Powdery Mildew Resistance Genes in European Barley Cultivars Registered in the Czech Republic from 2016 to 2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Pathogen Isolates
2.3. Testing Procedure
2.4. Evaluation
3. Results
4. Discussion
4.1. Spring Barley
4.2. Winter Barley
4.3. Other Remarks
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. Available online: https://www.fao.org/worldfoodsituation/csdb/en/ (accessed on 24 May 2022).
- Státní Odrůdová Kniha 2020. Available online: https://eagri.cz/public/web/file/654573/_32020.pdf (accessed on 1 June 2022).
- Situační a výhledová zpráva. Obiloviny. Available online: https://eagri.cz/public/web/file/702121/SVZ_Obiloviny_12_2021.pdf (accessed on 1 June 2022).
- UKZUZ Obilniny 2020. Available online: https://eagri.cz/public/web/file/650948/Obilniny_2020.pdf (accessed on 1 June 2022).
- Oguz, A.C.; Karakaya, A. Genetic diversity of barley foliar fungal pathogens. Agronomy 2021, 11, 434. [Google Scholar] [CrossRef]
- Hysing, S.C.; Rosenqvist, H.; Wiik, L. Agronomic and economic effect of host resistance vs. fungicide control of barley powdery mildew in southern Sweden. Crop Protect. 2012, 41, 122–127. [Google Scholar] [CrossRef]
- Jørgensen, J.H. Genetics of powdery mildew resistance in barley. Crit. Rev. Plant Sci. 1994, 13, 97–119. [Google Scholar] [CrossRef]
- Dreiseitl, A. Specific resistance of barley to powdery mildew, its use and beyond. A concise critical review. Genes 2020, 11, 971. [Google Scholar] [CrossRef] [PubMed]
- Hollomon, D.W. Resistance of barley powdery mildew to fungicides. ADAS Quart. Rev. 1980, 39, 226–233. [Google Scholar]
- Hobbelen, P.H.F.; Paveley, N.D.; van den Bosch, F. The emergence of resistance to fungicides. PLoS ONE 2014, 9, e91910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hollomon, D.W. Fungicide resistance: Facing the challenge. Plant Protect. Sci. 2015, 51, 170–176. [Google Scholar] [CrossRef]
- McDonald, B.A.; Linde, C. Pathogen population genetics, evolutionary potential, and durable resistance. Annu. Rev. Phytopathol. 2002, 40, 349–379. [Google Scholar] [CrossRef] [Green Version]
- Hollomon, D.W.; Brent, K.J. Combating plant diseases—The Darwin connection. Pest Managem. Sci. 2009, 65, 1156–1163. [Google Scholar] [CrossRef]
- Brown, J.K.M.; Hovmøller, M.S. Epidemiology—Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 2002, 297, 537–541. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.K.M.; Jørgensen, J.H. A catalogue of mildew resistance genes in European barley varieties. In Integrated Control of Cereal Mildews: Virulence and Their Change, Proceedings of the Second European Workshop on Integrated Control of Cereal Mildews, Risø National Laboratory, Roskilde, Denmark, 23–25 January 1990; Jørgensen, J.H., Ed.; Risø National Laboratory: Roskilde, Denmark, 1991; pp. 263–286. [Google Scholar]
- Dreiseitl, A. Great pathotype diversity and reduced virulence complexity in a Central European population of Blumeria graminis f. sp. hordei in 2015–2017. Eur. J. Plant Pathol. 2019, 53, 801–811. [Google Scholar] [CrossRef]
- Brückner, F. Powdery mildew (Erysiphe graminis DC.) on barley. V. The resistance of barley varieties to physiological races of Erysiphe graminis DC. detected in Czechoslovakia and the possibility to use it in breeding for resistance. Rostl. Vyrob. 1964, 10, 395–408. [Google Scholar]
- Dinoor, A.; Peleg, N. Employing gene-for-gene hypothesis to estimate number of resistance genes in host and virulence in pathogen, and to determine their identity. Israel J. Agricult. Res. 1971, 21, 147. [Google Scholar]
- McVey, D.V.; Roelfs, A.P. Postulation of genes for stem rust resistance in entries of 4th International winter-wheat performance nursery. Crop Sci. 1975, 15, 335–337. [Google Scholar] [CrossRef]
- Flor, H.H. Host-parasite interaction in flax rust—its genetics and other implications. Phytopathology 1955, 45, 680–685. [Google Scholar]
- Metzger, R.J.; Trione, E.J. Application of gene-for-gene relationship hypothesis to Triticum tilletia system. Phytopathology 1962, 52, 363. [Google Scholar]
- Flor, H.H. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 1971, 9, 275–296. [Google Scholar] [CrossRef]
- Browder, L.E.; Eversmeyer, M.G. Sorting of Puccinia-recondita, Triticum infection-type data sets towards the gene-for-gene model. Phytopathology 1980, 70, 666–670. [Google Scholar] [CrossRef]
- Jensen, H.P.; Christensen, E.; Jørgensen, J.H. Powdery mildew resistance genes in 127 northwest European spring barley varieties. Plant Breed. 1992, 108, 210–228. [Google Scholar] [CrossRef]
- Andrivon, D.; de Vallavieille-Pope, C. Race-specific resistance genes against Erysiphe graminis f. sp. hordei in old and recent French barley accessions. Plant Breed. 1992, 108, 40–52. [Google Scholar] [CrossRef]
- Dreiseitl, A. Genes for resistance to powdery mildew in European winter barley cultivars registered in the Czech Republic and Slovakia to 2010. Plant Breed. 2013, 132, 558–562. [Google Scholar] [CrossRef]
- Dreiseitl, A. Genes for resistance to powdery mildew in European barley cultivars registered in the Czech Republic from 2011 to 2015. Plant Breed. 2017, 136, 351–356. [Google Scholar] [CrossRef]
- Dreiseitl, A. A novel way to identify specific powdery mildew resistance genes in hybrid barley cultivars. Sci. Rep. 2020, 10, 18930. [Google Scholar] [CrossRef]
- Kølster, P.; Munk, L.; Stølen, O.; Løhde, J. Near-isogenic barley lines with genes for resistance to powdery mildew. Crop Sci. 1986, 26, 903–907. [Google Scholar] [CrossRef]
- Torp, J.; Jensen, H.P.; Jørgensen, J.H. Powdery Mildew Resistance Genes in 106 Northwest European Spring Barley Cultivars; Year-Book; Royal Veterinary and Agricultural University: Copenhagen, Denmark, 1978; pp. 75–102. [Google Scholar]
- Kosman, E.; Chen, X.; Dreiseitl, A.; McCallum, B.; Lebeda, A.; Ben-Yehuda, P.; Gultyaeva, E.; Manisterski, J. Functional variation of plant-pathogen interactions: New concept and methods for virulence data analyses. Phytopathology 2019, 109, 1324–1330. [Google Scholar] [CrossRef]
- Dreiseitl, A. Postulation of specific disease resistance genes in cereals: A widely used method and its detailed description. Pathogens 2022, 11, 284. [Google Scholar] [CrossRef]
- Jørgensen, J.H. Discovery, characterisation and exploitation of Mlo powdery mildew resistance in barley. Euphytica 1992, 63, 141–152. [Google Scholar] [CrossRef]
- Brückner, F. The breeding of the malting barley cultivar of new morphotype Forum. Genet. Šlecht. 1993, 29, 199–203. [Google Scholar]
- Dreiseitl, A.; Jørgensen, J.H. Powdery mildew resistance in Czech and Slovak barley cultivars. Plant Breed. 2000, 119, 203–209. [Google Scholar] [CrossRef]
- Dreiseitl, A. Resistance of ‘Roxana’ to powdery mildew and its presence in some European spring barley cultivars. Plant Breed. 2011, 130, 419–422. [Google Scholar] [CrossRef]
- Dreiseitl, A. Changes in the population of Blumeria graminis f.sp. hordei in the Czech Republic from 2009 to 2010. Plant Protect. Sci. 2011, 47, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Dreiseitl, A. Powdery mildew resistance in winter barley cultivars. Plant Breed. 2007, 126, 268–273. [Google Scholar] [CrossRef]
- Dreiseitl, A. Dissimilarity of barley powdery mildew resistances Heils Hanna and Lomerit. Czech J. Genet. Plant Breed. 2011, 47, 95–100. [Google Scholar] [CrossRef] [Green Version]
- Dreiseitl, A. Virulence frequencies to powdery mildew resistance genes of winter barley cultivars. Plant Protect. Sci. 2004, 40, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Dreiseitl, A. Virulence frequency to powdery mildew resistances in winter barley cultivars. Czech J. Genet. Plant Breed. 2008, 44, 160–166. [Google Scholar] [CrossRef] [Green Version]
- Dreiseitl, A. Resistance of ‘Laverda’ to powdery mildew and its presence in some winter barley cultivars. Cereal Res. Commun. 2011, 39, 569–576. [Google Scholar] [CrossRef]
- Dreiseitl, A. Changes in virulence frequencies and higher fitness of simple pathotypes in the Czech population of Blumeria graminis f. sp. hordei. Plant Protect. Sci. 2015, 51, 67–73. [Google Scholar] [CrossRef] [Green Version]
- Dreiseitl, A. Rare virulences of barley powdery mildew found in aerial populations in the Czech Republic from 2009 to 2014. Czech J. Genet. Plant Breed. 2015, 51, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Dreiseitl, A. (Department of Integrated Plant Protection, Agrotest Fyto Ltd., Havlíčkova 2787, CZ-767 01 Kroměříž, Czech Republic). Study of the Czech airborne population of Blumeria graminis f. sp. hordei. 2022; Unpublished work. [Google Scholar]
- Dreiseitl, A. Emerging Blumeria graminis f. sp. hordei pathotypes reveal ‘Psaknon’ resistance in European barley varieties. J. Agric. Sci. 2016, 154, 1082–1089. [Google Scholar] [CrossRef]
- Dreiseitl, A. Resistance of barley variety ‘Venezia’ and its reflection in Blumeria graminis f. sp. hordei population. Euphytica 2018, 214, 40. [Google Scholar] [CrossRef]
- Dreiseitl, A. Postulation of genes for resistance to powdery mildew in spring barley cultivars registered in the Czech Republic from 1996 to 2010. Euphytica 2013, 191, 183–189. [Google Scholar] [CrossRef]
- Brückner, F. The finding of powdery mildew (Erysiphe graminis DC. var. hordei Marchal) race on barley: A race virulent to resistance genes Mla9 and Mla14. Ochr. Rostl. 1982, 18, 101–105. [Google Scholar]
- Wolfe, M.S.; Brändle, U.; Koller, B.; Limpert, E.; McDermott, J.M.; Müller, K.; Schaffner, D. Barley mildew in Europe: Population biology and host resistance. Euphytica 1992, 63, 125–139. [Google Scholar] [CrossRef]
- Brown, J.K. Durable Resistance of Crops to Disease: A Darwinian Perspective. Annu. Rev. Phytopathol. 2015, 53, 513–539. [Google Scholar] [CrossRef]
- Niks, R.E.; Qi, X.; Marcel, T.C. Quantitative Resistance to Biotrophic Filamentous Plant Pathogens: Concepts, Misconceptions, and Mechanisms. Annu. Rev. Phytopathol. 2015, 53, 445–470. [Google Scholar] [CrossRef] [Green Version]
- Cowger, C.; Brown, J.K. Durability of Quantitative Resistance in Crops: Greater Than We Know? Annu. Rev. Phytopathol. 2019, 57, 253–277. [Google Scholar] [CrossRef]
- Miedaner, T.; Boeven, A.L.G.-C.; Gaikpa, D.S.; Kistner, M.B.; Grote, C.P. Genomics-Assisted Breeding for Quantitative Disease Resistances in Small-Grain Cereals and Maize. Int. J. Mol. Sci. 2020, 21, 9717. [Google Scholar] [CrossRef]
- Czembor, J.H.; Czembor, E.; Suchecki, R.; Watson-Haigh, N.S. Genome-wide association study for powdery mildew and rusts adult plant resistance in European spring barley from Polish gene bank. Agronomy 2022, 12, 7. [Google Scholar] [CrossRef]
- Xu, J.; Kasha, K.J. Transfer of a dominant gene for powdery mildew resistance and DNA from Hordeum bulbosum into cultivated barley (Hordeum vulgare). Theor. Appl. Genet. 1992, 84, 771–777. [Google Scholar] [CrossRef]
- Pickering, R.A.; Hill, A.M.; Michel, M.; Timmerman-Vaughan, G.M. The transfer of a powdery mildew resistance gene from Hordeum bulbosum L. to barley (H. vulgare L.) chromosome 2 (2I). Theor. Appl. Genet. 1995, 91, 1288–1292. [Google Scholar] [CrossRef]
- Panstruga, R.; Moscou, M.J. What is the molecular basis of nonhost resistance? Molecul. Plant-Microbe Interact. 2020, 33, 1253–1264. [Google Scholar] [CrossRef]
- Niks, R.E. Nonhost plant-species as donors for resistance to pathogens with narrow host range. 2. Concepts and evidence on the genetic-basis of nonhost resistance. Euphytica 1988, 37, 89–99. [Google Scholar] [CrossRef]
Ml Resistance | Isolate | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Gene(s) | JAP 1 | ISR | ISR | DK | CZ | CZ | CZ | CZ | CZ | CZ | CZ | CZ |
R-1 | J-462 | Y-69 | EA30 | I-162 | I-20 | X-30 | Y-4 | O-11 | M-8 | X-1 | X-8 | |
1953 2 | 1979 | 1979 | 1986 | 2009 | 2011 | 2012 | 2013 | 2016 | 2017 | 2021 | 2021 | |
none | 4 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
a14 | 4 | 4 | 4 | 0 | 4 | 0 | 4 | 4 | 4 | 0 | 4 | 4 |
a1, g, La | 0 | 4 | 4 | 0 | 4 | 0 | 2–3 | 4 | 4 | 0 | 4 | 4 |
a6 | 0 | 4 | 4 | 4 | 0 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
a6, aLo, IM9, ra | 0 | 0 | 4 | 0 | 0 | 4 | 2 | 4 | 2 | 4 | 4 | 4 |
a6, aLo, p, ra | 0 | 0 | 4 | 0 | 0 | 2 | 4 | 2 | 2 | 2 | 4 | 4 |
a6, aLo, ra | 0 | 0 | 4 | 0 | 0 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
a6, aLo, ra, Ru2 | 0 | 0 | 4 | 0 | 0 | 4 | 4 | 4 | 2–3 | 4 | 4 | 4 |
a6, IM9 | 0 | 2 | 4 | 2 | 0 | 4 | 2 | 4 | 2 | 4 | 4 | 4 |
a6, ra | 0 | 4 | 4 | 0 | 0 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
a7 | 0 | 0 | 0 | 1–2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
a8 | 0 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
a8, h | 0 | 4 | 4 | 4 | 1–2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
a8, h, Ru2 | 1 | 4 | 4 | 4 | 1–2 | 4 | 4 | 4 | 2–3 | 4 | 4 | 4 |
aLo | 0 | 0 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
aLo, Lv | 0 | 0 | 4 | 1 | 1 | 1 | 1 | 4 | 1 | 1 | 4 | 1 |
aLo, ra | 0 | 0 | 4 | 0 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
Ch | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
Ch, h, ra | 2 | 4 | 4 | 0 | 1–2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
Ch, ra | 2 | 4 | 4 | 0 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
g | 0 | 4 | 4 | 0 | 4 | 0 | 4 | 4 | 4 | 4 | 4 | 4 |
h | 4 | 4 | 4 | 4 | 1–2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
h, ra | 4 | 4 | 4 | 0 | 1–2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
IM9 | 2 | 2 | 4 | 2 | 2 | 4 | 2 | 4 | 2 | 4 | 4 | 4 |
La | 4 | 4 | 4 | 2–3 | 4 | 4 | 2–3 | 4 | 4 | 4 | 4 | 4 |
Lv | 1 | 1–2 | 4 | 1 | 1 | 1 | 1 | 4 | 1 | 1 | 4 | 1 |
mlo5 | 0(3) | 0(3) | 0(3) | 0(3) | 0(3) | 0(3) | 0(3) | 0(3) | 0(3) | 0(3) | 0(3) | 0(3) |
p | 2 | 4 | 4 | 2 | 2 | 2 | 4 | 2 | 2 | 2 | 4 | 4 |
ra | 4 | 4 | 4 | 0 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
Ro | 4 | 4 | 0–1 | 0 | 0–1 | 4 | 0–1 | 0–1 | 4 | 4 | 0 | 0–1 |
Ro, a8 | 0 | 4 | 0–1 | 0 | 0–1 | 4 | 0–1 | 0–1 | 4 | 4 | 0 | 0–1 |
Ru2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 2–3 | 4 | 4 | 4 |
SI-1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
Ve | 0 | 0 | 4 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 4 | 0 |
Ve, u6 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
Cultivar | Original | Pedigree | Country | Year of | Ml Gene(s) |
---|---|---|---|---|---|
Designation | of Origin | Registration | |||
Spring, Two-Rowed | |||||
Accordine | AC 10/734/33 | (Sunshine × SY Firkin) × SY Firkin | Germany | 2018 | mlo |
Adam | NORD 15/1107 | NA | Germany | 2020 | u |
Aligator | STRG 774/11 | Gundel × S99G153 (Braemar × Roxanna) | Germany | 2016 | mlo |
Avus | STRG 687/15 | Explorer × Shuffle | Germany | 2020 | mlo |
Bente | NORD 13/1114 | (Vendela × Zeppelin) × Grace | Germany | 2018 | SI-1 |
Cosmopolitan | SJ 152037 | (KWS Irina × Evergreen) × (Sanette × Paustian) | Denmark | 2019 | mlo |
Fandaga | NORD 14/2404 | Ginger × Britney | Germany | 2020 | mlo |
Forman | NORD 12/2444 | (Salome × Livia) × Propino | Germany | 2017 | mlo |
Ismena | NORD 14/2403 | NA | Germany | 2019 | mlo |
Klarinett | SC 101-12A | Zeppelin × Grace | France | 2019 | SI-1 |
KWS Fantex | KWS 13/207 | Sunshine × KWS Irina | Germany | 2018 | mlo |
Laureate | SY 412-328 | Sanette × Concerto | Germany | 2019 | mlo |
Leenke | NORD 12/2531 | (Salome × Livia) × Propino | Germany | 2017 | u |
LG Aurus | LGBHE3427A | Petrus × Zhana | France | 2019 | mlo |
LG Ester | LGBHE3254B | Scrabble × Signum | France | 2020 | mlo |
LG Monus | HE-2645 | HE 204 × Gladys | France | 2017 | mlo |
LG Nabuco | LGBN1315 | Cropton × LN0925 | France | 2018 | mlo |
LG Tosca | LGBN14223-2 | RGT Planet × LGBN1469 | France | 2020 | mlo |
Libuše | NORD 11/2411 | NFC 403-135 × Grace | Germany | 2016 | mlo |
Manta | AC 07/547/417 | (Claire × Quench) × Lilly | Germany | 2016 | mlo |
Ovation | LGB12-8317-A | NSL 07-8113-B × Tesla | France | 2017 | mlo |
Pilote | SY 413357 | Saporis × Melius | Switzerland | 2018 | mlo |
Pionier | SC 65/03 NZ 7C | Marnie × Beatrix | France | 2016 | a8, Ro |
Pop | SC 44801 N2 | Calcul × SY Firkin | France | 2017 | SI-1 |
Remark | AC 09/547/43 | Zeppelin × Columbus | Germany | 2017 | SI-1 |
Runner | NORD 14/2534 | NA | Germany | 2019 | mlo |
Soulmate | NOS 16111-55 | Barabas × Keops | Denmark | 2017 | mlo |
Spitfire | SG-S 212 | STRG 01/410/41 × Westminster | Czech | 2018 | a1, g, La + mlo |
Tango | LN1147 | Jazz × Claire | France | 2016 | mlo |
Zeppelin 1 | SJ 071085 | (Scandium × Isabella) × SJ 050623 | Denmark | 2012 | SI-1 |
Winter, Two-Rowed | |||||
KWS Donau | KW 2-430 | (KWS Liga × KWS Stella) × KW 2-936 | Germany | 2017 | Ch, ra |
Neptun | SJ 128045 | Sandra × Matros | Denmark | 2019 | Ra |
Sobell | SJ 128113 | Augusta × KWS Cassia × Matros | Denmark | 2019 | ra, u |
SU Celly | NORD 13109/14 | (NORD 2930 × Valentina) × California | Germany | 2020 | Ve, u |
Torpedo | AC 08/290/26 | KWS Cassia × Augusta | Germany | 2016 | Ch, h, ra, u |
Valerie | Br 11500r6 | 207-589 × Sandra | Germany | 2020 | a7 |
Winter, Six-Rowed | |||||
Azrah | STRG 432/09 | Laverda × (Cornelia × Carola) | Germany | 2018 | aLv |
Beckenbauer | BE 2008024004D | Kathleen × BE 2718 | Germany | 2019 | a6, IM9 |
Belissa | AC 09/275/22 | KWS Meridian × Antonella | Germany | 2017 | aLo, aLv, u |
Camilla | SZD 2213A | Semper × Kathleen | Austria | 2019 | h, ra |
Falbala | LEU 53120 | (ST 2475 × Fridericus) × Amelie | Germany | 2020 | a6, ra |
Impala | LEU 43408 | St. 2474 × Federicus × Meridian | Germany | 2018 | a6, aLo, ra, Ru2 |
Jakubus | NORD 12119/102 | Bella × SU Ellen | Germany | 2020 | a6, aLo, p, ra |
Journey | KW 6-451 | KWS Meridian × KWS Tonic | Germany | 2018 | a6, aLo, IM9, ra |
KWS Higgins | KW 6-331 | KW 6-855 × KWS Meridian | Germany | 2017 | a6, aLo, IM9, ra |
KWS Wallace | KW 6-1541 | KWS Tonic × KW 6-148 | Germany | 2019 | a8, h |
Laurin | NORD 11002/8 | Tenor × 08076/86 (Kathleen × Saturn) | Germany | 2018 | aLo, ra, u |
LG Triumph | LGBN13W125-43 | Souleyka × KWS Meridian | France | 2017 | a6, aLo, ra |
LG Zoro | LGBB15W003 | KWS Meridian × Rafaela | France | 2019 | aLo, aLv |
Novira | AC 09/278/6 | AC 07/142/36 × KWS Meridian | Germany | 2017 | a6, aLo, IM9, ra |
Pegasos | LEU 63112 | (Ramata × ST2426) × ST2427 | Germany | 2020 | aLo, ra |
Rumcajs | STRG 568/15 | Kathleen × KWS Meridian | Czech | 2020 | a6, aLo, IM9, ra |
SU Ellen | NORD 08076/133 | Kathleen × Saturn | Germany | 2017 | a6, aLo, p, ra |
SU Hylona 2,3 | DEH 13/1807 | CMS04LM183L001 × 10HR170D002 | Germany | 2018 | al, aLv |
SU Jule | BE 2008108012 | Semper × BE 27090 | Germany | 2018 | a7 |
SU Lauvira | NORD 13078/8 | NORD 11118/64 × ((BYDW 55 × Kathleen) × | Germany | 2020 | aLo, aLv, u |
(Tenor × Loreley)) | |||||
SY Maliboo 2 | SY 216489 | (F1F180 × RE35) × MT0767 | Switzerland | 2020 | aLo, h, u |
William | KW 6-437 | (LP 6-854 × KWS Meridian) × KWS Tonic | Germany | 2020 | Ch, h, Ru2 |
Cultivar | Ml | ISR 1 | CZ | CZ | CZ |
---|---|---|---|---|---|
Resistance | J-462 | Y-4 | M-4 | A-1 | |
Gene(s) | 1979 2 | 2013 | 2015 | 2015 | |
Azrah | aLv | 4 3 | 4 | 4 | 4 |
LG Zoro | aLv, aLo | 0 | 4 | 4 | 4 |
SU Lauvira | aLv, aLo, u | 0 | 2 | 4 | 4 |
Belissa | aLv, aLo, u | 0 | 4 | 0–1 | 4 |
Laverda | aLv, u | 1–2 | 4 | 1–2 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dreiseitl, A. Powdery Mildew Resistance Genes in European Barley Cultivars Registered in the Czech Republic from 2016 to 2020. Genes 2022, 13, 1274. https://doi.org/10.3390/genes13071274
Dreiseitl A. Powdery Mildew Resistance Genes in European Barley Cultivars Registered in the Czech Republic from 2016 to 2020. Genes. 2022; 13(7):1274. https://doi.org/10.3390/genes13071274
Chicago/Turabian StyleDreiseitl, Antonín. 2022. "Powdery Mildew Resistance Genes in European Barley Cultivars Registered in the Czech Republic from 2016 to 2020" Genes 13, no. 7: 1274. https://doi.org/10.3390/genes13071274
APA StyleDreiseitl, A. (2022). Powdery Mildew Resistance Genes in European Barley Cultivars Registered in the Czech Republic from 2016 to 2020. Genes, 13(7), 1274. https://doi.org/10.3390/genes13071274