Time-Dependent Downscaling of PM2.5 Predictions from CAMS Air Quality Models to Urban Monitoring Sites in Budapest
Abstract
1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix B
Category | PM2.5 Concentration (µg/m3) |
---|---|
Good | 0–10 |
Fair | 10–25 |
Moderate | 20–25 |
Poor | 25–50 |
Very poor | 50–75 |
Extremely poor | >75 |
References
- European Environment Agency. Air Quality in Europe—2019 Report; European Environment Agency: Copenhagen, Danmark, 2019. [Google Scholar]
- World Health Organization. Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Pascal, M.; Corso, M.; Chanel, O.; Declercq, C.; Badaloni, C.; Cesaroni, G.; Henschel, S.; Meister, K.; Haluza, D.; Martin-Olmedo, P.; et al. Assessing the public health impacts of urban air pollution in 25 European cities: Results of the Aphekom project. Sci. Total Environ. 2013, 449, 390–400. [Google Scholar] [CrossRef] [PubMed]
- Kis-Kovács, G.; Tarczay, K.; Kőbányai, K.; Ludányi, E.; Nagy, E.; Lovas, K. Informative Inventory Report 1990–2015; Unit of National Emissions Inventories: Budapest, Hungary, 2017. [Google Scholar]
- Ferenczi, Z. Predictability analysis of the PM2.5 and PM10 concentration in Budapest. Időjárás 2013, 117, 359–375. [Google Scholar]
- Ferenczi, Z.; Bozó, L. Effect of the long-range transport on the air quality of greater Budapest area. Int. J. Environ. Pollut. 2017, 62, 407–416. [Google Scholar] [CrossRef]
- Folyovich, A.; Biczo, D.; Fulop, A.; Nemeth, A.; Breuer, H.; Beres-Molnar, K.A.; Varga, V.; Vadasdi, K.; Toldi, G.; Bartholy, J. Effect of short-term changes of air pollution on the development of acute ischemic stroke. J. Neurol. Sci. 2013, 333, e196. [Google Scholar] [CrossRef]
- Vörös, K.; Kói, T.; Magyar, D.; Rudnai, P.; Páldy, A. The influence of air pollution on respiratory allergies, asthma and wheeze in childhood in Hungary. Minerva Pediatr. 2019. [Google Scholar] [CrossRef]
- Murtas, R.; Russo, A.G. Effects of pollution, low temperature and influenza syndrome on the excess mortality risk in winter 2016–2017. BMC Public Health 2019, 19, 1445. [Google Scholar] [CrossRef]
- Ferenczi, Z.; Labancz, K.; Steib, R. Development of a Numerical Prediction Model System for the Assessment of the Air Quality in Budapest. In Air Pollution Modeling and Its Application XXIII; Steyn, D., Mathur, R., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 401–405. [Google Scholar]
- Kovács, A.; Leelőssy, Á.; Mészáros, R.; Lagzi, I. Online coupled modelling of weather and air quality of Budapest using the WRF-Chem model. Időjárás 2019, 123, 203–215. [Google Scholar] [CrossRef]
- Leelőssy, Á.; Molnár, F.; Izsák, F.; Havasi, Á.; Lagzi, I.; Mészáros, R. Dispersion modeling of air pollutants in the atmosphere: A review. Cent. Eur. J. Geosci. 2014, 6, 257–278. [Google Scholar] [CrossRef]
- Kukkonen, J.; Olsson, T.; Schultz, D.M.; Baklanov, A.; Klein, T.; Miranda, A.I.; Monteiro, A.; Hirtl, M.; Tarvainen, V.; Boy, M.; et al. A review of operational, regional-scale, chemical weather forecasting models in Europe. Atmos. Chem. Phys. 2012, 12, 1–87. [Google Scholar] [CrossRef]
- Baklanov, A.; Schlünzen, K.; Suppan, P.; Baldasano, J.; Brunner, D.; Aksoyoglu, S.; Carmichael, G.; Douros, J.; Flemming, J.; Forkel, R.; et al. Online coupled regional meteorology chemistry models in Europe: Current status and prospects. Atmos. Chem. Phys. 2014, 14, 317–398. [Google Scholar] [CrossRef]
- Copernicus Atmosphere Monitoring Service. Regional Production, Updated Documentation Covering All Regional Operational Systems and the ENSEMBLE; Copernicus Atmosphere Monitoring Service: Shinfield, UK, 2019. [Google Scholar]
- Marécal, V.; Peuch, V.-H.; Andersson, C.; Andersson, S.; Arteta, J.; Beekmann, M.; Benedictow, A.; Bergström, R.; Bessagnet, B.; Cansado, A.; et al. A regional air quality forecasting system over Europe: The MACC-II daily ensemble production. Geosci. Model Dev. 2015, 8, 2777–2813. [Google Scholar] [CrossRef]
- Mailler, S.; Menut, L.; Khvorostyanov, D.; Valari, M.; Couvidat, F.; Siour, G.; Turquety, S.; Briant, R.; Tuccella, P.; Bessagnet, B.; et al. CHIMERE-2017: From urban to hemispheric chemistry-transport modeling. Geosci. Model Dev. 2017, 10, 2397–2423. [Google Scholar] [CrossRef]
- Simpson, D.; Benedictow, A.; Berge, H.; Bergström, R.; Emberson, L.D.; Fagerli, H.; Flechard, C.R.; Hayman, G.D.; Gauss, M.; Jonson, J.E.; et al. The EMEP MSC-W chemical transport model-technical description. Atmos. Chem. Phys. 2012, 12, 7825–7865. [Google Scholar] [CrossRef]
- Strunk, A.; Ebel, A.; Elbern, H. A nested application of four-dimensional variational assimilation of tropospheric chemical data. Int. J. Environ. Pollut. 2011, 46, 43–60. [Google Scholar] [CrossRef]
- Manders, A.M.M.; Builtjes, P.J.H.; Curier, L.; Denier van der Gon, H.A.C.; Hendriks, C.; Jonkers, S.; Kranenburg, R.; Kuenen, J.J.P.; Segers, A.J.; Timmermans, R.M.A.; et al. Curriculum vitae of the LOTOS–EUROS (v2.0) chemistry transport model. Geosci. Model Dev. 2017, 10, 4145–4173. [Google Scholar] [CrossRef]
- Andersson, C.; Bergström, R.; Bennet, C.; Robertson, L.; Thomas, M.; Korhonen, H.; Lehtinen, K.E.J.; Kokkola, H. MATCH-SALSA—Multi-scale Atmospheric Transport and CHemistry model coupled to the SALSA aerosol microphysics model—Part 1: Model description and evaluation. Geosci. Model Dev. 2015, 8, 171–189. [Google Scholar] [CrossRef]
- Rouil, L.; Honoré, C.; Vautard, R.; Beekmann, M.; Bessagnet, B.; Malherbe, L.; Meleux, F.; Dufour, A.; Elichegaray, C.; Flaud, J.-M.; et al. Prev’air: An Operational Forecasting and Mapping System for Air Quality in Europe. Bull. Am. Meteorol. Soc. 2009, 90, 73–84. [Google Scholar] [CrossRef]
- Sofiev, M.; Vira, J.; Kouznetsov, R.; Prank, M.; Soares, J.; Genikhovich, E. Construction of the SILAM Eulerian atmospheric dispersion model based on the advection algorithm of Michael Galperin. Geosci. Model Dev. 2015, 8, 3497–3522. [Google Scholar] [CrossRef]
- Kuenen, J.J.P.; Visschedijk, A.J.H.; Jozwicka, M.; Denier van der Gon, H.A.C. TNO-MACC_II emission inventory; a multi-year (2003–2009) consistent high-resolution European emission inventory for air quality modelling. Atmos. Chem. Phys. 2014, 14, 10963–10976. [Google Scholar] [CrossRef]
- Bocquet, M.; Elbern, H.; Eskes, H.; Hirtl, M.; Žabkar, R.; Carmichael, G.R.; Flemming, J.; Inness, A.; Pagowski, M.; Pérez Camaño, J.L.; et al. Data assimilation in atmospheric chemistry models: Current status and future prospects for coupled chemistry meteorology models. Atmos. Chem. Phys. 2015, 15, 5325–5358. [Google Scholar] [CrossRef]
- Sič, B.; El Amraoui, L.; Marécal, V.; Josse, B.; Arteta, J.; Guth, J.; Joly, M.; Hamer, P.D. Modelling of primary aerosols in the chemical transport model MOCAGE: Development and evaluation of aerosol physical parameterizations. Geosci. Model Dev. 2015, 8, 381–408. [Google Scholar] [CrossRef]
- Gama, C.; Ribeiro, I.; Lange, A.C.; Vogel, A.; Ascenso, A.; Seixas, V.; Elbern, H.; Borrego, C.; Friese, E.; Monteiro, A. Performance assessment of CHIMERE and EURAD-IM’ dust modules. Atmos. Pollut. Res. 2019, 10, 1336–1346. [Google Scholar] [CrossRef]
- Sofiev, M.; Soares, J.; Prank, M.; Leeuw, G.; Kukkonen, J. A regional-to-global model of emission and transport of sea salt particles in the atmosphere. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Guth, J.; Josse, B.; Marécal, V.; Joly, M.; Hamer, P. First implementation of secondary inorganic aerosols in the MOCAGE version R2.15.0 chemistry transport model. Geosci. Model Dev. 2016, 9, 137–160. [Google Scholar] [CrossRef]
- Prank, M.; Vira, J.; Ots, R.; Sofiev, M. Evaluation of Organic Aerosol and Its Precursors in the SILAM Model. In Proceedings of the Air Pollution Modeling and Its Application XXV, Chania, Greece, 3–7 October 2016. [Google Scholar]
- Alföldy, B.; Osán, J.; Tóth, Z.; Török, S.; Harbusch, A.; Jahn, C.; Emeis, S.; Schäfer, K. Aerosol optical depth, aerosol composition and air pollution during summer and winter conditions in Budapest. Sci. Total Environ. 2007, 383, 141–163. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, A.; Ribeiro, I.; Tchepel, O.; Carvalho, A.; Martins, H.; Sá, E.; Ferreira, J.; Martins, V.; Galmarini, S.; Miranda, A.I.; et al. Ensemble Techniques to Improve Air Quality Assessment: Focus on O3 and PM. Environ. Model. Assess. 2013, 18, 249–257. [Google Scholar] [CrossRef]
- Monteiro, A.; Ribeiro, I.; Tchepel, O.; Sá, E.; Ferreira, J.; Carvalho, A.; Martins, V.; Strunk, A.; Galmarini, S.; Elbern, H.; et al. Bias Correction Techniques to Improve Air Quality Ensemble Predictions: Focus on O3 and PM Over Portugal. Environ. Model. Assess. 2013, 18, 533–546. [Google Scholar] [CrossRef]
- Borrego, C.; Monteiro, A.; Pay, M.T.; Ribeiro, I.; Miranda, A.I.; Basart, S.; Baldasano, J.M. How bias-correction can improve air quality forecasts over Portugal. Atmos. Environ. 2011, 45, 6629–6641. [Google Scholar] [CrossRef]
- Borrego, C.; Coutinho, M.; Costa, A.M.; Ginja, J.; Ribeiro, C.; Monteiro, A.; Ribeiro, I.; Valente, J.; Amorim, J.H.; Martins, H.; et al. Challenges for a New Air Quality Directive: The role of monitoring and modelling techniques. Urban Clim. 2015, 14, 328–341. [Google Scholar] [CrossRef]
- Sofiev, M.; Ritenberga, O.; Albertini, R.; Arteta, J.; Belmonte, J.; Bernstein, C.G.; Bonini, M.; Celenk, S.; Damialis, A.; Douros, J.; et al. Multi-model ensemble simulations of olive pollen distribution in Europe in 2014: Current status and outlook. Atmos. Chem. Phys. 2017, 17, 12341–12360. [Google Scholar] [CrossRef]
- Huang, R.; Zhai, X.; Ivey, C.E.; Friberg, M.D.; Hu, X.; Liu, Y.; Di, Q.; Schwartz, J.; Mulholland, J.A.; Russell, A.G. Air pollutant exposure field modeling using air quality model-data fusion methods and comparison with satellite AOD-derived fields: Application over North Carolina, USA. Air Qual. Atmos. Health 2018, 11, 11–22. [Google Scholar] [CrossRef]
- Friberg, M.D.; Kahn, R.A.; Holmes, H.A.; Chang, H.H.; Sarnat, S.E.; Tolbert, P.E.; Russell, A.G.; Mulholland, J.A. Daily ambient air pollution metrics for five cities: Evaluation of data-fusion-based estimates and uncertainties. Atmos. Environ. 2017, 158, 36–50. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Chi, W.-J.; Lin, Y.-Q. The improvement of spatial-temporal resolution of PM2.5 estimation based on micro-air quality sensors by using data fusion technique. Environ. Int. 2020, 134, 105305. [Google Scholar] [CrossRef] [PubMed]
- Berrocal, V.J.; Gelfand, A.E.; Holland, D.M. Space-Time Data fusion Under Error in Computer Model Output: An Application to Modeling Air Quality. Biometrics 2012, 68, 837–848. [Google Scholar] [CrossRef] [PubMed]
- Berrocal, V.J.; Gelfand, A.E.; Holland, D.M. A Spatio-Temporal Downscaler for Output From Numerical Models. J. Agric. Biol. Environ. Stat. 2010, 15, 176–197. [Google Scholar] [CrossRef]
- Li, J.; Zhu, Y.; Kelly, J.T.; Jang, C.J.; Wang, S.; Hanna, A.; Xing, J.; Lin, C.-J.; Long, S.; Yu, L. Health benefit assessment of PM2.5 reduction in Pearl River Delta region of China using a model-monitor data fusion approach. J. Environ. Manag. 2019, 233, 489–498. [Google Scholar] [CrossRef]
- Huang, Z.; Hu, Y.; Zheng, J.; Zhai, X.; Huang, R. An optimized data fusion method and its application to improve lateral boundary conditions in winter for Pearl River Delta regional PM2.5 modeling, China. Atmos. Environ. 2018, 180, 59–68. [Google Scholar] [CrossRef]
- Schneider, P.; Castell, N.; Vogt, M.; Dauge, F.R.; Lahoz, W.A.; Bartonova, A. Mapping urban air quality in near real-time using observations from low-cost sensors and model information. Environ. Int. 2017, 106, 234–247. [Google Scholar] [CrossRef]
- Pithon, M.; Joly, M.; Petiot, V.; Collin, G.; Assar, N.; Colette, A.; Akritidis, D.; Bennouna, Y.; Blechschmidt, A.-M.; Douros, J.; et al. Quarterly Report on ENSEMBLE NRT Productions (Daily Analyses and Forecasts) and Their Verification, at the Surface and above Surface, December 2018–February 2019; Météo-France: Paris, France, 2019. [Google Scholar]
- Hastings, D.A.; Dunbar, P.K. Global land one-kilometer base elevation (GLOBE) digital elevation model, documentation. Key Geophys. Rec. Doc. 1999, 34, 1999. [Google Scholar]
- Werner, M.; Kryza, M.; Pagowski, M.; Guzikowski, J. Assimilation of PM2.5 ground base observations to two chemical schemes in WRF-Chem—The results for the winter and summer period. Atmos. Environ. 2019, 200, 178–189. [Google Scholar] [CrossRef]
- Ordieres, J.B.; Vergara, E.P.; Capuz, R.S.; Salazar, R.E. Neural network prediction model for fine particulate matter (PM2.5) on the US–Mexico border in El Paso (Texas) and Ciudad Juárez (Chihuahua). Environ. Model. Softw. 2005, 20, 547–559. [Google Scholar] [CrossRef]
- Biancofiore, F.; Busilacchio, M.; Verdecchia, M.; Tomassetti, B.; Aruffo, E.; Bianco, S.; Di Tommaso, S.; Colangeli, C.; Rosatelli, G.; Di Carlo, P. Recursive neural network model for analysis and forecast of PM10 and PM2.5. Atmos. Pollut. Res. 2017, 8, 652–659. [Google Scholar] [CrossRef]
- Feng, X.; Li, Q.; Zhu, Y.; Hou, J.; Jin, L.; Wang, J. Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation. Atmos. Environ. 2015, 107, 118–128. [Google Scholar] [CrossRef]
- Asadollahfardi, G.; Zangooei, H.; Aria, S.H. Predicting PM2.5 Concentrations Using Artificial Neural Networks and Markov Chain, a Case Study Karaj City. Asian J. Atmos. Environ. 2016, 10, 67–79. [Google Scholar] [CrossRef]
- European Air Quality Index. Available online: https://airindex.eea.europa.eu (accessed on 31 May 2020).
Station | Location | Data Availability | Mean Concentration | Number of Values Above 25 µg/m3 |
Budatétény | 47.41 N 19.00 E | 4327/4392 1 | 20 µg/m3 | 1157 |
Erzsébet tér | 47.50 N 19.05 E | 1871/4392 2 | 21 µg/m3 | 621 |
Gergely utca | 47.47 N 19.14 E | 4367/4392 | 21 µg/m3 | 1333 |
Gilice tér | 47.43 N 19.18 E | 3120/4392 3 | 21 µg/m3 | 1050 |
Honvéd | 47.52 N 19.07 E | 4376/4392 | 19 µg/m3 | 1253 |
Kőrakás park | 47.54 N 19.15 E | 4389/4392 | 15 µg/m3 | 749 |
Model | Area | Data Availability | Mean Concentration | Number of Values Above 25 µg/m3 |
CHIMERE | 47.45–47.55 N 19.05–19.15 E 4 | 4392/4392 | 15 µg/m3 | 535 |
EMEP | 4368/4392 | 18 µg/m3 | 951 | |
EURAD | 4392/4392 | 16 µg/m3 | 809 | |
LOTOS-EUROS | 4392/4392 | 13 µg/m3 | 285 | |
MATCH | 4392/4392 | 12 µg/m3 | 345 | |
MOCAGE | 4392/4392 | 13 µg/m3 | 461 | |
SILAM | 4392/4392 | 24 µg/m3 | 1621 | |
ENSEMBLE | 4392/4392 | 14 µg/m3 | 523 |
Episode Days | Pattern Shift Days |
---|---|
15–20 Oct 2018 | 21 Oct 2018 |
27 Oct 2018 | |
1–3 Nov 2018 | 1 Nov 2018 |
5–13 Nov 2018 | 14 Nov 2018 |
1–4 Dec 2018 | 1 Dec 2018 |
6–8 Dec 2018 | 9 Dec 2018 |
13 Dec 2018 | |
16–22 Dec 2018 | 16 Dec 2018; 23 Dec 2018 |
7–10 Jan 2019 | 7 Jan 2019; 11 Jan 2019 |
21–25 Jan 2019 | 21 Jan 2019 |
27 Jan–1 Feb 2019 | 2 Feb 2019 |
6–10 Feb 2019 | 6 Feb 2019; 11 Feb 2019 |
15–19 Feb 2019 | 15 Feb 2019; 20 Feb 2019 |
25 Feb 2019 | |
22 Mar 2019 | |
24 Mar 2019 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varga-Balogh, A.; Leelőssy, Á.; Lagzi, I.; Mészáros, R. Time-Dependent Downscaling of PM2.5 Predictions from CAMS Air Quality Models to Urban Monitoring Sites in Budapest. Atmosphere 2020, 11, 669. https://doi.org/10.3390/atmos11060669
Varga-Balogh A, Leelőssy Á, Lagzi I, Mészáros R. Time-Dependent Downscaling of PM2.5 Predictions from CAMS Air Quality Models to Urban Monitoring Sites in Budapest. Atmosphere. 2020; 11(6):669. https://doi.org/10.3390/atmos11060669
Chicago/Turabian StyleVarga-Balogh, Adrienn, Ádám Leelőssy, István Lagzi, and Róbert Mészáros. 2020. "Time-Dependent Downscaling of PM2.5 Predictions from CAMS Air Quality Models to Urban Monitoring Sites in Budapest" Atmosphere 11, no. 6: 669. https://doi.org/10.3390/atmos11060669
APA StyleVarga-Balogh, A., Leelőssy, Á., Lagzi, I., & Mészáros, R. (2020). Time-Dependent Downscaling of PM2.5 Predictions from CAMS Air Quality Models to Urban Monitoring Sites in Budapest. Atmosphere, 11(6), 669. https://doi.org/10.3390/atmos11060669