Nutrigenomics and Epigenetics in the Dietary Management of Inflammatory Bowel Diseases
Abstract
1. Introduction
2. Methods
3. Genetic Determinants of Inflammatory Bowel Disease and Their Modification Through Diet
3.1. Selected Genes Associated with IBD
3.2. The Potential of Dietary Components to Modulate Gene Expression
4. Epigenetic Mechanisms in Inflammatory Bowel Disease
5. The Influence of Nutritional Components on Epigenetic Regulation in the Course of IBD
5.1. The Influence of Methyl Donors on DNA Methylation and the Risk of IBD
5.2. SCFAs as Natural Inhibitors of Histone Deacetylase
5.3. Modulation of Inflammatory Cytokines and MicroRNAs by Omega-3 and Omega-6 Fatty Acids
5.4. The Influence of Polyphenols on Epigenetic and Immunomodulatory Mechanisms
5.5. The Effect of Vitamins on the Expression of Inflammatory Genes and Immune Cells
6. Future Perspectives
7. Limitations
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Buie, M.J.; Quan, J.; Windsor, J.W.; Coward, S.; Hansen, T.M.; King, J.A.; Kotze, P.G.; Gearry, R.B.; Ng, S.C.; Mak, J.W.Y.; et al. Global Hospitalization Trends for Crohn’s Disease and Ulcerative Colitis in the 21st Century: A Systematic Review with Temporal Analyses. Clin. Gastroenterol. Hepatol. 2023, 21, 2211–2221. [Google Scholar] [CrossRef]
- Singh, N.; Bernstein, C.N. Environmental Risk Factors for Inflammatory Bowel Disease. United Eur. Gastroenterol. J. 2022, 10, 1047–1053. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Yuan, S.; Chen, X.; Sun, J.; Kalla, R.; Yu, L.; Wang, L.; Zhou, X.; Kong, X.; Hesketh, T.; et al. The Contribution of Genetic Risk and Lifestyle Factors in the Development of Adult-Onset Inflammatory Bowel Disease: A Prospective Cohort Study. Am. J. Gastroenterol. 2023, 118, 511–522. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, M.; Jess, T. Implications of the Changing Epidemiology of Inflammatory Bowel Disease in a Changing World. United Eur. Gastroenterol. J. 2022, 10, 1113–1120. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Li, Z.; Liu, S.; Zhang, D. Global, Regional and National Burden of Inflammatory Bowel Disease in 204 Countries and Territories from 1990 to 2019: A Systematic Analysis Based on the Global Burden of Disease Study 2019. BMJ Open 2023, 13, e065186. [Google Scholar] [CrossRef]
- Kaplan, G.G.; Windsor, J.W. The Four Epidemiological Stages in the Global Evolution of Inflammatory Bowel Disease. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 56–66. [Google Scholar] [CrossRef]
- Guo, X.; Li, J.; Xu, J.; Zhang, L.; Huang, C.; Nie, Y.; Zhou, Y. Gut Microbiota and Epigenetic Inheritance: Implications for the Development of IBD. Gut Microbes 2025, 17, 2490207. [Google Scholar] [CrossRef]
- Ferenc, K.; Sokal-Dembowska, A.; Helma, K.; Motyka, E.; Jarmakiewicz-Czaja, S.; Filip, R. Modulation of the Gut Microbiota by Nutrition and Its Relationship to Epigenetics. Int. J. Mol. Sci. 2024, 25, 1228. [Google Scholar] [CrossRef]
- Ye, L.; Lin, Y.; Fan, X.; Chen, Y.; Deng, Z.; Yang, Q.; Lei, X.; Mao, J.; Cui, C. Identify Inflammatory Bowel Disease-Related Genes Based on Machine Learning. Front. Cell Dev. Biol. 2021, 9, 722410. [Google Scholar] [CrossRef]
- Korta, A.; Kula, J.; Gomułka, K. The Role of IL-23 in the Pathogenesis and Therapy of Inflammatory Bowel Disease. Int. J. Mol. Sci. 2023, 24, 10172. [Google Scholar] [CrossRef]
- Wu, X.; Yang, J.; Bao, X.; Wang, Y. Toll-like Receptor 4 Damages the Intestinal Epithelial Cells by Activating Endoplasmic Reticulum Stress in Septic Rats. PeerJ 2024, 12, e18185. [Google Scholar] [CrossRef]
- Ferrand, A.; Al Nabhani, Z.; Tapias, N.; Mas, E.; Hugot, J.; Barreau, F. NOD2 Expression in Intestinal Epithelial Cells Protects Toward the Development of Inflammation and Associated Carcinogenesis. Cell Mol. Gastroenterol. Hepatol. 2019, 7, 357–369. [Google Scholar] [CrossRef]
- Kikut, J.; Konecka, N.; Ziętek, M.; Kulpa, D.; Szczuko, M. Diet Supporting Therapy for Inflammatory Bowel Diseases. Eur. J. Nutr. 2021, 60, 2275–2291. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhang, Y.; Jin, T.; Yi, C.; Ocansey, D.; Mao, F. The Role of NOD2 in Intestinal Immune Response and Microbiota Modulation: A Therapeutic Target in Inflammatory Bowel Disease. Int. Immunopharmacol. 2022, 113, 109466. [Google Scholar] [CrossRef] [PubMed]
- Ashton, J.; Seaby, E.; Beattie, R.; Ennis, S. NOD2 in Crohn’s Disease—Unfinished Business. J. Crohns Colitis 2023, 17, 450–458. [Google Scholar] [CrossRef] [PubMed]
- El Hadad, J.; Schreiner, P.; Vavricka, S.; Greuter, T. The Genetics of Inflammatory Bowel Disease. Mol. Diagn. Ther. 2024, 28, 27–35. [Google Scholar] [CrossRef]
- Jarmakiewicz-Czaja, S.; Zielińska, M.; Sokal, A.; Filip, R. Genetic and Epigenetic Etiology of Inflammatory Bowel Disease: An Update. Genes 2022, 13, 2388. [Google Scholar] [CrossRef]
- Younis, N.; Zarif, R.; Mahfouz, R. Inflammatory Bowel Disease: Between Genetics and Microbiota. Mol. Biol. Rep. 2020, 47, 3053–3063. [Google Scholar] [CrossRef]
- Minea, H.; Singeap, A.-M.; Minea, M.; Juncu, S.; Muzica, C.; Sfarti, C.; Girleanu, I.; Chiriac, S.; Miftode, I.; Stanciu, C.; et al. The Contribution of Genetic and Epigenetic Factors: An Emerging Concept in the Assessment and Prognosis of Inflammatory Bowel Diseases. Int. J. Mol. Sci. 2024, 25, 8420. [Google Scholar] [CrossRef]
- Subramanian, A.; Afrarahamed, J.; Tamilanban, T.; Kumarasamy, V.; Begum, M.; Sekar, M.; Subramaniyan, V.; Wong, L.; Al Fatease, A. Exploring the Connections: Autophagy, Gut Microbiota, and Inflammatory Bowel Disease Pathogenesis. J. Inflamm. Res. 2024, 17, 10453–10470. [Google Scholar] [CrossRef]
- Alula, K.; Theiss, A. Autophagy in Crohn’s Disease: Converging on Dysfunctional Innate Immunity. Cells 2023, 12, 1779. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, H.; Chen, T.; Shi, L.; Wang, D.; Tang, D. Regulatory Role of Short-Chain Fatty Acids in Inflammatory Bowel Disease. Cell Commun. Signal. 2022, 20, 64. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Wang, H.; Tian, D.; Wang, G. TH17 Cell: A Double-Edged Sword in the Development of Inflammatory Bowel Disease. Therap. Adv. Gastroenterol. 2024, 17, 17562848241230896. [Google Scholar]
- Krueger, J.; Eyerich, K.; Kuchroo, V.; Ritchlin, C.; Abreu, M.; Elloso, M.; Fourie, A.; Fakharzadeh, S.; Sherlock, J.; Yang, Y.; et al. IL-23 Past, Present, and Future: A Roadmap to Advancing IL-23 Science and Therapy. Front. Immunol. 2024, 15, 1331217. [Google Scholar] [CrossRef]
- Chicco, F.; Magrì, S.; Cingolani, A.; Paduano, D.; Pesenti, M.; Zara, F.; Tumbarello, F.; Urru, E.; Melis, A.; Casula, L.; et al. Multidimensional Impact of Mediterranean Diet on IBD Patients. Inflamm. Bowel Dis. 2021, 27, 1–9. [Google Scholar]
- Radziszewska, M.; Smarkusz-Zarzecka, J.; Ostrowska, L.; Pogodziński, D. Nutrition and Supplementation in Ulcerative Colitis. Nutrients 2022, 14, 2469. [Google Scholar] [CrossRef]
- Caio, G.; Lungaro, L.; Caputo, F.; Zoli, E.; Giancola, F.; Chiarioni, G.; De Giorgio, R.; Zoli, G. Nutritional Treatment in Crohn’s Disease. Nutrients 2021, 13, 1628. [Google Scholar] [CrossRef]
- Bodur, M.; Yılmaz, B.; Ağagündüz, D. Immunomodulatory Effects of Omega-3 Fatty Acids: Mechanistic Insights and Health Implications. Mol. Nutr. Food Res. 2025, 69, e202400752. [Google Scholar]
- Liu, Y.; Chen, F.; Odle, J.; Lin, X.; Jacobi, S.; Zhu, H.; Wu, Z.; Hou, Y. Fish Oil Enhances Intestinal Integrity and Inhibits TLR4 and NOD2 Signaling Pathways in Weaned Pigs after LPS Challenge. J. Nutr. 2012, 142, 2017–2024. [Google Scholar] [CrossRef]
- Marangoni, K.; Dorneles, G.; da Silva, D.; Pinto, L.; Rossoni, C.; Fernandes, S. Diet as an Epigenetic Factor in Inflammatory Bowel Disease. World J. Gastroenterol. 2023, 29, 5618–5629. [Google Scholar] [CrossRef]
- Anbazhagan, A.; Priyamvada, S.; Gujral, T.; Bhattacharyya, S.; Alrefai, W.; Dudeja, P.; Borthakur, A. A Novel Anti-Inflammatory Role of GPR120 in Intestinal Epithelial Cells. Am. J. Physiol. Cell Physiol. 2016, 310, C612–C621. [Google Scholar] [CrossRef] [PubMed]
- Ornelas, A.; Dowdell, A.; Lee, J.; Colgan, S. Microbial Metabolite Regulation of Epithelial Cell-Cell Interactions and Barrier Function. Cells 2022, 11, 944. [Google Scholar] [CrossRef] [PubMed]
- Aleksandrova, K.; Romero-Mosquera, B.; Hernandez, V. Diet, Gut Microbiome and Epigenetics: Emerging Links with Inflammatory Bowel Diseases and Prospects for Management and Prevention. Nutrients 2017, 9, 962. [Google Scholar] [CrossRef]
- Yan, D.; Ye, S.; He, Y.; Wang, S.; Xiao, Y.; Xiang, X.; Deng, M.; Luo, W.; Chen, X.; Wang, X. Fatty Acids and Lipid Mediators in Inflammatory Bowel Disease: From Mechanism to Treatment. Front. Immunol. 2023, 14, 1286667. [Google Scholar] [CrossRef]
- Ikeda, Y.; Matsuda, S. Gut Protective Effect from D-Methionine or Butyric Acid against DSS and Carrageenan-Induced Ulcerative Colitis. Molecules 2023, 28, 4392. [Google Scholar] [CrossRef]
- Sun, J. VDR/Vitamin D Receptor Regulates Autophagic Activity through ATG16L1. Autophagy 2016, 12, 1057–1058. [Google Scholar] [CrossRef]
- Ismail, E.; Zakuan, N.; Othman, Z.; Vidyadaran, S.; Mohammad, H.; Ishak, R. Polyphenols Mitigating Inflammatory Mechanisms in Inflammatory Bowel Disease (IBD): Focus on the NF-κB and JAK/STAT Pathways. Inflammopharmacology 2025, 33, 759–765. [Google Scholar] [CrossRef]
- Panaro, M.; Corrado, A.; Benameur, T.; Paolo, C.; Cici, D.; Porro, C. The Emerging Role of Curcumin in the Modulation of TLR-4 Signaling Pathway: Focus on Neuroprotective and Anti-Rheumatic Properties. Int. J. Mol. Sci. 2020, 21, 2299. [Google Scholar] [CrossRef]
- Wei, C.; Wang, J.-Y.; Xiong, F.; Wu, B.-H.; Lui, M.-H.; Yu, Z.-C.; Liu, T.-T.; Li, D.-F.; Tang, Q.; Li, Y.-X.; et al. Curcumin Ameliorates DSS Induced Colitis in Mice by Regulating the Treg/Th17 Signaling Pathway. Mol. Med. Rep. 2021, 23, 34. [Google Scholar] [CrossRef]
- Ho, J.; Puoplo, N.; Pokharel, N.; Hirdaramani, A.; Hanyaloglu, A.; Cheng, C. Nutrigenomic Underpinnings of Intestinal Stem Cells in Inflammatory Bowel Disease and Colorectal Cancer Development. Front. Genet. 2024, 15, 1349717. [Google Scholar] [CrossRef]
- Xu, J.; Xu, H.; Yang, M.; Liang, Y.; Peng, Q.-Z.; Zhang, Y.; Tian, C.-M.; Wang, L.-S.; Yao, J.; Nie, Y.-Q.; et al. New Insights into the Epigenetic Regulation of Inflammatory Bowel Disease. Front. Pharmacol. 2022, 13, 813659. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Li, X.; Zhang, S.; Qi, C.; Zhang, Z.; Ma, R.; Xiang, L.; Chen, L.; Zhu, Y.; Tang, C.; et al. Oxidative stress gene expression, DNA methylation, and gut microbiota interaction trigger Crohn’s disease: A multi-omics Mendelian randomization study. BMC Med. 2023, 21, 179. [Google Scholar] [CrossRef] [PubMed]
- Natasha, G.; Zilbauer, M. Epigenetics in IBD: A Conceptual Framework for Disease Pathogenesis. Frontline Gastroenterol. 2022, 13, e22–e27. [Google Scholar] [CrossRef]
- de Ponthaud, C.; Abdalla, S.; Belot, M.; Shao, X.; Penna, C.; Brouguet, A.; Bougneres, P. Increased CpG Methylation at the CDH1 Locus in Inflamed Ileal Mucosa of Patients with Crohn Disease. Clin. Epigenet. 2024, 16, 28. [Google Scholar] [CrossRef]
- Ahmed, S.; Sands, M.; Greenberg, E.; Tangen, L.; Huang, J.; Irudayaraj, J. Mucosal DNA Methylome Alteration in Crohn’s Disease: Surgical and Non-Surgical Groups. Front. Genet. 2023, 14, 1244513. [Google Scholar] [CrossRef]
- Ventham, N.; Kennedy, N.; Adams, A.; Kalla, R.; Heath, S.; O’Leary, K.; Drummond, H.; Wilson, D.C.; Gut, I.G.; Nimmo, E.R.; et al. Integrative Epigenome-Wide Analysis Demonstrates That DNA Methylation May Mediate Genetic Risk in Inflammatory Bowel Disease. Nat. Commun. 2016, 7, 13507. [Google Scholar] [CrossRef]
- Joehanes, R.; Just, A.C.; Marioni, R.E.; Pilling, L.C.; Reynolds, L.M.; Mandaviya, P.R.; Guan, W.; Xu, T.; Elks, C.E.; Aslibekyan, S.; et al. Epigenetic Signatures of Cigarette Smoking. Circ. Cardiovasc. Genet. 2016, 9, 436–447. [Google Scholar] [CrossRef]
- Yousefi, P.; Suderman, M.; Langdon, R.; Whitehurst, O.; Davey Smith, G.; Relton, C. DNA Methylation-Based Predictors of Health: Applications and Statistical Considerations. Nat. Rev. Genet. 2022, 23, 369–383. [Google Scholar] [CrossRef]
- Li, G.; Lin, J.; Zhang, C.; Gao, H.; Lu, H.; Gao, X.; Zhu, R.; Li, Z.; Li, M.; Liu, Z. Microbiota Metabolite Butyrate Constrains Neutrophil Functions and Ameliorates Mucosal Inflammation in Inflammatory Bowel Disease. Gut Microbes 2021, 13, 1968257. [Google Scholar] [CrossRef]
- Firoozi, D.; Masoumi, S.; Hosseini Asl, S.M.-K.; Fararouei, M.; Jamshidi, S. Effects of Short Chain Fatty Acid-Butyrate Supplementation on the Disease Severity, Inflammation, and Psychological Factors in Patients with Active Ulcerative Colitis: A Double-Blind Randomized Controlled Trial. J. Nutr. Metab. 2025, 2025, 3165876. [Google Scholar] [CrossRef]
- Eshleman, E.; Shao, T.; Woo, V.; Rice, T.; Engleman, L.; Didriksen, B.; Whitt, J.; Haslam, D.; Way, S.; Alenghat, T. Intestinal Epithelial HDAC3 and MHC Class II Coordinate Microbiota-Specific Immunity. J. Clin. Investig. 2023, 133, e162190. [Google Scholar] [CrossRef]
- Zou, F.; Qiu, Y.; Huang, Y.; Zou, H.; Cheng, X.; Niu, Q.; Luo, A.; Sun, J. Effects of Short-Chain Fatty Acids in Inhibiting HDAC and Activating p38 MAPK Are Critical for Promoting B10 Cell Generation and Function. Cell Death Dis. 2021, 12, 582. [Google Scholar] [CrossRef] [PubMed]
- Liang, B.; Wang, Y.; Xu, J.; Shao, Y.; Xing, D. Unlocking the Potential of Targeting Histone-Modifying Enzymes for Treating IBD and CRC. Clin. Epigenet. 2023, 15, 146. [Google Scholar] [CrossRef]
- Zhang, D.; Jian, Y.; Zhang, Y.; Li, Y.; Gu, L.T.; Sun, H.H.; Liu, M.D.; Zhou, H.L.; Wang, Y.S.; Xu, Z.X. Short-Chain Fatty Acids in Diseases. Cell Commun. Signal. 2023, 21, 212. [Google Scholar] [CrossRef] [PubMed]
- Lv, Q.; Xing, Y.; Liu, J.; Dong, D.; Liu, Y.; Qiao, H.; Zhang, Y.; Hu, L. Lonicerin Targets EZH2 to Alleviate Ulcerative Colitis by Autophagy-Mediated NLRP3 Inflammasome Inactivation. Acta Pharm. Sin. B 2021, 11, 2880–2899. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Yang, Y.; Wang, Y.; Zhao, Y.; Ye, W.; Deng, S.; Lang, J.; Lu, S. Enhancer of Zeste Homolog 2 Contributes to Apoptosis by Inactivating Janus Kinase 2/Signal Transducer and Activator of Transcription Signaling in Inflammatory Bowel Disease. World J. Gastroenterol. 2021, 27, 3073–3084. [Google Scholar] [CrossRef]
- Hong, W.; Ma, H.; Li, Z.; Du, Y.; Xia, W.; Yin, H.; Huang, H.; Sun, Z.; Gai, R.; Tong, L.; et al. Inhibition of EED-Mediated Histone Methylation Alleviates Neuroinflammation by Suppressing WNT-Mediated Dendritic Cell Migration. J. Neuroinflamm. 2025, 22, 97. [Google Scholar] [CrossRef]
- Park, S.; Kim, G.; Kwon, S.; Lee, J. Broad Domains of Histone H3 Lysine 4 Trimethylation in Transcriptional Regulation and Disease. FEBS J. 2020, 287, 2891–2902. [Google Scholar] [CrossRef]
- Bai, L.; Dermadi, D.; Kalesinskas, L.; Dvorak, M.; Chang, S.; Ganesan, A.; Rubin, S.; Kuo, A.; Cheung, P.; Donato, M.; et al. Mass-Cytometry-Based Quantification of Global Histone Post-Translational Modifications at Single-Cell Resolution Across Peripheral Immune Cells in IBD. J. Crohns Colitis 2023, 17, 804–815. [Google Scholar] [CrossRef]
- Hornschuh, M.; Wirthgen, E.; Wolfien, M.; Singh, K.P.; Wolkenhauer, O.; Däbritz, J. The Role of Epigenetic Modifications for the Pathogenesis of Crohn’s Disease. Clin. Epigenet. 2021, 13, 108. [Google Scholar] [CrossRef]
- Bastida, G.; Mínguez, A.; Nos, P.; Moret-Tatay, I. Immunoepigenetic Regulation of Inflammatory Bowel Disease: Current Insights into Novel Epigenetic Modulations of the Systemic Immune Response. Genes 2023, 14, 554. [Google Scholar] [CrossRef] [PubMed]
- Pande, R.; Das, S. Ulcerative Colitis: The MeCP2/H3K4me3 Interaction in the Hypermethylated Promoter Modulates NGF Gene Expression. 2023. Available online: https://scholars.okstate.edu/en/publications/ulcerative-colitis-the-mecp2h3k4me3-interaction-in-the-hypermethy/ (accessed on 2 September 2025).
- Casado-Bedmar, M.; Roy, M.; Berthet, L.; Hugot, J.; Yang, C.; Manceau, H.; Peoc’h, K.; Chassaing, B.; Merlin, D.; Viennois, E. Fecal let-7b and miR-21 Directly Modulate the Intestinal Microbiota, Driving Chronic Inflammation. Gut Microbes 2024, 16, 2394249. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Qiu, P.; Wang, H.; Yang, H.; Yang, X.; Ye, M.; Wang, F.; Zhao, Q. Identification of microRNA-16-5p and microRNA-21-5p in Feces as Potential Noninvasive Biomarkers for Inflammatory Bowel Disease. Aging 2021, 13, 4634. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Yang, T.; Ning, M.; Liu, Y.; Xia, W.; Fu, Y.; Wen, T.; Zheng, M.; Xia, R.; Qian, R.; et al. MiR-146a Alleviates Inflammatory Bowel Disease in Mice Through Systematic Regulation of Multiple Genetic Networks. Front. Immunol. 2024, 15, 1366319. [Google Scholar] [CrossRef]
- Li, Y.; Tan, S.; Shen, Y.; Guo, L. miR-146a-5p Negatively Regulates the IL-1β Stimulated Inflammatory Response via Downregulation of the IRAK1/TRAF6 Signaling Pathway in Human Intestinal Epithelial Cells. Exp. Ther. Med. 2022, 24, 615. [Google Scholar] [CrossRef]
- Dougherty, U.; Mustafi, R.; Zhu, H.; Zhu, X.; Deb, D.; Meredith, S.; Ayaloglu-Butun, F.; Fletcher, M.; Sanchez, A.; Pekow, J.; et al. Upregulation of Polycistronic microRNA-143 and microRNA-145 in Colonocytes Suppresses Colitis and Inflammation-Associated Colon Cancer. Epigenetics 2021, 16, 1317–1334. [Google Scholar] [CrossRef]
- Zhuang, X.; Chen, B.; Huang, S.; Han, J.; Zhou, G.; Xu, S.; Chen, M.; Zeng, Z.; Zhang, S. Hypermethylation of miR-145 Promoter-Mediated SOX9-CLDN8 Pathway Regulates Intestinal Mucosal Barrier in Crohn’s Disease. EBioMedicine 2022, 76, 103846. [Google Scholar] [CrossRef]
- Tang, K.; Wu, Z.; Sun, M.; Huang, X.; Sun, J.; Shi, J.; Wang, X.; Miao, Z.; Gao, P.; Song, Y.; et al. Elevated MMP10/13-Mediated Barrier Disruption and NF-κB Activation Aggravate Colitis and Colon Tumorigenesis in Both Individual or Full miR-148/152 Family Knockout Mice. Cancer Lett. 2022, 529, 53–69. [Google Scholar] [CrossRef]
- He, L.; Kang, Q.; Chan, K.; Zhang, Y.; Zhong, Z.; Tan, W. The Immunomodulatory Role of Matrix Metalloproteinases in Colitis-Associated Cancer. Front. Immunol. 2023, 13, 1093990. [Google Scholar] [CrossRef]
- Scalavino, V.; Piccinno, E.; Lacalamita, A.; Tafaro, A.; Armentano, R.; Giannelli, G.; Serino, G. miR-195-5p Regulates Tight Junctions Expression via Claudin-2 Downregulation in Ulcerative Colitis. Biomedicines 2022, 10, 919. [Google Scholar]
- Soroosh, A. MicroRNA-24 and Ulcerative Colitis: Expression, Functionality, and Therapeutic Potential; UCLA: Los Angeles, CA, USA, 2021. [Google Scholar]
- Li, M.; Zhao, J.; Cao, M.; Liu, R.; Chen, G.; Li, S.; Xie, Y.; Xie, J.; Cheng, Y.; Huang, L.; et al. Mast Cells-Derived MiR-223 Destroys Intestinal Barrier Function by Inhibition of CLDN8 Expression in Intestinal Epithelial Cells. Biol. Res. 2020, 53, 12. [Google Scholar] [CrossRef]
- Xiao, X.; Mao, X.; Chen, D.; Yu, B.; He, J.; Yan, H.; Wang, J. miRNAs Can Affect Intestinal Epithelial Barrier in Inflammatory Bowel Disease. Front. Immunol. 2022, 13, 868229. [Google Scholar] [CrossRef]
- Gimier, E.; Chervy, M.; Agus, A.; Sivignon, A.; Billard, E.; Privat, M.; Viala, S.; Minet-Qui, R.; Buisson, A.; Vazeille, E.; et al. Methyl-Donor Supplementation Prevents Intestinal Colonization by Adherent-Invasive E. coli in a Mouse Model of Crohn’s Disease. Sci. Rep. 2020, 10, 12922. [Google Scholar] [CrossRef] [PubMed]
- Bortz, J.; Obeid, R. The Shuttling of Methyl Groups Between Folate and Choline Pathways. Nutrients 2025, 17, 2495. [Google Scholar] [CrossRef] [PubMed]
- Dooley, T.P.; Curto, E.V.; Reddy, S.P.; Davis, R.L.; Lambert, G.W.; Wilborn, T.W.; Elson, C.O. Regulation of gene expression in inflammatory bowel disease and correlation with IBD drugs: Screening by DNA microarrays. Inflamm. Bowel Dis. 2004, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Allison, J.; Kaliszewska, A.; Uceda, S.; Reiriz, M.; Arias, N. Targeting DNA Methylation in the Adult Brain Through Diet. Nutrients 2021, 13, 3979. [Google Scholar] [CrossRef]
- Bekdash, R. Methyl Donors, Epigenetic Alterations, and Brain Health: Understanding the Connection. Int. J. Mol. Sci. 2023, 24, 2346. [Google Scholar] [CrossRef]
- Franzer, L.; Yamaguchi, Y.; Singh, D.; Akopyants, N.; Good, M. DNA Methylation in Necrotizing Enterocolitis. Expert. Rev. Mol. Med. 2024, 26, e16. [Google Scholar] [CrossRef]
- Chiocchetti, A.; Prodam, F.; Dianzani, U. Homocysteine and Folate in Inflammatory Bowel Disease: Can Reducing Sulfur Reduce Suffering? Dig. Dis. Sci. 2018, 63, 3161–3163. [Google Scholar] [CrossRef]
- Dan, L.; Fu, T.; Ruan, X.; Wang, X.; Chen, J. DOP039 Dietary Methyl Group Donor Intake Alleviates the Susceptibility to Inflammatory Bowel Disease Influenced by Environmental Pollution in a Prospective Cohort Study. J. Crohns Colitis 2025, 19, 155–157. [Google Scholar] [CrossRef]
- Melhem, H.; Hansmannel, F.; Bressenot, A.; Battaglia-Hsu, S.; Billioud, V.; Alberto, J.; Gueant, J.; Peyrin-Biroulet, L. Methyl-Deficient Diet Promotes Colitis and SIRT1-Mediated Endoplasmic Reticulum Stress. Gut 2016, 65, 595–606. [Google Scholar] [CrossRef] [PubMed]
- Ju, T.; Kennell, J.; Jacobs, R.; Willing, B. Insufficient Dietary Choline Aggravates Disease Severity in a Mouse Model of Citrobacter rodentium-Induced Colitis. Br. J. Nutr. 2021, 125, 50–61. [Google Scholar] [CrossRef] [PubMed]
- Chang, P.V.; Hao, L.; Offermanns, S.; Medzhitov, R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc. Natl. Acad. Sci. USA 2014, 111, 2247–2252. [Google Scholar] [CrossRef] [PubMed]
- Stein, R.; Riber, L. Epigenetic Effects of Short-Chain Fatty Acids from the Large Intestine on Host Cells. microLife 2023, 4, uqad032. [Google Scholar] [CrossRef]
- Ho, R.; Chan, J.C.; Fan, H.; Kioh, D.Y.; Lee, B.; Chan, E.C. In Silico and In Vitro Interactions Between Short Chain Fatty Acids and Human Histone Deacetylases. Biochemistry 2017, 56, 4871–4878. [Google Scholar] [CrossRef]
- Han, A.; Bennett, N.; Ahmed, B.; Whelan, J.; Donohoe, D. Butyrate Decreases Its Own Oxidation in Colorectal Cancer Cells Through Inhibition of Histone Deacetylases. Oncotarget 2018, 9, 27280–27292. [Google Scholar] [CrossRef]
- Luu, M.; Weigand, K.; Wedi, F.; Breidenbend, C.; Leister, H.; Pautz, S.; Adhikary, T.; Visekruna, A. Regulation of the Effector Function of CD8 T Cells by Gut Microbiota-Derived Metabolite Butyrate. Sci. Rep. 2018, 8, 14430. [Google Scholar]
- Gudej, S.; Filip, R.; Harasym, J.; Wilczak, J.; Dziendzikowska, K.; Oczkowski, M.; Jałosińska, M.; Juszczak, M.; Lange, E.; Gromadzka-Ostrowska, J. Clinical Outcomes after Oat Beta-Glucans Dietary Treatment in Gastritis Patients. Nutrients 2021, 13, 2791. [Google Scholar] [CrossRef]
- Korsten, S.; Peracic, L.; van Groeningen, L.; Diks, M.; Vromans, H.; Garssen, J.; Willemsen, L. Butyrate Prevents Induction of CXCL10 and Non-Canonical IRF9 Expression by Activated Human Intestinal Epithelial Cells via HDAC Inhibition. Int. J. Mol. Sci. 2022, 23, 3980. [Google Scholar] [CrossRef]
- Caetano-Silva, M.; Rund, L.; Hutchinson, N.; Woods, J.; Steelman, A.; Johnson, R. Inhibition of Inflammatory Microglia by Dietary Fiber and Short-Chain Fatty Acids. Sci. Rep. 2023, 13, 2819. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, Y.; Wang, P.; Huang, Y.; Wang, F. Short-Chain Fatty Acids Manifest Stimulatory and Protective Effects on Intestinal Barrier Function Through the Inhibition of NLRP3 Inflammasome and Autophagy. Cell Physiol. Biochem. 2018, 49, 190–205. [Google Scholar] [CrossRef]
- Stanhiser, J.; Jukic, A.M.; Steiner, A. Serum Omega-3 and Omega-6 Fatty Acid Concentrations and Natural Fertility. Hum. Reprod. 2020, 35, 950–957. [Google Scholar] [CrossRef]
- Balić, A.; Vlasić, D.; Žužul, K.; Marinović, B.; Bukvić Mokos, Z. Omega-3 Versus Omega-6 Polyunsaturated Fatty Acids in the Prevention and Treatment of Inflammatory Skin Diseases. Int. J. Mol. Sci. 2020, 21, 741. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Meng, Y.; Li, N.; Wang, Q.; Chen, L. The effects of low-ratio n-6/n-3 PUFA on biomarkers of inflammation: A systematic review and meta-analysis. Food Funct. 2021, 12, 30–40. [Google Scholar] [CrossRef] [PubMed]
- James, S.; Aparna, J.S.; Babu, A.; Paul, A.M.; Lankadasari, M.B.; Athira, S.R.; Kumar, S.S.; Vijayan, Y.; Namitha, N.N.; Mohammed, S.; et al. Cardamonin Attenuates Experimental Colitis and Associated Colorectal Cancer. Biomolecules 2021, 11, 661. [Google Scholar] [CrossRef] [PubMed]
- Maucher, D.; Schmidt, B.; Kuhlmann, K.; Schumann, J. Polyunsaturated Fatty Acids of Both the Omega-3 and the Omega-6 Family Abrogate the Cytokine-Induced Upregulation of miR-29a-3p by Endothelial Cells. Molecules 2020, 25, 4466. [Google Scholar] [CrossRef]
- Fic, W.; Polak-Szczybyło, E. Dietary Factors Influencing the Intensity of Low-Grade Inflammation in Obesity. Obesities 2025, 5, 12. [Google Scholar] [CrossRef]
- Ramalho, T.; Pahlavani, M.; Kalupahana, N.; Wijayatunga, N.; Ramalingam, L.; Jancar, S.; Moustaid-Moussa, N. Eicosapentaenoic Acid Regulates Inflammatory Pathways Through Modulation of Transcripts and miRNA in Adipose Tissue of Obese Mice. Biomolecules 2020, 10, 1292. [Google Scholar] [CrossRef]
- Lin, Q.; Ma, L.; Liu, Z.; Yang, Z.; Wang, J.; Liu, J.; Jiang, G. Targeting microRNAs: A New Action Mechanism of Natural Compounds. Oncotarget 2017, 8, 15961–15970. [Google Scholar] [CrossRef]
- Zinkow, A.; Grodzicki, W.; Czerwińska, M.; Dziendzikowska, K. Molecular Mechanisms Linking Omega-3 Fatty Acids and the Gut–Brain Axis. Molecules 2025, 30, 71. [Google Scholar] [CrossRef]
- Morshedzadeh, N.; Shahrokh, S.; Chaleshi, V.; Karimi, S.; Mirmiran, P.; Zali, M. The Effects of Flaxseed Supplementation on Gene Expression and Inflammation in Ulcerative Colitis Patients: An Open-Labelled Randomised Controlled Trial. Int. J. Clin. Pract. 2021, 75, e14035. [Google Scholar] [CrossRef]
- DiNicolantonio, J.; O’Keefe, J. The Importance of Maintaining a Low Omega-6/Omega-3 Ratio for Reducing the Risk of Autoimmune Diseases, Asthma, and Allergies. Mo. Med. 2021, 118, 453–459. [Google Scholar] [PubMed]
- Brouwers, H.; Jónasdóttir, H.; Kuipers, M.; Kwekkeboom, J.; Auger, J.; Gonzalez-Torres, M.; López-Vicario, C.; Claria, J.; Freysdotti, J.; Hardardottir, I.; et al. Anti-Inflammatory and Proresolving Effects of the Omega-6 Polyunsaturated Fatty Acid Adrenic Acid. J. Immunol. 2020, 205, 2840–2849. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, A.; Liddle, D.; Monk, J.; Ma, D.; Robinson, L. n-3 and n-6 Polyunsaturated Fatty Acids Modulate Macrophage–Myocyte Inflammatory Crosstalk and Improve Myocyte Insulin Sensitivity. Nutrients 2024, 16, 2086. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Shen, Y.; Wu, Z.; Yang, B.; Zhu, T.; Zhao, W.; Zhang, Y.; Zhao, X.; Jiao, L.; Wang, Z.; et al. High Dietary Arachidonic Acid Produces Excess Eicosanoids, and Induces Hepatic Inflammatory Responses, Oxidative Stress and Apoptosis in Juvenile Acanthopagrus schlegelii. Aquac. Rep. 2023, 29, 101506. [Google Scholar] [CrossRef]
- Sztolsztener, K.; Harasim-Symbor, E.; Chabowski, A.; Konstanty, K. Cannabigerol as an Anti-Inflammatory Agent Altering the Level of Arachidonic Acid Derivatives in the Colon Tissue of Rats Subjected to a High-Fat High-Sucrose Diet. Biomed. Pharmacother. 2024, 178, 117286. [Google Scholar] [CrossRef]
- Ortega, F.; Carsona-Alvarado, M.; Mercader, J.; Moreno-Navarrete, J.; Moreno, M.; Sabater, M.; Fuentes-Batllevell, N.; Ramirez-Chavez, E.; Ricart, W.; Molona-Torres, J. Circulating Profiling Reveals the Effect of a Polyunsaturated Fatty Acid-Enriched Diet on Common microRNAs. J. Nutr. Biochem. 2015, 26, 1095–1101. [Google Scholar] [CrossRef]
- Lin, Y.; Liu, H.; Bu, L.; Chen, C.; Ye, X. Review of the Effects and Mechanism of Curcumin in the Treatment of Inflammatory Bowel Disease. Front. Pharmacol. 2022, 13, 908077. [Google Scholar] [CrossRef]
- Saleh, H.; Yousef, M.; Abdelnaser, A. The Anti-Inflammatory Properties of Phytochemicals and Their Effects on Epigenetic Mechanisms Involved in TLR4/NF-κB-Mediated Inflammation. Front. Immunol. 2021, 12, 606069. [Google Scholar] [CrossRef]
- Yu, S.; Huang, Y.; Wu, Y.; Wu, Y.; Huang, G.; Xiong, J.; Ty, Y. Curcumin Chitosan Microsphere Improve Ulcerative Colitis Inflammatory Response by Regulating miR-224-3p/TLR4 Axis. Food Sci. Technol. 2022, 42, e65721. [Google Scholar] [CrossRef]
- Číž, M.; Dvořáková, A.; Skočková, V.; Kubala, L. The Role of Dietary Phenolic Compounds in Epigenetic Modulation Involved in Inflammatory Processes. Antioxidants 2020, 9, 691. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhou, D.; Zhang, X.; Qing, M.; Li, X.; Chou, Y.; Chen, G.; Li, N. Curcumin Promotes Renewal of Intestinal Epithelium by miR-195-3p. J. Ethnopharmacol. 2024, 320, 117413. [Google Scholar] [PubMed]
- Hridayanka, K.; Duttaroy, A.; Basak, S. Bioactive Compounds and Their Chondroprotective Effects for Osteoarthritis Amelioration: A Focus on Nanotherapeutic Strategies, Epigenetic Modifications, and Gut Microbiota. Nutrients 2024, 16, 3587. [Google Scholar] [CrossRef] [PubMed]
- Hassan, F.-u.; Rehman, M.; Khan, M.; Ali, M.; Javed, A.; Nawaz, A.; Yang, C. Curcumin as an Alternative Epigenetic Modulator: Mechanism of Action and Potential Effects. Front. Genet. 2019, 10, 514. [Google Scholar] [CrossRef]
- Alesci, A.; Nicosia, N.; Fumia, A.; Giorgianni, F.; Santini, A.; Cicero, N. Resveratrol and Immune Cells: A Link to Improve Human Health. Molecules 2022, 27, 424. [Google Scholar] [CrossRef]
- Yao, J.; Wei, C.; Wang, J.-Y.; Zhang, R.; Li, Y.-X.; Wan, L.-S. Effect of Resveratrol on Treg/Th17 Signaling and Ulcerative Colitis Treatment in Mice. World J. Gastroenterol. 2015, 21, 6572–6581. [Google Scholar] [CrossRef]
- Alrafas, H.; Busbee, P.; Nagarkatti, M.; Nagarkatti, P. Resveratrol Downregulates miR-31 to Promote T Regulatory Cells During Prevention of TNBS-Induced Colitis. Mol. Nutr. Food Res. 2020, 64, e1900633. [Google Scholar] [CrossRef]
- Farooqi, A.; Khalid, S.; Ahmad, A. Regulation of Cell Signaling Pathways and miRNAs by Resveratrol in Different Cancers. Int. J. Mol. Sci. 2018, 19, 652. [Google Scholar] [CrossRef]
- Fernandes, G.; Silvia, G.; Pavan, A.; Chiba, D.; Chin, C.; Dos Santos, J. Epigenetic Regulatory Mechanisms Induced by Resveratrol. Nutrients 2017, 9, 1201. [Google Scholar] [CrossRef]
- Wang, S.; Li, Z.; Ma, Y.; Liu, Y.; Lin, C.-C.; Li, S.; Zhan, J.; Ho, C.-T. Immunomodulatory Effects of Green Tea Polyphenols. Molecules 2021, 26, 3755. [Google Scholar] [CrossRef]
- Du, Y.; Ding, H.; Vanarsa, K.; Soomro, S.; Baig, S.; Hicks, J.; Mohan, C. Low Dose Epigallocatechin Gallate Alleviates Experimental Colitis by Subduing Inflammatory Cells and Cytokines, and Improving Intestinal Permeability. Nutrients 2019, 11, 1743. [Google Scholar] [CrossRef] [PubMed]
- Negri, A.; Naponelli, V.; Rizzi, F.; Bettuzzi, S. Molecular Targets of Epigallocatechin—Gallate (EGCG): A Special Focus on Signal Transduction and Cancer. Nutrients 2018, 10, 1936. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-S.; Lee, J.; Kim, Y. Green Tea Extract Containing Piper retrofractum Fruit Ameliorates DSS-Induced Colitis via Modulating MicroRNA-21 Expression and NF-κB Activity. Nutrients 2022, 14, 2684. [Google Scholar] [CrossRef] [PubMed]
- Cione, E.; La Torre, C.; Cannataro, R.; Caroleo, M.; Plastina, P.; Gallelli, L. Quercetin, Epigallocatechin Gallate, Curcumin, and Resveratrol: From Dietary Sources to Human MicroRNA Modulation. Molecules 2020, 25, 63. [Google Scholar] [CrossRef]
- Kim, D.-H.; Meza, C.; Clarke, H.; Kim, J.-S.; Hickner, R. Vitamin D and Endothelial Function. Nutrients 2020, 12, 575. [Google Scholar] [CrossRef]
- Ao, T.; Kikuta, J.; Ishii, M. The Effects of Vitamin D on Immune System and Inflammatory Diseases. Biomolecules 2021, 11, 1624. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, D.; Deng, F. The Role of Vitamin D in Immune System and Inflammatory Bowel Disease. J. Inflamm. Res. 2022, 15, 3167–3185. [Google Scholar] [CrossRef]
- Sharifi, A.; Vahedi, H.; Nedjat, S.; Rafiei, H.; Hosseinzadeh-Attar, M. Effect of Single-Dose Injection of Vitamin D on Immune Cytokines in Ulcerative Colitis Patients: A Randomized Placebo-Controlled Trial. Apmis 2019, 127, 681–687. [Google Scholar] [CrossRef]
- Ahmadi, A.; Yousefimashouf, R.; Mohammadi, A.; Nikhoo, B.; Shokoohizadeh, L.; Mirzaei, M.; Alikhani, M.; Sheikhesmaili, F.; Khodaei, H. Investigating the Expression of Anti/Pro-Inflammatory Cytokines in the Pathogenesis and Treatment of Ulcerative Colitis and Its Association with Serum Level of Vitamin D. Sci. Rep. 2025, 15, 7569. [Google Scholar] [CrossRef]
- Dadaei, T.; Safapoor, M.; Asadzadeh Aghdaei, H.; Balaii, H.; Pourhoseingholi, M.; Naderi, N.; Zojaji, H.; Azimzadeh, P.; Mohammadi, P.; Zali, M. Effect of Vitamin D3 Supplementation on TNF-α Serum Level and Disease Activity Index in Iranian IBD Patients. Gastroenterol. Hepatol. Bed Bench 2015, 8, 49–55. [Google Scholar]
- Chen, B.; Li, Y.; Li, Z.; Hu, X.; Zhen, H.; Chen, H.; Nie, C.; Hou, Y.; Zhu, S.; Xiao, L.; et al. Vitamin E ameliorates blood cholesterol level and alters gut microbiota composition: A randomized controlled trial. Nutr. Metab. Cardiovasc. Dis. 2025, 8, 103964. [Google Scholar] [CrossRef]
- Lee, G.; Han, S. The Role of Vitamin E in Immunity. Nutrients 2018, 10, 1614. [Google Scholar] [CrossRef]
- Lewis, E.; Meydani, S.; Wu, D. Regulatory Role of Vitamin E in the Immune System and Inflammation. IUBMB Life 2019, 71, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Zappe, K.; Pointner, A.; Switzeny, O.J.; Magnet, U.; Tomeva, E.; Heller, J.; Mare, G.; Wagner, K.H.; Knasmueller, S.; Haslberger, A.G. Counteraction of Oxidative Stress by Vitamin E Affects Epigenetic Regulation by Increasing Global Methylation and Gene Expression of MLH1 and DNMT1 Dose Dependently in Caco-2 Cells. Oxid. Med. Cell Longev. 2018, 2018, 3734250. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Luo, Y.; Lu, H.; Xie, T.; Hu, Z.; Chu, Z.; Luo, F. The Potential Role of Vitamin E and the Mechanism in the Prevention and Treatment of Inflammatory Bowel Disease. Foods 2024, 13, 898. [Google Scholar] [CrossRef] [PubMed]
- Saw, T.; Malik, A.; Lim, K.; Teo, C.; Wong, E.; Kong, S.; Fong, C.; Petkov, J.; Yap, W. Oral Supplementation of Tocotrienol-Rich Fraction Alleviates Severity of Ulcerative Colitis in Mice. J. Nutr. Sci. Vitaminol. 2019, 65, 318–327. [Google Scholar] [CrossRef]

| Gene | Function | Functional Disorder |
|---|---|---|
| NOD2 | Recognises bacterial pathogens, initiates autophagy [17] | Impaired immune response and increased susceptibility to inflammatory bowel disease [14,16] |
| ATG16L1 and IRGM | Crucial in autophagy, pathogen elimination [18,19,20] | Impaired intestinal homeostasis, increase in pro-inflammatory cytokines [18,19,20] |
| TLR4 | Pathogen pattern recognition receptor [22] | Mucosal damage, decrease in SCFA, increase in inflammation [11,22] |
| IL23R | Regulates Th17 activity [16,18,19,23] | Chronic activation of the inflammatory response, intestinal fibrosis [16,18,19,23] |
| Nutritional Factor | Epigenetic/Immune Effect | Model/Population | References |
|---|---|---|---|
| Folates, vitamin B12 | Regulation of DNA methylation; deficiencies can lead to hypermethylation and hyperhomocysteinemia | In vitro and animal | [75,77] |
| SCFA | HDAC inhibition, inhibition of CXCL10 release, reduction of pro-inflammatory cytokines. Improved intestinal homeostasis, reduced inflammation | In vitro, animal and human | [85,90,91,93] |
| Omega-3 (EPA, DHA) | NF-κB inhibition, microRNA modulation, increased IL-10 | Animal and in vitro | [97,100,106] |
| Omega-6 (AA, LA) | Pro- and anti-inflammatory, proportion-dependent | In vitro | [105,106] |
| Curcumin, resveratrol, EGCG | NF-κB, STAT1, HDAC, inhibition; microRNA regulation, immune modulation | Animal, in vitro and human | [39,112,114,118,119,123,125] |
| Vitamin D | Inhibits Th1 responses, reduction in TNF-α levels, modulates cytokines | Human | [130,131,132] |
| Vitamin E | Reduction in pro-inflammatory cytokines, improvement in immune response, beneficial gut bacteria (Faecalibacterium, Lachnospira) | Animal and in vitro | [133,136,138] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musz, P.; Ryś, G.; Fic, W.; Sokal-Dembowska, A.; Jarmakiewicz-Czaja, S. Nutrigenomics and Epigenetics in the Dietary Management of Inflammatory Bowel Diseases. Genes 2025, 16, 1368. https://doi.org/10.3390/genes16111368
Musz P, Ryś G, Fic W, Sokal-Dembowska A, Jarmakiewicz-Czaja S. Nutrigenomics and Epigenetics in the Dietary Management of Inflammatory Bowel Diseases. Genes. 2025; 16(11):1368. https://doi.org/10.3390/genes16111368
Chicago/Turabian StyleMusz, Patrycja, Gabriela Ryś, Weronika Fic, Aneta Sokal-Dembowska, and Sara Jarmakiewicz-Czaja. 2025. "Nutrigenomics and Epigenetics in the Dietary Management of Inflammatory Bowel Diseases" Genes 16, no. 11: 1368. https://doi.org/10.3390/genes16111368
APA StyleMusz, P., Ryś, G., Fic, W., Sokal-Dembowska, A., & Jarmakiewicz-Czaja, S. (2025). Nutrigenomics and Epigenetics in the Dietary Management of Inflammatory Bowel Diseases. Genes, 16(11), 1368. https://doi.org/10.3390/genes16111368

