AdBSK1-Mediated Hormone Signaling Regulates Flowering Transition in Actinidia deliciosa ‘Guichang’
Abstract
1. Introduction
2. Methods and Materials
2.1. Plant Material Collection and Sample Preparation
2.2. Quantitative PCR
2.3. Vector Constructions
2.4. Arabidopsis Thaliana Materials and Growth Conditions
2.5. Alexander Staining
2.6. RNA-Seq Analysis
2.7. Proteome Analysis
3. Results
3.1. Developmental Stages of Actinidia deliciosa Cultivar ‘Guichang’
3.2. Analysis of RNA-Seq Data for Transcript Splicing
3.3. Phytohormones Play a Pivotal Role in the Shift from the Bud Stage to Flowering in ‘Guichang’
3.4. Proteomic Analysis of ‘Guichang’ During the Bud and Flowering Stages
3.5. Correlation Analysis of Protein and Transcriptome Derived from the Bud and Flowering Phases of ‘Guichang’
3.6. BSK of ‘Guichang’ (AdBSK) Promotes Flowering in Arabidopsis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
‘Guichang’ | Actinidia deliciosa cultivar ‘Guichang’ |
GA | Gibberellin |
ABA | Abscisic Acid |
BRs | Brassinosteroids |
BSK1/2 | Brassinosteroid-Signaling Kinase 1/2 |
BRI1 | Brassinosteroid Insensitive 1 |
BIN2 | Brassinosteroid-Insensitive 2 |
BAK1 | BRI1-Associated Receptor Kinase 1 |
BZR1 | Brassinazole-Resistant 1 |
BES1 | BRI1-EMS-Suppressor 1 |
SOC1 | Suppressor of Overexpression of CO 1 |
PIF3/4 | Phytochrome Interacting Factor 3/4 |
UVR8 | UV RESISTANCE LOCUS 8 |
CRY1/2 | CRYPTOCHROME 1/2 |
FT | Flowering Locus T |
CO | CONSTANS |
qPCR | Quantitative PCR |
GF1 | The budding stage of ‘Guichang’ |
GF2 | The flowering stage of ‘Hanhong’ |
References
- Zhong, W.; Zhou, J.; Tang, D.; Huang, Y.; Liu, F.; Zhang, M.; Wang, G.; Wu, S.; He, Y.; Tang, J. Establishment of Tissue Culture System of Actinidia deliciosa Cultivar “Guichang”. J. Chem. 2021, 2021, 9951949. [Google Scholar] [CrossRef]
- Satpal, D.; Kaur, J.; Bhadariya, V.; Sharma, K. Actinidia deliciosa (Kiwi fruit): A comprehensive review on the nutritional composition, health benefits, traditional utilization, and commercialization. J. Food Process. Preserv. 2021, 45, e15588. [Google Scholar] [CrossRef]
- Ali, M.M.; Yousef, A.F.; Li, B.; Chen, F. Effect of Environmental Factors on Growth and Development of Fruits. Trop. Plant Biol. 2021, 14, 226–238. [Google Scholar] [CrossRef]
- Snelgar, W.; Clearwater, M.; Walton, E. Flowering of kiwifruit (Actinidia deliciosa) is reduced by long photoperiods. N. Z. J. Crop Hortic. Sci. 2007, 35, 33–38. [Google Scholar] [CrossRef]
- Patra, N.K.; Rilung, T.; Das, L.; Kumar, P. Assessing climate change and its impact on kiwi (Actinidia deliciosa Chev.) production in the Eastern Himalayan Region of India through a combined approach of people perception and meteorological data. Theor. Appl. Climatol. 2024, 155, 2347–2364. [Google Scholar] [CrossRef]
- Tun, W.; Yoon, J.; Jeon, J.-S.; An, G. Influence of Climate Change on Flowering Time. J. Plant Biol. 2021, 64, 193–203. [Google Scholar] [CrossRef]
- Andrés, F.; Coupland, G. The genetic basis of flowering responses to seasonal cues. Nat. Rev. Genet. 2012, 13, 627–639. [Google Scholar] [CrossRef]
- Sawa, M.; Nusinow, D.A.; Kay, S.A.; Imaizumi, T. FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science 2007, 318, 261–265. [Google Scholar] [CrossRef]
- Song, Y.H.; Ito, S.; Imaizumi, T. Flowering time regulation: Photoperiod- and temperature-sensing in leaves. Trends Plant Sci. 2013, 18, 575–583. [Google Scholar] [CrossRef]
- Song, S.; Qi, T.; Huang, H.; Xie, D. Regulation of Stamen Development by Coordinated Actions of Jasmonate, Auxin, and Gibberellin in Arabidopsis. Mol. Plant 2013, 6, 1065–1073. [Google Scholar] [CrossRef]
- Mutasa-Göttgens, E.; Hedden, P. Gibberellin as a factor in floral regulatory networks. J. Exp. Bot. 2009, 60, 1979–1989. [Google Scholar] [CrossRef] [PubMed]
- Bao, S.; Hua, C.; Shen, L.; Yu, H. New insights into gibberellin signaling in regulating flowering in Arabidopsis. J. Integr. Plant Biol. 2020, 62, 118–131. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Kim, T.W.; Oses-Prieto, J.A.; Sun, Y.; Deng, Z.; Zhu, S.; Wang, R.; Burlingame, A.L.; Wang, Z.Y. BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science 2008, 321, 557–560. [Google Scholar] [CrossRef]
- Galindo-Trigo, S.; Khandare, V.; Roosjen, M.; Adams, J.; Wangler, A.-M.; Bayer, M.; Borst, J.W.; Smakowska-Luzan, E.; Butenko, M.A. A multifaceted kinase axis regulates plant organ abscission through conserved signaling mechanisms. Curr. Biol. 2024, 34, 3020–3030. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Meisenhelder, J.; Hunter, T.; Yoshida, S.; Asami, T.; Chory, J. Autoregulation and Homodimerization Are Involved in the Activation of the Plant Steroid Receptor BRI1. Dev. Cell 2005, 8, 855–865. [Google Scholar] [CrossRef]
- She, J.; Han, Z.; Kim, T.-W.; Wang, J.; Cheng, W.; Chang, J.; Shi, S.; Wang, J.; Yang, M.; Wang, Z.-Y.; et al. Structural insight into brassinosteroid perception by BRI1. Nature 2011, 474, 472–476. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chory, J. Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1 signaling, from the plasma membrane. Science 2006, 313, 1118–1122. [Google Scholar] [CrossRef]
- Xu, X.; Jiang, W.; Chen, Y.; Tian, H.; Yang, Z.; Liu, S.; Li, X.; Song, C.; Ye, Z.; Guo, W.; et al. Brassinazole Resistant 1 delays photoperiodic flowering by repressing constans transcription. Plant Physiol. 2025, 197, kiaf032. [Google Scholar] [CrossRef]
- Bai, M.-Y.; Shang, J.-X.; Oh, E.; Fan, M.; Bai, Y.; Zentella, R.; Sun, T.-P.; Wang, Z.-Y. Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nat. Cell Biol. 2012, 14, 810–817. [Google Scholar] [CrossRef]
- Oh, E.; Zhu, J.-Y.; Wang, Z.-Y. Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. Nat. Cell Biol. 2012, 14, 802–809. [Google Scholar] [CrossRef]
- Hua, M.D.-S.; Rajendran, S.K.; Yeh, K.-W.; Yeh, C.-H. Transcriptional regulation of BZR1/PIF4 is involved in high temperature-induced early flowering process in Oncidium Grower Ramsay. Plant Growth Regul. 2024, 104, 1133–1150. [Google Scholar] [CrossRef]
- He, G.; Liu, J.; Dong, H.; Sun, J. The Blue-Light Receptor CRY1 Interacts with BZR1 and BIN2 to Modulate the Phosphorylation and Nuclear Function of BZR1 in Repressing BR Signaling in Arabidopsis. Mol. Plant 2019, 12, 689–703. [Google Scholar] [CrossRef]
- Liang, T.; Mei, S.; Shi, C.; Yang, Y.; Peng, Y.; Ma, L.; Wang, F.; Li, X.; Huang, X.; Yin, Y.; et al. UVR8 Interacts with BES1 and BIM1 to Regulate Transcription and Photomorphogenesis in Arabidopsis. Dev. Cell 2018, 44, 512–523. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Gou, Y.; Li, Y.; Li, J.; Fang, Y.; Liu, X.; Zhu, X.; Ye, R.; Heng, Y.; Wang, H.; et al. A jasmonate-mediated regulatory network modulates diurnal floret opening time in rice. New Phytol. 2024, 244, 176–191. [Google Scholar] [CrossRef]
- Lu, D.; Ni, W.; Stanley, B.A.; Ma, H. Proteomics and transcriptomics analyses of Arabidopsis floral buds uncover important functions of ARABIDOPSIS SKP1-LIKE1. BMC Plant Biol. 2016, 16, 61. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Wang, X.; Wei, H.; Zhang, H.; Wu, Q.; Wang, L. Integrative analysis of transcriptome and target metabolites uncovering flavonoid biosynthesis regulation of changing petal colors in Nymphaea ‘Feitian 2’. BMC Plant Biol. 2024, 24, 370. [Google Scholar] [CrossRef]
- Jing, D.; Chen, W.; Hu, R.; Zhang, Y.; Xia, Y.; Wang, S.; He, Q.; Guo, Q.; Liang, G. An Integrative Analysis of Transcriptome, Proteome and Hormones Reveals Key Differentially Expressed Genes and Metabolic Pathways Involved in Flower Development in Loquat. Int. J. Mol. Sci. 2020, 21, 5107. [Google Scholar] [CrossRef]
- Yow, A.G.; Laosuntisuk, K.; Young, R.A.; Doherty, C.J.; Gillitt, N.; Perkins-Veazie, P.; Jenny Xiang, Q.-Y.; Iorizzo, M. Comparative transcriptome analysis reveals candidate genes for cold stress response and early flowering in pineapple. Sci. Rep. 2023, 13, 18890. [Google Scholar] [CrossRef]
- Freytes, S.N.; Canelo, M.; Cerdán, P.D. Regulation of Flowering Time: When and Where? Curr. Opin. Plant Biol. 2021, 63, 102049. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Peterson, R.; Slovin, J.P.; Chen, C. A Simplified Method for Differential Staining of Aborted and Non-Aborted Pollen Grains. Int. J. Plant Biol. 2010, 1, e13. [Google Scholar] [CrossRef]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef]
- Finn, R.D.; Tate, J.; Mistry, J.; Coggill, P.C.; Sammut, S.J.; Hotz, H.R.; Ceric, G.; Forslund, K.; Eddy, S.R.; Sonnhammer, E.L.; et al. The Pfam protein families database. Nucleic Acids Res. 2008, 36, D281–D288. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- De Wit, M.; Galvao, V.C.; Fankhauser, C. Light-Mediated Hormonal Regulation of Plant Growth and Development. Annu. Rev. Plant Biol. 2016, 67, 513–537. [Google Scholar] [CrossRef] [PubMed]
- Deepika Ankit Sagar, S.; Singh, A. Dark-Induced Hormonal Regulation of Plant Growth and Development. Front. Plant Sci. 2020, 11, 581666. [Google Scholar]
- Gray, W. Hormonal Regulation of Plant Growth and Development. PLoS Biol. 2004, 2, E311. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, R.; Zi, H.; Li, Y.; Cao, X.; Li, D.; Guo, L.; Tong, J.; Pan, Y.; Jiao, Y.; et al. AUXIN RESPONSE FACTOR3 Regulates Floral Meristem Determinacy by Repressing Cytokinin Biosynthesis and Signaling. Plant Cell 2018, 30, 324–346. [Google Scholar] [CrossRef]
- Shibata, A.; Yumoto, G.; Shimizu, H.; Honjo, M.N.; Kudoh, H. Flower movement induced by weather-dependent tropism satisfies attraction and protection. Nat. Commun. 2025, 16, 4132. [Google Scholar] [CrossRef]
- Li, L.; Li, X.; Liu, Y.; Liu, H. Flowering responses to light and temperature. Sci. China Life Sci. 2016, 59, 403–408. [Google Scholar] [CrossRef]
- Cerdán, P.D.; Chory, J. Regulation of flowering time by light quality. Nature 2003, 423, 881–885. [Google Scholar] [CrossRef] [PubMed]
- Vogel, C.; Marcotte, E.M. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat. Rev. Genet. 2012, 13, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Beyer, A.; Aebersold, R. On the Dependency of Cellular Protein Levels on mRNA Abundance. Cell 2016, 165, 535–550. [Google Scholar] [CrossRef] [PubMed]
- Mann, M.; Jensen, O.N. Proteomic analysis of post-translational modifications. Nat. Biotechnol. 2003, 21, 255–261. [Google Scholar] [CrossRef]
- Schwanhäusser, B.; Busse, D.; Li, N.; Dittmar, G.; Schuchhardt, J.; Wolf, J.; Chen, W.; Selbach, M. Global quantification of mammalian gene expression control. Nature 2011, 473, 337–342. [Google Scholar] [CrossRef]
- Gry, M.; Rimini, R.; Strömberg, S.; Asplund, A.; Pontén, F.; Uhlén, M.; Nilsson, P. Correlations between RNA and protein expression profiles in 23 human cell lines. BMC Genom. 2009, 10, 365. [Google Scholar] [CrossRef]
- Su, B.; Zhang, X.; Li, L.; Abbas, S.; Yu, M.; Cui, Y.; Baluška, F.; Hwang, I.; Shan, X.; Lin, J. Dynamic spatial reorganization of BSK1 complexes in the plasma membrane underpins signal-specific activation for growth and immunity. Mol. Plant 2021, 14, 588–603. [Google Scholar] [CrossRef]
- Yan, H.; Zhao, Y.; Shi, H.; Li, J.; Wang, Y.; Tang, D. BRASSINOSTEROID-SIGNALING KINASE1 Phosphorylates MAPKKK5 to Regulate Immunity in Arabidopsis. Plant Physiol. 2018, 176, 2991–3002. [Google Scholar] [CrossRef]
- Li, Q.; Shao, J.; Luo, M.; Chen, D.; Tang, D.; Shi, H. BRASSINOSTEROID-SIGNALING KINASE1 associates with and is required for cysteine protease RESPONSE TO DEHYDRATION 19-mediated disease resistance in Arabidopsis. Plant Sci. 2024, 342, 112033. [Google Scholar] [CrossRef]
- Liu, L.; Xiang, Y.; Yan, J.; Di, P.; Li, J.; Sun, X.; Han, G.; Ni, L.; Jiang, M.; Yuan, J.; et al. BRASSINOSTEROID-SIGNALING KINASE 1 phosphorylating CALCIUM/CALMODULIN-DEPENDENT PROTEIN KINASE functions in drought tolerance in maize. New Phytol. 2021, 231, 695–712. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Y.; Shi, Z.; Jin, Y.; Sun, H.; Xie, F.; Zhang, L. Biosynthesis and Signal Transduction of ABA, JA, and BRs in Response to Drought Stress of Kentucky Bluegrass. Int. J. Mol. Sci. 2019, 20, 1289. [Google Scholar] [CrossRef] [PubMed]
- Hou, Z.-H.; Gao, Y.; Zheng, J.-C.; Zhao, M.-J.; Liu, Y.; Cui, X.-Y.; Li, Z.-Y.; Wei, J.-T.; Yu, T.-F.; Zheng, L.; et al. GmBSK1-GmGSK1-GmBES1.5 regulatory module controls heat tolerance in soybean. J. Adv. Res. 2024, 73, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, H.; Zhang, Y.; Liu, Y.; Li, Y.; Tian, H.; Guo, S.; Sun, M.; Qin, Z.; Dai, S. Genome-wide identification and expression analysis reveals spinach brassinosteroid-signaling kinase (BSK) gene family functions in temperature stress response. BMC Genom. 2022, 23, 453. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Liu, Y.; Dong, C.; Zhang, Y.; Bai, S. MdMAPKKK1 Regulates Apple Resistance to Botryosphaeria dothidea by Interacting with MdBSK1. Int. J. Mol. Sci. 2022, 23, 4415. [Google Scholar] [CrossRef]
Name | Sequence (5′-3′) | Function |
---|---|---|
35S:AdBSK1-FLAG | F: ATGGGTTGTTGTCAATCCTTG | cloning |
35S:AdBSK1-FLAG | R: AGATCCTCTGCCGCCT | cloning |
LP | TAGGCCATGTGCCATTTACTC | bsk1-2 |
RP | TTGCAAGTCAACTCCATACCC | bsk1-2 |
Lbe | GCGTGGACCGCTTGCTGCAACT | bsk1-2 |
AdPIF4 | F: GAACACAGACGCAGCC | qPCR |
AdPIF4 | R: CTCACCAACCTAGTGGTCC | qPCR |
AdBSK1 | F: GAACACAGACGCAGCC | qPCR |
AdBSK1 | R: TGTGTCTCAAGAATCAAGATCCT | qPCR |
AdBRI1 | F: AAGCCGGGTCAGGGATA | qPCR |
AdBRI1 | R: GCTCTGTTTCTAACTCTCATAATTTTC | qPCR |
AdCYCD3 | F: TGCAACCCACCAACGTC | qPCR |
AdCYCD3 | R: GCTTTCGATTATGGAGTGGCTA | qPCR |
AdFLC | F: TGAAAGAAGAGAACCAGGTTTTG | qPCR |
AdFLC | R: CGATTTAAGGTGGCTAATTAAGTAGT | qPCR |
AdFT | F: GCGAGTTTGCTGAGATCTACA | qPCR |
AdFT | R: GCCATCTAAAGTCTTCTTCCTCC | qPCR |
AdSOC1 | F: AAACGAGAAGCTCTCTGAAAAGT | qPCR |
AdSOC1 | R: ACTTTTCAGAGAGCTTCTCGTTT | qPCR |
Total Spectra | Matched Spectrum | Peptide | Identified Protein | ALL |
---|---|---|---|---|
358,695 | 81,966 | 38,584 | 10,514 | 10,488 |
Compared Samples | Num. of Total Quant | Regulated Type | Fold Change > 1.2 | Fold Change > 1.3 | Fold Change > 1.5 | Fold Change > 2.0 |
---|---|---|---|---|---|---|
GF1. vs. GF2 | 10,488 | up-regulated | 2652 | 2204 | 1391 | 413 |
down-regulated | 1014 | 811 | 462 | 117 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, L.; Cui, X.; Li, J.; Zhang, C.; Fang, Y. AdBSK1-Mediated Hormone Signaling Regulates Flowering Transition in Actinidia deliciosa ‘Guichang’. Genes 2025, 16, 760. https://doi.org/10.3390/genes16070760
Guo L, Cui X, Li J, Zhang C, Fang Y. AdBSK1-Mediated Hormone Signaling Regulates Flowering Transition in Actinidia deliciosa ‘Guichang’. Genes. 2025; 16(7):760. https://doi.org/10.3390/genes16070760
Chicago/Turabian StyleGuo, Lina, Xiaoyu Cui, Jiayin Li, Chao Zhang, and Yumei Fang. 2025. "AdBSK1-Mediated Hormone Signaling Regulates Flowering Transition in Actinidia deliciosa ‘Guichang’" Genes 16, no. 7: 760. https://doi.org/10.3390/genes16070760
APA StyleGuo, L., Cui, X., Li, J., Zhang, C., & Fang, Y. (2025). AdBSK1-Mediated Hormone Signaling Regulates Flowering Transition in Actinidia deliciosa ‘Guichang’. Genes, 16(7), 760. https://doi.org/10.3390/genes16070760