Characteristics of Black Carbon Particle-Bound Polycyclic Aromatic Hydrocarbons in Two Sites of Nanjing and Shanghai, China
Abstract
:1. Introduction
2. Experiments
2.1. Sampling Sites and Instrumentation
2.2. PAHs Quantification and Source Apportionment
3. Results and Discussion
3.1. Overview of PAHs Concentration and Distribution
3.2. Source Appointments of PAHs and rBC
= 1.171 × [HOA] + 0.945 × [IOA] + 0.543 × [ABBOA] + 0.456
= 1.453 × [rBC-rich] + 0.240 × [HOA-rich] + 0.833 × [NOA]
+ 0.243 × [BBOA] + 0.146
= 11.44 × [HOA] + 44.917 × [IOA] + 5.43 × [ABBOA] + 26.14
= 6.478 × [rBC-rich] + 1.474 × [HOA-rich] + 0.655 × [NOA]
+ 2.495 × [BBOA] + 1.314
3.3. Relationships between PAHs and Other Factors
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ravindra, K.; Sokhi, R.; Vangrieken, R. Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmos. Environ. 2008, 42, 2895–2921. [Google Scholar] [CrossRef] [Green Version]
- Poulain, L.; Iinuma, Y.; Müller, K.; Birmili, W.; Weinhold, K.; Brüggemann, E.; Gnauk, T.; Hausmann, A.; Löschau, G.; Wiedensohler, A.; et al. Diurnal variations of ambient particulate wood burning emissions and their contribution to the concentration of polycyclic aromatic hydrocarbons (PAHs) in seiffen, germany. Atmos. Chem. Phys. 2011, 11, 12697–12713. [Google Scholar] [CrossRef] [Green Version]
- Abbas, I.; Badran, G.; Verdin, A.; Ledoux, F.; Roumié, M.; Courcot, D.; Garçon, G. Polycyclic aromatic hydrocarbon derivatives in airborne particulate matter: Sources, analysis and toxicity. Environ. Chem. Lett. 2018, 16, 439–475. [Google Scholar] [CrossRef]
- Elzein, A.; Dunmore, R.E.; Ward, M.W.; Hamilton, J.F.; Lewis, A.C. Variability of polycyclic aromatic hydrocarbons and their oxidative derivatives in wintertime beijing, china. Atmos. Chem. Phys. 2019, 19, 8741–8758. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, Q.; Zhang, Y.; Zhao, H.; Tan, F.; Wu, X.; Chen, J. Source apportionment of polycyclic aromatic hydrocarbons (PAHs) in the air of dalian, china: Correlations with six criteria air pollutants and meteorological conditions. Chemosphere 2019, 216, 516–523. [Google Scholar] [CrossRef]
- Harrison, R.M.; Smith, D.J.T.; Luhana, L. Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in birmingham, U.K. Environ. Sci. Technol. 1996, 30, 825–832. [Google Scholar] [CrossRef]
- Nisbet, I.C.; LaGoy, P.K. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul. Toxicol. Pharmacol. 1992, 16, 290–300. [Google Scholar] [CrossRef]
- Bostrom, C.-E.; Gerde, P.; Hanberg, A.; Jernstrom, B.; Johansson, C.; Kyrklund, T.; Rannug, A.; Tornqvist, M.; Victorin, K.; Westerholm, R. Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ. Health Perspect. 2002, 110 (Suppl. 3), 451–488. [Google Scholar] [CrossRef] [Green Version]
- Bi, C.; Chen, Y.; Zhao, Z.; Li, Q.; Zhou, Q.; Ye, Z.; Ge, X. Characteristics, sources and health risks of toxic species (pcdd/fs, pahs and heavy metals) in pm2.5 during fall and winter in an industrial area. Chemosphere 2020, 238, 124620. [Google Scholar] [CrossRef]
- Han, F.; Guo, H.; Hu, J.; Zhang, J.; Ying, Q.; Zhang, H. Sources and health risks of ambient polycyclic aromatic hydrocarbons in china. Sci. Total Environ. 2020, 698, 134229. [Google Scholar] [CrossRef]
- Wang, W.; Jariyasopit, N.; Schrlau, J.; Jia, Y.; Tao, S.; Yu, T.W.; Dashwood, R.H.; Zhang, W.; Wang, X.; Simonich, S.L. Concentration and photochemistry of pahs, npahs, and opahs and toxicity of pm2.5 during the beijing olympic games. Environ. Sci. Technol. 2011, 45, 6887–6895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, M.-K.; Song, M.; Choi, H.-S.; Kim, Y.-J.; Park, Y.-K.; Ryu, J.-C. Identification of molecular signatures predicting the carcinogenicity of polycyclic aromatic hydrocarbons (PAHs). Toxicol. Lett. 2012, 212, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Jahan, S.A.; Kabir, E.; Brown, R.J. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ. Int. 2013, 60, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Garrido, A.; Jiménez-Guerrero, P.; Ratola, N. Levels, trends and health concerns of atmospheric pahs in europe. Atmos. Environ. 2014, 99, 474–484. [Google Scholar] [CrossRef]
- Niu, X.; Ho, S.S.H.; Ho, K.F.; Huang, Y.; Sun, J.; Wang, Q.; Zhou, Y.; Zhao, Z.; Cao, J. Atmospheric levels and cytotoxicity of polycyclic aromatic hydrocarbons and oxygenated-pahs in pm2.5 in the beijing-tianjin-hebei region. Environ. Pollut. 2017, 231, 1075–1084. [Google Scholar] [CrossRef]
- Walgraeve, C.; Chantara, S.; Sopajaree, K.; De Wispelaere, P.; Demeestere, K.; Van Langenhove, H. Quantification of pahs and oxy-pahs on airborne particulate matter in chiang mai, thailand, using gas chromatography high resolution mass spectrometry. Atmos. Environ. 2015, 107, 262–272. [Google Scholar] [CrossRef]
- Polidori, A.; Hu, S.; Biswas, S.; Delfino, R.J.; Sioutas, C. Real-time characterization of particle-bound polycyclic aromatic hydrocarbons in ambient aerosols and from motor-vehicle exhaust. Atmos. Chem. Phys. 2008, 8, 1277–1291. [Google Scholar] [CrossRef] [Green Version]
- Pratt, K.A.; Prather, K.A. Mass spectrometry of atmospheric aerosols--recent developments and applications. Part i: Off-line mass spectrometry techniques. Mass Spectrom. Rev. 2012, 31, 1–16. [Google Scholar] [CrossRef]
- Marr, L.C.; Grogan, L.A.; Wöhrnschimmel, H.; Molina, L.T.; Molina, M.J.; Smith, T.J.; Garshick, E. Vehicle traffic as a source of particulate polycyclic aromatic hydrocarbon exposure in the mexico city metropolitan area. Environ. Sci. Technol. 2004, 38, 2584–2592. [Google Scholar] [CrossRef] [Green Version]
- Dzepina, K.; Arey, J.; Marr, L.C.; Worsnop, D.R.; Salcedo, D.; Zhang, Q.; Onasch, T.B.; Molina, L.T.; Molina, M.J.; Jimenez, J.L. Detection of particle-phase polycyclic aromatic hydrocarbons in mexico city using an aerosol mass spectrometer. Int. J. Mass Spectrom. 2007, 263, 152–170. [Google Scholar] [CrossRef]
- Ge, X.; Setyan, A.; Sun, Y.; Zhang, Q. Primary and secondary organic aerosols in fresno, california during wintertime: Results from high resolution aerosol mass spectrometry. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Eriksson, A.C.; Nordin, E.Z.; Nystrom, R.; Pettersson, E.; Swietlicki, E.; Bergvall, C.; Westerholm, R.; Boman, C.; Pagels, J.H. Particulate pah emissions from residential biomass combustion: Time-resolved analysis with aerosol mass spectrometry. Environ. Sci. Technol. 2014, 48, 7143–7150. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Liu, J.; Gu, A.; Feng, F.; Liu, Y.; Bi, C.; Xu, J.; Li, L.; Chen, H.; Chen, Y.; et al. Chemical characterization of fine particular matter in changzhou, china and source apportionment with offline aerosol mass spectrometry. Atmos. Chem. Phys. 2017, 2017, 2573–2592. [Google Scholar] [CrossRef] [Green Version]
- Marr, L.C.; Dzepina, K.; Jimenez, J.L.; Reisen, F.; Bethel, H.L.; Arey, J.; Gaffney, J.S.; Marley, N.A.; Molina, L.T.; Molina, M.J. Sources and transformations of particle-bound polycyclic aromatic hydrocarbons in mexico city. Atmos. Chem. Phys. 2006, 6, 1733–1745. [Google Scholar] [CrossRef] [Green Version]
- Zelenyuk, A.; Imre, D.; Beranek, J.; Abramson, E.; Wilson, J.; Shrivastava, M. Synergy between secondary organic aerosols and long-range transport of polycyclic aromatic hydrocarbons. Environ. Sci. Technol. 2012, 46, 12459–12466. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Q.; Chen, M.; Ge, X.; Ren, J.; Qin, D. Chemical composition, sources, and processes of urban aerosols during summertime in northwest china: Insights from high-resolution aerosol mass spectrometry. Atmos. Chem. Phys. 2014, 14, 12593–12611. [Google Scholar] [CrossRef] [Green Version]
- Bruns, E.A.; Krapf, M.; Orasche, J.; Huang, Y.; Zimmermann, R.; Drinovec, L.; Močnik, G.; El-Haddad, I.; Slowik, J.G.; Dommen, J.; et al. Characterization of primary and secondary wood combustion products generated under different burner loads. Atmos. Chem. Phys. 2015, 15, 2825–2841. [Google Scholar] [CrossRef] [Green Version]
- Malmborg, V.B.; Eriksson, A.C.; Shen, M.; Nilsson, P.; Gallo, Y.; Waldheim, B.; Martinsson, J.; Andersson, O.; Pagels, J. Evolution of in-cylinder diesel engine soot and emission characteristics investigated with online aerosol mass spectrometry. Environ. Sci. Technol. 2017, 51, 1876–1885. [Google Scholar] [CrossRef] [Green Version]
- Johansson, K.O.; Head-Gordon, M.P.; Schrader, P.E.; Wilson, K.R.; Michelsen, H.A. Resonance-stabilized hydrocarbon-radical chain reactions may explain soot inception and growth. Science 2018, 361, 997–1000. [Google Scholar] [CrossRef] [Green Version]
- Wang, H. Formation of nascent soot and other condensed-phase materials in flames. Proc. Combust. Inst. 2011, 33, 41–67. [Google Scholar] [CrossRef]
- Nielsen, I.E.; Eriksson, A.C.; Lindgren, R.; Martinsson, J.; Nyström, R.; Nordin, E.Z.; Sadiktsis, I.; Boman, C.; Nøjgaard, J.K.; Pagels, J. Time-resolved analysis of particle emissions from residential biomass combustion – emissions of refractory black carbon, pahs and organic tracers. Atmos. Environ. 2017, 165, 179–190. [Google Scholar] [CrossRef]
- Fernández, P.; Grimalt, J.O.; Vilanova, R.M. Atmospheric gas-particle partitioning of polycyclic aromatic hydrocarbons in high mountain regions of europe. Environ. Sci. Technol. 2002, 36, 1162–1168. [Google Scholar] [CrossRef] [PubMed]
- Shen, G.; Wang, W.; Yang, Y.; Ding, J.; Xue, M.; Min, Y.; Zhu, C.; Shen, H.; Li, W.; Wang, B.; et al. Emissions of pahs from indoor crop residue burning in a typical rural stove: Emission factors, size distributions, and gas-particle partitioning. Environ. Sci. Technol. 2011, 45, 1206–1212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, Y.; Li, X.; Xu, T.T.; Cheng, T.T.; Yang, X.; Chen, J.M.; Iinuma, Y.; Herrmann, H. Size distributions of polycyclic aromatic hydrocarbons in urban atmosphere: Sorption mechanism and source contributions to respiratory deposition. Atmos. Chem. Phys. 2016, 16, 2971–2983. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.-L.; Zhu, F.-J.; Liu, L.-Y.; Jia, H.-L.; Yang, M.; Li, Y.-F. Pahs in chinese atmosphere: Gas/particle partitioning. Sci. Total Environ. 2019, 693, 133623. [Google Scholar] [CrossRef]
- Ye, Z.; Li, Q.; Liu, J.; Luo, S.; Zhou, Q.; Bi, C.; Ma, S.; Chen, Y.; Chen, H.; Li, L.; et al. Investigation of submicron aerosol characteristics in changzhou, china: Composition, source, and comparison with co-collected pm2.5. Chemosphere 2017, 183, 176–185. [Google Scholar] [CrossRef]
- Zhou, S.; Hwang, B.C.H.; Lakey, P.S.J.; Zuend, A.; Abbatt, J.P.D.; Shiraiwa, M. Multiphase reactivity of polycyclic aromatic hydrocarbons is driven by phase separation and diffusion limitations. Proc. Natl. Acad. Sci. USA 2019, 116, 11658–11663. [Google Scholar] [CrossRef] [Green Version]
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- Onasch, T.B.; Trimborn, A.; Fortner, E.C.; Jayne, J.T.; Kok, G.L.; Williams, L.R.; Davidovits, P.; Worsnop, D.R. Soot particle aerosol mass spectrometer: Development, validation, and initial application. Aerosol Sci. Technol. 2012, 46, 804–817. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Q.; Chen, M.; Collier, S.; Zhou, S.; Ge, X.; Xu, J.; Shi, J.; Xie, C.; Hu, J.; et al. First chemical characterization of refractory black carbon aerosols and associated coatings over the tibetan plateau (4730 m a.S.L). Environ. Sci. Technol. 2017, 51, 14072–14082. [Google Scholar] [CrossRef]
- Wang, J.; Liu, D.; Ge, X.; Wu, Y.; Shen, F.; Chen, M.; Zhao, J.; Xie, C.; Wang, Q.; Xu, W.; et al. Characterization of black carbon-containing fine particles in beijing during wintertime. Atmos. Chem. Phys. 2019, 19, 447–458. [Google Scholar] [CrossRef] [Green Version]
- Paatero, P.; Tapper, U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 1994, 5, 111–126. [Google Scholar] [CrossRef]
- Ulbrich, I.M.; Canagaratna, M.R.; Zhang, Q.; Worsnop, D.R.; Jimenez, J.L. Interpretation of organic components from positive matrix factorization of aerosol mass spectrometric data. Atmos. Chem. Phys. 2009, 9, 2891–2918. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Jimenez, J.; Canagaratna, M.; Ulbrich, I.; Ng, N.; Worsnop, D.; Sun, Y. Understanding atmospheric organic aerosols via factor analysis of aerosol mass spectrometry: A review. Anal. Bioanal. Chem. 2011, 401, 3045–3067. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Liu, D.; Wang, J.; Shen, F.; Chen, Y.; Cui, S.; Ge, S.; Wu, Y.; Chen, M.; Ge, X. Characterization of size-resolved hygroscopicity of black carbon-containing particle in urban environment. Environ. Sci. Technol. 2020. [Google Scholar] [CrossRef]
- Cui, S.; Gao, J.; Shen, F.; Wang, J.; Huang, D.; Ge, X. Chemical characteristics of submicron black carbon-containing aerosols in shanghai. Atmos. Chem. Phys. (under review).
- Wang, J.; Onasch, T.B.; Ge, X.; Collier, S.; Zhang, Q.; Sun, Y.; Yu, H.; Chen, M.; Prévôt, A.S.H.; Worsnop, D.R. Observation of fullerene soot in eastern china. Environ. Sci. Technol. Lett. 2016, 3, 121–126. [Google Scholar] [CrossRef]
- Liu, D.; Allan, J.D.; Young, D.E.; Coe, H.; Beddows, D.; Fleming, Z.L.; Flynn, M.J.; Gallagher, M.W.; Harrison, R.M.; Lee, J.; et al. Size distribution, mixing state and source apportionment of black carbon aerosol in london during wintertime. Atmos. Chem. Phys. 2014, 14, 10061–10084. [Google Scholar] [CrossRef] [Green Version]
- Haque, M.M.; Kawamura, K.; Deshmukh, D.K.; Fang, C.; Song, W.; Mengying, B.; Zhang, Y.-L. Characterization of organic aerosols from a chinese megacity during winter: Predominance of fossil fuel combustion. Atmos. Chem. Phys. 2019, 19, 5147–5164. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Liu, M.; Yu, Y.; Li, Y. Characterization and source apportionment of pm2.5-bound polycyclic aromatic hydrocarbons from shanghai city, china. Environ. Pollut. 2016, 218, 118–128. [Google Scholar] [CrossRef]
- Canagaratna, M.R.; Jimenez, J.L.; Kroll, J.H.; Chen, Q.; Kessler, S.H.; Massoli, P.; Hildebrandt Ruiz, L.; Fortner, E.; Williams, L.R.; Wilson, K.R.; et al. Elemental ratio measurements of organic compounds using aerosol mass spectrometry: Characterization, improved calibration, and implications. Atmos. Chem. Phys. 2015, 15, 253–272. [Google Scholar] [CrossRef] [Green Version]
- Kroll, J.H.; Donahue, N.M.; Jimenez, J.L.; Kessler, S.H.; Canagaratna, M.R.; Wilson, K.R.; Altieri, K.E.; Mazzoleni, L.R.; Wozniak, A.S.; Bluhm, H.; et al. Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol. Nat. Chem. 2011, 3, 133–139. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, S.; Lei, R.; Wu, Y.; Huang, D.; Shen, F.; Wang, J.; Qiao, L.; Zhou, M.; Zhu, S.; Ma, Y.; et al. Characteristics of Black Carbon Particle-Bound Polycyclic Aromatic Hydrocarbons in Two Sites of Nanjing and Shanghai, China. Atmosphere 2020, 11, 202. https://doi.org/10.3390/atmos11020202
Cui S, Lei R, Wu Y, Huang D, Shen F, Wang J, Qiao L, Zhou M, Zhu S, Ma Y, et al. Characteristics of Black Carbon Particle-Bound Polycyclic Aromatic Hydrocarbons in Two Sites of Nanjing and Shanghai, China. Atmosphere. 2020; 11(2):202. https://doi.org/10.3390/atmos11020202
Chicago/Turabian StyleCui, Shijie, Ruoyuan Lei, Yangzhou Wu, Dandan Huang, Fuzhen Shen, Junfeng Wang, Liping Qiao, Min Zhou, Shuhui Zhu, Yingge Ma, and et al. 2020. "Characteristics of Black Carbon Particle-Bound Polycyclic Aromatic Hydrocarbons in Two Sites of Nanjing and Shanghai, China" Atmosphere 11, no. 2: 202. https://doi.org/10.3390/atmos11020202
APA StyleCui, S., Lei, R., Wu, Y., Huang, D., Shen, F., Wang, J., Qiao, L., Zhou, M., Zhu, S., Ma, Y., & Ge, X. (2020). Characteristics of Black Carbon Particle-Bound Polycyclic Aromatic Hydrocarbons in Two Sites of Nanjing and Shanghai, China. Atmosphere, 11(2), 202. https://doi.org/10.3390/atmos11020202