholar] [CrossRef]
- Mallika, M.; Sundaram, S.M.; Nirmala, M. Annual mean temperature prediction of India using K-Nearest Neighbour technique. Appl. Math. Sci. 2015, 9, 613–616. [Google Scholar] [CrossRef]
- Pincus, R.; Batstone, C.P.; Patrick Hofmann, R.J.; Taylor, K.E.; Glecker, P.J. Evaluating the present-day simulation of clouds, precipitation, and radiation in climate models. J. Geophys. Res. Atmos. 2008, 113, D14209. [Google Scholar] [CrossRef]
- Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef] [Green Version]
- Ongoma, V.; Chen, H.; Gao, C. Evaluation of CMIP5 twentieth century rainfall simulation over the equatorial East Africa. Theor. Appl. Climatol. 2019, 135, 893–910. [Google Scholar] [CrossRef]
- Ayugi, B.; Tan, G.; Gnitou, G.T.; Ojara, M.; Ongoma, V. Historical evaluations and simulations of precipitation over East Africa from Rossby centre regional climate model. Atmos. Res. 2020, 232. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests against Trend. Econometrica 1945, 13, 245. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Griffin: London, UK, 1975; p. 202. [Google Scholar]
- Ayugi, B.O.; Tan, G.; Ongoma, V.; Mafuru, K.B. Circulations Associated with Variations in Boreal Spring Rainfall over Kenya. Earth Syst. Environ. 2018, 2, 421–434. [Google Scholar] [CrossRef]
- You, Q.; Min, J.; Kang, S. Rapid warming in the tibetan plateau from observations and CMIP5 models in recent decades. Int. J. Climatol. 2016, 36, 2660–2670. [Google Scholar] [CrossRef]
- Nadia Rehman, M.A.; Ali, S. Assessment of CMIP5 climate models over South Asia and climate change projections over Pakistan under representative concentration pathways. Int. J. Glob. Warm. 2018, 16, 381. [Google Scholar] [CrossRef]
- Tatebe, H.; Ogura, T.; Nitta, T.; Komuro, Y.; Ogochi, K.; Takemura, T.; Sudo, K.; Sekiguchi, M.; Abe, M.; Saito, F.; et al. Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geosci. Model Dev. Discuss. 2018, 1–92. [Google Scholar] [CrossRef] [Green Version]
- Cannon, A.J.; Sobie, S.R.; Murdock, T.Q. Bias correction of GCM precipitation by quantile mapping: How well do methods preserve changes in quantiles and extremes? J. Clim. 2015, 28, 6938–6959. [Google Scholar] [CrossRef]
- Iqbal, W.; Zahid, M. Historical and Future Trends of Summer Mean Air Temperature over South Asia. Pak. J. Meteorol. 2014, 10, 67–74. [Google Scholar]
- Gusain, A.; Ghosh, S.; Karmakar, S. Added value of CMIP6 over CMIP5 models in simulating Indian summer monsoon rainfall. Atmos. Res. 2020, 232, 104680. [Google Scholar] [CrossRef]
- Sillmann, J.; Kharin, V.V.; Zhang, X.; Zwiers, F.W.; Bronaugh, D. Bronaugh. Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. J. Geophys. Res. Atmos. 2013, 118, 1716–1733. [Google Scholar] [CrossRef]
- Bollasina, M.; Nigam, S. The summertime ‘heat’ low over Pakistan/northwestern India: Evolution and origin. Clim. Dyn. 2011, 37, 957–970. [Google Scholar] [CrossRef] [Green Version]
- Das, L.; Akhter, J.; Dutta, M.; Meher, J.K. Ensemble-based CMIP5 simulations of monsoon rainfall and temperature changes over South Asia. Chall. Agro-Environ. Res. Monsoon Asia 2015, 6, 41–60. [Google Scholar] [CrossRef]
- Eyring, V.; Cox, P.M.; Flato, G.M.; Gleckler, P.J.; Abramowitz, G.; Caldwell, P.; Collins, W.D.; Gier, B.K.; Hall, A.D.; Hoffman, F.M.; et al. Taking climate model evaluation to the next level. Nat. Clim. Chang. 2019, 9, 102–110. [Google Scholar] [CrossRef] [Green Version]
- Hassan, M.; Du, P. Regional climate model simulation for temperature and precipitation over South Asia using different physical parameterisation schemes. Int. J. Glob. Warm. 2018, 14, 1–20. [Google Scholar] [CrossRef]
- Neukom, R.; Barboza, L.A.; Erb, M.P.; Shi, F.; Emile-Geay, J.; Evans, M.N.; Franke, J.; Kaufman, D.S.; Lücke, L.; Rehfeld, K.; et al. Consistent multidecadal variability in global temperature reconstructions and simulations over the Common Era. Nat. Geosci. 2019, 12, 643–649. [Google Scholar] [CrossRef] [Green Version]
- Nawaz, Z.; Li, X.; Chen, Y.; Guo, Y.; Wang, X.; Nawaz, N. Temporal and spatial characteristics of precipitation and temperature in Punjab, Pakistan. Water 2019, 11, 1916. [Google Scholar] [CrossRef] [Green Version]
- Pepin, N.; Bradley, R.S.; Diaz, H.F.; Baraër, M.; Caceres, E.B.; Forsythe, N.; Fowler, H.; Greenwood, G.; Hashmi, M.Z.; Liu, X.D.; et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 2015, 5, 424–430. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.; Liu, X. Has Climatic Warming over the Tibetan Plateau Paused or Continued in Recent Years ? J. Earth Ocean Atmos. Sci. 2014, 1, 13–28. [Google Scholar]
- Rangwala, I.; Miller, J.R.; Russell, G.L.; Xu, M. Using a global climate model to evaluate the influences of water vapor, snow cover and atmospheric aerosol on warming in the Tibetan Plateau during the twenty-first century. Clim. Dyn. 2010, 34, 859–872. [Google Scholar] [CrossRef]
- Archer, D.R.; Fowler, H.J. Conflicting signals of climatic change in the upper Indus Basin. J. Clim. 2006, 19, 4276–4293. [Google Scholar] [CrossRef] [Green Version]
- Fatima, E.; Hassan, M.; Hasson, S.U.; Ahmad, B.; Ali, S.S.F. Future water availability from the western Karakoram under representative concentration pathways as simulated by CORDEX South Asia. Theor. Appl. Climatol. 2020, 1–16. [Google Scholar] [CrossRef]
- Ullah, S.; You, Q.; Ullah, W.; Hagan, D.F.T.; Ali, A.; Ali, G.; Zhang, Y.; Jan, M.A.; Bhatti, A.S.; Xie, W. Daytime and nighttime heat wave characteristics based on multiple indices over the China–Pakistan economic corridor. Clim. Dyn. 2019, 53, 6329–6349. [Google Scholar] [CrossRef]
- Perkins-Kirkpatrick, S.E.; Fischer, E.M.; Angélil, O.; Gibson, P.B. The influence of internal climate variability on heatwave frequency trends. Environ. Res. Lett. 2017, 12, 044005. [Google Scholar] [CrossRef]
- Gibson, P.B.; Perkins-Kirkpatrick, S.E.; Alexander, L.V.; Fischer, E.M. Comparing Australian heat waves in the CMIP5 models through cluster analysis. J. Geophys. Res. 2017, 122, 3266–3281. [Google Scholar] [CrossRef]
- Deser, C.; Phillips, A.; Bourdette, V.; Teng, H. Uncertainty in climate change projections: The role of internal variability. Clim. Dyn. 2012, 38, 527–546. [Google Scholar] [CrossRef] [Green Version]
- Gidden, M.; Riahi, K.; Smith, S.; Fujimori, S.; Luderer, G.; Kriegler, E.; van Vuuren, D.P.; van den Berg, M.; Feng, L.; Klein, D.; et al. Global emissions pathways under different socioeconomic scenarios for use in CMIP6: A dataset of harmonized emissions trajectories through the end of the century. Geosci. Model Dev. 2019, 12, 1443–1475. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, K.; Shahid, S.; Wang, X.; Nawaz, N.; Khan, N. Spatiotemporal changes in aridity of Pakistan during 1901–2016. Hydrol. Earth Syst. Sci. 2019, 23, 3081–3096. [Google Scholar] [CrossRef] [Green Version]
- Fu, C.; Jiang, Z.; Guan, Z.; He, J.; Xu, Z.F. (Eds.) Regional Climate Studies of China; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008. [Google Scholar] [CrossRef]
No | Model Name | Institute | Resolution (lon._lat.) | Release Year |
---|---|---|---|---|
1 | CanESM5 | Canadian Centre for Climate Modeling and Analysis (Canada). | 2.8 × 2.8° | 2019 |
2 | CESM2 | National Centre for Climate Research (USA). | 1.3 × 0.9° | 2018 |
3 | CESM2-WACCM | National Centre for Climate Research (USA). | 1.3 × 0.9° | 2018 |
4 | CNRM-CM6-1 | Centre National de Recherches Météorologiques (France). | 1.4 × 1.4° | 2017 |
5 | CNRM-ESM2-1 | Centre National de Recherches Météorologiques (France). | 1.4 × 1.4° | 2017 |
6 | FGOALS-g3 | University of Chinese Academy of Sciences. | 2 × 2.3° | 2017 |
7 | GFDL-CM4 | NOAA Geophysical Fluid Dynamics Laboratory, USA. | 2 × 2° | 2018 |
8 | HadGEM-GC31-LL | Met Office Hadley Centre. | 2016 | |
9 | IPSL-CM6A-LR | Institut Pierre Simon Laplace, France. | 2.5 × 1.3° | 2017 |
10 | MIROC6 | National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology (MIROC), Japan. | 1.4 × 1.4° | 2017 |
11 | MPI-ESM1-2-HR | Max Planck Institute for Meteorology (Germany). | 0.9 × 0.9° | 2017 |
12 | MPI-ESM1-2-LR | Max Planck Institute for Meteorology (Germany). | 1.9 × 1.9° | 2017 |
13 | MRI-ESM2-0 | Meteorological Research Institute (MRI) of the Japan Meteorological Agency (JMA). | 1.1 × 1.1° | 2017 |
Datasets | JJA | DJF | ||||||
---|---|---|---|---|---|---|---|---|
Mean | Change °C/Year | Change °C/Decade | ▲/▼ | Mean | Change °C/Year | Change °C/Decade | ▲/▼ | |
CRU | 27.0 | 0.016 | 0.157 | ▲= | 8.77 | 0.023 | 0.231 | ▲= |
Models | ||||||||
MM-Ensemble | 26.8 | 0.022 | 0.220 | ▲= | 7.52 | 0.070 | 0.700 | ▲= |
CanESM5 | 27.3 | 0.039 | 0.390 | ▲= | 5.17 | 0.058 | 0.578 | ▲= |
CESM2 | 28.6 | 0.020 | 0.196 | ▲= | 9.17 | 0.042 | 0.420 | ▲= |
CESM2-WACCM | 28.7 | 0.019 | 0.187 | ▲= | 9.44 | 0.032 | 0.322 | ▲= |
CNRM-CM6-1 | 24.8 | 0.021 | 0.213 | ▲= | 4.23 | 0.033 | 0.333 | ▲= |
CNRM-ESM2-1 | 25.5 | 0.017 | 0.174 | ▲= | 5.19 | 0.007 | 0.070 | ▲≠ |
FGOALS-g3 | 27.4 | 0.023 | 0.235 | ▲= | 6.20 | 0.032 | 0.321 | ▲= |
GFDL-CM4 | 27.2 | 0.021 | 0.210 | ▲= | 4.66 | 0.028 | 0.280 | ▲= |
HadGEM-GC31-LL | 26.3 | 0.036 | 0.361 | ▲= | 6.43 | 0.035 | 0.353 | ▲= |
IPSL-CM6A-LR | 24.1 | 0.022 | 0.224 | ▲= | 3.31 | 0.020 | 0.199 | ▲≠ |
MIROC6 | 34.8 | 0.009 | 0.093 | ▲≠ | 10.53 | 0.036 | 0.361 | ▲= |
MPI-ESM1-2-HR | 28.5 | 0.023 | 0.233 | ▲= | 7.46 | 0.011 | 0.109 | ▲≠ |
MPI-ESM1-2-LR | 27.9 | 0.019 | 0.189 | ▲= | 7.03 | 0.020 | 0.204 | ▲= |
MRI-ESM2-0 | 28.8 | 0.021 | 0.213 | ▲= | 6.47 | 0.012 | 0.122 | ▲≠ |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karim, R.; Tan, G.; Ayugi, B.; Babaousmail, H.; Liu, F. Evaluation of Historical CMIP6 Model Simulations of Seasonal Mean Temperature over Pakistan during 1970–2014. Atmosphere 2020, 11, 1005. https://doi.org/10.3390/atmos11091005
Karim R, Tan G, Ayugi B, Babaousmail H, Liu F. Evaluation of Historical CMIP6 Model Simulations of Seasonal Mean Temperature over Pakistan during 1970–2014. Atmosphere. 2020; 11(9):1005. https://doi.org/10.3390/atmos11091005
Chicago/Turabian StyleKarim, Rizwan, Guirong Tan, Brian Ayugi, Hassen Babaousmail, and Fei Liu. 2020. "Evaluation of Historical CMIP6 Model Simulations of Seasonal Mean Temperature over Pakistan during 1970–2014" Atmosphere 11, no. 9: 1005. https://doi.org/10.3390/atmos11091005
APA StyleKarim, R., Tan, G., Ayugi, B., Babaousmail, H., & Liu, F. (2020). Evaluation of Historical CMIP6 Model Simulations of Seasonal Mean Temperature over Pakistan during 1970–2014. Atmosphere, 11(9), 1005. https://doi.org/10.3390/atmos11091005