Variations in Growth and Photosynthetic Traits of Polyploid Poplar Hybrids and Clones in Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Materials
2.3. Measurements of Traits and Statistical Analyses
3. Results
3.1. Genetic and Variation Parameters
3.2. Comparison of Each Trait’s Average Values
3.3. Intertrait Correlation Analysis
3.4. Principal Component Analysis
3.5. Elite Clone Selection and Genetic Gain
4. Discussion
4.1. Genetic and Variation Parameters
4.2. Mean Values
4.3. Correlation
4.4. Principal Component Analysis
4.5. Comprehensive Assessment and Genetic Gain
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dickmann, D.I. Silviculture and biology of short-rotation woody crops in temperate regions: Then and now. Biomass Bioenergy 2006, 30, 696–705. [Google Scholar] [CrossRef]
- Manzone, M.; Bergante, S.; Facciotto, G. Energy and economic evaluation of a poplar plantation for woodchips production in Italy. Biomass Bioenergy 2014, 60, 164–170. [Google Scholar] [CrossRef] [Green Version]
- Zhong, H.C.; Zhang, Z.Y.; An, X.M.; Li, S.W. Present Situation and Prospect to Poplar Breeding in China. J. Southwest For. Coll. 2006, 4, 86–89. [Google Scholar]
- Sixto, H.; Salvia, J.; Barrio, M.; Pilar Ciria, M.; Canellas, I. Genetic variation and genotype-environment interactions in short rotation Populus plantations in southern Europe. New For. 2011, 42, 163–177. [Google Scholar] [CrossRef]
- Di Baccio, D.; Tognetti, R.; Minnocci, A.; Sebastiani, L. Responses of the Populus × euramericana clone I-214 to excess zinc: Carbon assimilation, structural modifications, metal distribution and cellular localization. Environ. Exp. Bot. 2009, 67, 153–163. [Google Scholar] [CrossRef]
- Li, S.W.; Zhang, Z.Y.; Luo, J.M.; He, C.Z.; Pu, Y.S. Progress and Strategies in Cross Breeding of Poplars in China. For. Stud. China 2005, 7, 54–60. [Google Scholar] [CrossRef]
- Jiang, L.; Pei, X.; Hu, Y.; Chiang, V.L.; Zhao, X. Effects of environment and genotype on growth traits in poplar clones in Northeast China. Euphytica 2021, 217, 169. [Google Scholar] [CrossRef]
- Castro, G.; Fragnelli, G. New technologies and alternative uses for poplar wood. Boletín Inf. CIDEU 2006, 2, 27–36. [Google Scholar]
- Schimleck, L.R.; Payne, P.; Wearne, R.H. Determination of important pulp properties of hybrid poplar by near infrared spectroscopy. Wood Fiber Sci. 2005, 2005, 462–471. [Google Scholar]
- Hua, Y.K.; Zhou, X.Y. The Development of the Hybrid Poplar Processing Industry in PR China. Aciar Proc. 2002, 2002, 123–130. [Google Scholar]
- Jiao, S.J.; Hou, C.C.; Du, Q.L.; Li, Y.W. The research of carbon absorbing ability of road greening plants in North China. In Proceedings of the 2011 International Conference on Electrical and Control Engineering, Yichang, China, 16–18 September 2011; pp. 5598–5601. [Google Scholar] [CrossRef]
- Hu, W.; Li, G.; Gao, Z.; Jia, G.; Yi, L. Assessment of the impact of the Poplar Ecological Retreat Project on water conservation in the Dongting Lake wetland region using the InVEST model. Sci. Total Environ. 2020, 733, 139423. [Google Scholar] [CrossRef] [PubMed]
- Soltis, D.E.; Albert, V.A.; Leebens-Mack, J.; Bell, C.D.; Paterson, A.H.; Zheng, C.; Sankoff, D.; de Pamphilis, C.W.; Wall, P.K.; Soltis, P.S. Polyploidy and angiosperm diversification. Am. J. Bot. 2009, 96, 336–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soltis, P.S.; Marchant, D.B.; Van de Peer, Y.; Soltis, D.E. Polyploidy and genome evolution in plants. Curr. Opin. Genet. Dev. 2015, 35, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Comai, L. The advantages and disadvantages of being polyploid. Nat. Rev. Genet. 2005, 6, 836–846. [Google Scholar] [CrossRef]
- Kang, X.Y. Advances in researches on polyploid breeding of forest trees. J. Beijing For. Univ. 2003, 25, 70–74. [Google Scholar]
- Parsons, J.L.; Martin, S.L.; James, T.; Golenia, G.; Boudko, E.A.; Hepworth, S.R. Polyploidization for the Genetic Improvement of Cannabis sativa. Front. Plant Sci. 2019, 10, 476. [Google Scholar] [CrossRef]
- Zhao, X.Y.; Li, Y.; Zheng, M.; Bian, X.Y.; Liu, M.R.; Sun, Y.S.; Jiang, J.; Wang, F.W.; Li, S.C.; Cui, Y.H.; et al. Comparative Analysis of Growth and Photosynthetic Characteristics of (Populus simonii × P. nigra) × (P.nigra × P.simonii) Hybrid Clones of Different Ploidides. PLoS ONE 2015, 10, e0119259. [Google Scholar] [CrossRef]
- Wang, B.; Du, Q.; Yang, X.; Zhang, D. Identification and characterization of nuclear genes involved in photosynthesis in Populus. BMC Plant Biol. 2014, 14, 81. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Ren, Y.; Liu, P.; Zhu, J.; Ke, S.; Xiao, X. Growth status and wood properties of Eucommia ulmoides plantation. J. Northeast For. Univ. 2022, 50, 95–98. [Google Scholar] [CrossRef]
- Xi, X.; Jiang, X.; Li, D.; Guo, L.; Zhang, J.; Wei, Z.; Li, B. Induction of 2n pollen by colchicine in Populus × popularis and its triploids breeding. Silvae Genet. 2011, 60, 155–160. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.T. Triploid Populus tomentosa: The important way of industrialization development of forest paper enterprise. China For. Ind. 2004, 10, 42–45. [Google Scholar]
- Liu, X.; Zhao, Q.; Yin, P.; Li, H.; Li, X.; Wu, L.; Li, Y.; Hu, Y.; Zhao, X. Variation and stability analysis of growth traits of poplar clones in the seedling stage in northeast China. J. For. Res. 2022. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, X.T.; Chen, S.; Zhou, X.Y.; Si, D.J.; Li, Y.; Zhao, X.Y. Analysis of differentially expressed proteins in leaves of triploid Populus simonii × P. nigra hybrid clones under salt stress. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2020, 2, 59–66. [Google Scholar]
- Jin, J.; Zhao, X.; Liu, H.; Wang, S.; Song, Z.; Ma, X.; Li, K. Preliminary study on genetic variation of growth traits and wood properties and superior clones selection of Populus ussuriensis Kom. Iforest-Biogeosci. For. 2019, 12, 459–466. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.S.; Jiang, X.B.; Gong, B.C.; Xu, Y.; Lai, J.S.; Wu, C.L. Leaf phenotype variation and heterosis in F1 progeny of cross between Castanea mollissima and C. henryi. Bull. Bot. Res. 2021, 41, 281–293. [Google Scholar] [CrossRef] [PubMed]
- Favour, E.; Emeka, N.; Chiedozie, E.; Bunmi, O.; Emmanuel, O. Genetic variability, heritability and variance components of some yield and yield related traits in second backcross population (BC2) of cassava. Afr. J. Plant Sci. 2017, 11, 185–189. [Google Scholar] [CrossRef]
- Liu, M.; Yin, S.; Si, D.; Shao, L.; Li, Y.; Zheng, M.; Wang, F.; Li, S.; Liu, G.; Zhao, X. Variation and genetic stability analyses of transgenic TaLEA poplar clones from four different sites in China. Euphytica 2015, 206, 331–342. [Google Scholar] [CrossRef]
- Wang, J.J.; Weng, Y.H.; Krasowski, M.; Yan, G.H.; Fullarton, M. Genetic parameters of growth and stem forking for black spruce progeny tested in New Brunswick, Canada. New For. 2018, 49, 265–277. [Google Scholar] [CrossRef]
- Yu, B.J.; Yang, C.P. Study on provenance test of 5 years old Laxi olgensis. J. Northeast For. Univ. 1988, 16, 27–33. [Google Scholar]
- Chen, L. The Researches on Seedling Characters Difference of Fokienia hodginsii from Different Provenances and Excellent Provenance Selection. Master’s Thesis, Fujian Agriculture and Forestry University, Fujian, China, 2015. [Google Scholar]
- Vogt, G.; Huber, M.; Thiemann, M.; van den Boogaart, G.; Schmitz, O.J.; Schubart, C.D. Production of different phenotypes from the same genotype in the same environment by developmental variation. J. Exp. Biol. 2008, 211, 510–523. [Google Scholar] [CrossRef] [Green Version]
- Meena, B.L.; Das, S.P.; Meena, S.K.; Kumari, R.; Devi, A.G.; Devi, H.L. Assessment of GCV, PCV, heritability and genetic advance for yield and its components in field pea (Pisum sativum L.). Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 1025–1033. [Google Scholar] [CrossRef] [Green Version]
- Xia, H.; Zhao, G.H.; Zhang, L.S.; Sun, X.Y.; Yin, S.P.; Liang, D.Y.; Li, Y.; Zheng, M.; Zhao, X.Y. Genetic and variation analyses of growth traits of half-sib Larix olgensis families in northeastern China. Euphytica 2016, 212, 387–397. [Google Scholar] [CrossRef]
- Zhao, X.Y.; Bian, X.Y.; Li, Z.X.; Wang, X.W.; Yang, C.J.; Liu, G.F.; Jiang, J.; Yang, C.P. Genetic stability analysis of introduced Betula pendula, Betula kirghisorum, and Betula pubescens families in saline-alkali soil of northeastern China. Scand. J. For. Res. 2014, 29, 639–649. [Google Scholar] [CrossRef]
- Guerra, F.P.; Richards, J.H.; Fiehn, O.; Famula, R.; Stanton, B.J.; Shuren, R.; Sykes, R.; Davis, M.F.; Neale, D.B. Analysis of the genetic variation in growth, ecophysiology, and chemical and metabolic composition of wood of Populus trichocarpa provenances. Tree Genet. Genomes 2016, 12, 6. [Google Scholar] [CrossRef]
- Nakada, R.; Fujisawam, Y.; Taniguchi, T. Variations of wood properties between plus-tree clones in Larix kaempferi (Lamb.) Carriere. Bull. For. Tree Breed. Cent. 2005, 21, 85–105. [Google Scholar]
- Pan, Y.Y.; Pei, X.N.; Wang, F.W.; Wang, C.L.; Shao, L.L.; Dong, L.H.; Zhao, X.Y.; Qu, G.Z. Forward, backward selection and variation analysis of growth traits in half-sib Larix kaempferi families. Silvae Genet. 2019, 68, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Hou, W.; Zheng, H.; Zhang, Z. Analyses of Genotypic Variation in White Poplar Clones at Four Sites in China. Silvae Genet. 2013, 62, 187–195. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Jiang, L.; Xu, G.; Li, J.; Wang, B.; Li, Y.; Zhao, X. Evaluation and selection analyses of 60 Larix kaempferi clones in four provenances based on growth traits and wood properties. Tree Genet. Genomes 2020, 16, 27. [Google Scholar] [CrossRef]
- Sotelo, M.C.; Hernández, R.E.; Beaulieu, J.; Weber, J.C. Genetic variation in wood color and its correlations with tree growth and wood density of Calycophyllum spruceanum at an early age in the Peruvian Amazon. New For. 2008, 35, 57–73. [Google Scholar] [CrossRef]
- Si, D.J.; Zhang, X.X.; Han, D.H.; Jin, Y.Z.; Dong, Y.H.; Zhao, G.H.; Leng, W.W.; Zhao, X.Y. Variance analysis and growth model building of h and dbh of poplar clones at different sites. Bull. Bot. Res. 2016, 36, 588–595. [Google Scholar] [CrossRef]
- Ma, C.G.; Zhou, T.X.; Xu, J.L. A Preliminary study on genetic control of growth traits and early selection of chinese fir (Cunninghamia Lanceolata HOOK) clones. Sci. Silvae Sin. 2000, 36, 62–69. [Google Scholar] [CrossRef]
- Vendramini, F.; Sandra, D.; Gurvich, D.E.; Wilson, P.J.; Thompson, K.; Hodgson, J.G. Leaf traits as indicators of resource-use strategy in floras with succulent species. New Phytol. 2002, 154, 147–157. [Google Scholar] [CrossRef]
- Ma, Y.B.; Huang, Y.R.; Su, Z.; Zhao, Y.M.; Zhang, G.; Liu, M.H. Study on leaf trait of three kinds of Poplar in Ulan Buh Desert Oasis. J. Cent. South Univ. For. Technol. 2019, 39, 10–15. [Google Scholar] [CrossRef]
- Gao, J.; Liu, G.; Yang, W.; Zhao, D.; Chen, W.; Liu, L. Geological and geochemical characterization of lacustrine shale, a case study of Lower Jurassic Badaowan shale in the Junggar Basin, Northwest China. J. Nat. Gas Sci. Eng. 2016, 31, 15–27. [Google Scholar] [CrossRef]
- Zhang, X.L.; Zhang, J.; Guo, Y.H.; Sun, P.; Fan, W.; Lu, M.Z.; Hu, J.J. Comparative Proteomic Analysis of Mature Pollen in Triploid and Diploid Populus deltoids. Int. J. Mol. Sci. 2016, 17, 1475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, C.L.; Jin, C.L.; Li, K.L.; Li, Z.X.; Zhao, H. Comparison of photosynthetic characteristics and leaf anatomy structure of different ploidy Populus ussuriensis Kom. Plant Physiol. Commun. 2010, 46, 917–922. [Google Scholar] [CrossRef]
- Xu, T.; Zhang, S.; Du, K.; Yang, J.; Kang, X. Insights into the Molecular Regulation of Lignin Content in Triploid Poplar Leaves. Int. J. Mol. Sci. 2022, 23, 4603. [Google Scholar] [CrossRef] [PubMed]
- Wen, G.; Sun, H.P.; Dang, J.B.; Jiang, P.F.; Wang, J.Y.; Yang, Y.; Guo, Q.G.; Liang, G.L. A preliminary study on leaf characteristics and drought resistance of polyploid and diploid loquat. J. Fruit Sci. 2019, 36, 969–979. [Google Scholar] [CrossRef]
- Kang, X.Y. Some understandings on polyploid breeding of poplars. J. Beijing For. Univ. 2010, 32, 149–153. [Google Scholar] [CrossRef]
- Liu, B.; Wang, S.; Tao, X.Y.; Liu, C.X.; Qu, G.Z.; Du, Q.W. Molecular karyotyping on Populus simonii × P. nigra and the derived doubled haploid. Int. J. Mol. Sci. 2021, 22, 11424. [Google Scholar] [CrossRef]
- El-Soda, M.; Malosetti, M.; Zwaan, B.J.; Koornneef, M.; Aarts, M.G.M. Genotype × environment interaction QTL mapping in plants: Lessons from Arabidopsis. Trends Plant Sci. 2014, 19, 390–398. [Google Scholar] [CrossRef] [PubMed]
- Fukatsu, E.; Hiraoka, Y.; Matsunaga, K.; Tsubomura, M.; Nakada, R. Genetic relationship between wood properties and growth traits in Larix kaempferi obtained from a diallel mating test. J. Wood Sci. 2015, 61, 10–18. [Google Scholar] [CrossRef]
- Sumida, A.; Miyaura, T.; Torii, H. Relationships of tree height and diameter at breast height revisited: Analyses of stem growth using 20-year data of an even-aged Chamaecyparis obtusa stand. Tree Physiol. 2013, 33, 106–118. [Google Scholar] [CrossRef] [PubMed]
- Goncalves, P.d.S.; Bortoletto, N.; Beleti Cardinal, A.B.; Lima Gouvea, L.R.; Costa, R.B.D.; Teixeira de Moraes, M.L. Age-age correlation for early selection of rubber tree genotypes in São Paulo State, Brazil. Genet. Mol. Biol. 2005, 28, 758–764. [Google Scholar] [CrossRef]
- Kumar, S.; Lee, J. Age-age correlation and early selection for end of rotation wood density in radiata pine. For. Genet. 2002, 9, 323–330. [Google Scholar]
- Dhillon, G.P.S.; Singh, A.; Singh, P.; Sidhu, D.S. Field evaluation of Populus deltoides Bartr. ex Marsh. at two sites in Indo-gangetic plains of India. Silvae Genet. 2010, 59, 1. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.C.; Bao, D.E. Relationship between net photosynthetic rate and its physo-ecological factors in ‘Jinguang’ Plum. Acta Bot. Boreali-Occident. Sin. 2008, 28, 564–568. [Google Scholar]
- Xu, X.L.; Xu, S.H.; Liang, Z.S.; Dong, J.E.; Jin, M.Y.; Liu, F.; Chen, X.L. Photosynthetic physiological characteristics and its influencing factors of Polygonatum sibiricum Red. leaves in different positions. J. Northwest AF Univ. (Nat. Sci. Ed.) 2020, 48, 119–128. [Google Scholar]
- Missanjo, E.; Matsumura, J. Multiple trait selection index for simultaneous improvement of wood properties and growth traits in Pinus kesiya Royle ex Gordon in Malawi. Forests 2017, 8, 96. [Google Scholar] [CrossRef] [Green Version]
- Jin, G.Q.; Qin, G.F.; Liu, W.H.; Chu, D.Y.; Feng, Z.P.; Zhou, Z.C. Provenance selection effect at different stand age of Pinus massoniana. Sci. Silvae Sin. 2011, 47, 39–45. [Google Scholar] [CrossRef]
- Yang, C.P.; Yang, S.W.; Lv, Q.Y.; Zhang, J.; Xia, D.A.; Liu, G.F.; Yu, H.B.; Zhang, P.G. Study on the selection for the optimal provenances of Larix olgensis. J. Northeast For. Univ. 1991, 19, 19–25. [Google Scholar] [CrossRef]
- Wood, R.L.; Jensen, T.; Wadsworth, C.; Clement, M.; Nagpal, P.; Pitt, W.G. Analysis of identification method for bacterial species and antibiotic resistance genes using optical data from DNA oligomers. Front. Microbiol. 2020, 11, 257. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.W.; Deng, X.Z.; Xu, C.Y.; Luo, Z.J.; Zeng, B.; Nie, M.; Cheng, X.W. Application of principle component analysis on comprehensive evaluation of Camellia oleifera clone. Acta Agric. Univ. Jiangxiensis 2012, 34, 1193–1198. [Google Scholar] [CrossRef]
- Nardo, M.; Saisana, M.; Saltelli, A.; Tarantola, S. Tools for composite indicators building. Eur. Com. Ispra 2005, 15, 19–20. [Google Scholar]
- Jia, Q.B.; Wang, X.W.; Zou, J.J.; Zhao, J.L.; Zhang, H.X.; Zhang, J.; Qi, G.H. Analysis of variance in wood properties of Populus ussuriensis clones and superior clones selection. For. Eng. 2020, 36, 12–19. [Google Scholar] [CrossRef]
- Yan, H.W.; Cheng, Y.J.; Yu, T.T.; Yu, N.; Zhou, L.; Liu, S.Q. Radial genetic variation analysis and comprehensive evaluation of wood properties in ten-year-old section Aigeiros clones. For. Res. 2021, 34, 28–37. [Google Scholar] [CrossRef]
- Berghof, T.V.L.; Poppe, M.; Mulder, H.A. Opportunities to improve resilience in animal breeding programs. Front. Genet. 2018, 9, 692. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.Y.; Li, S.C.; Wang, C.L.; Ma, W.J.; Xu, G.Y.; Shao, L.L.; Li, K.L.; Zhao, X.Y.; Jiang, T.B. Early evaluation of growth traits of Larix kaempferi clones. J. For. Res. 2018, 29, 1031–1039. [Google Scholar] [CrossRef]
Source | Cross Combination | Code |
---|---|---|
Multiploid | (P. nigra × P. simonii) × (P. simonii × nigra ‘B6’) | HB3.1, HB4.1 |
(P. simonii × P. nigra) × (P. nigra × P. simonii ‘Zhonglin Sanbei-1’) | XY3.1, XY3.4, XY3.5, XY3.6, XY3.7, XY4.1, XY4.2 | |
(P. deltoides × P. nigra cv., ‘shandis 1’) × (P. simonii × P. nigra) | SX3.1, SX3.2, SX3.3 | |
(P. deltoides × P. nigra cv., ‘shandis 1’) × (P. nigra × P. simonii “Zhonglin Sanbei-1”) | SY3.1, SY3.2 | |
(P. nigra × P. simonii) × (P. nigra × P. simonii ‘Zhonglin Sanbei-1’) | HY3.1, HY3.3 | |
Control | P. simonii × P. nigra ‘Xiaohei’ | XH |
P. simonii × P. nigra cv.-14 | XH14 | |
P. simonii × P. nigra ‘Baicheng 1’ | BCXH |
Tree Ages | Traits | Variation Source | SS | df | MS | F | Sig |
---|---|---|---|---|---|---|---|
1 | Pn | Ploidies | 8.942 | 2 | 4.471 | 2.673 | 0.072 |
Clones | 242.703 | 17 | 15.169 | 9.069 | 0.000 | ||
Ci | Ploidies | 2603.146 | 2 | 1301.573 | 6.850 | 0.001 | |
Clones | 29,202.456 | 17 | 1825.153 | 9.606 | 0.000 | ||
Gs | Ploidies | 0.075 | 2 | 0.038 | 7.670 | 0.001 | |
Clones | 0.845 | 17 | 0.053 | 10.734 | 0.000 | ||
Tr | Ploidies | 2.682 | 2 | 1.341 | 5.794 | 0.004 | |
Clones | 82.634 | 17 | 5.165 | 22.313 | 0.000 | ||
WUE | Ploidies | 4.001 | 2 | 2.001 | 7.647 | 0.001 | |
Clones | 74.671 | 17 | 4.667 | 17.840 | 0.000 | ||
LL | Ploidies | 196.612 | 2 | 98.306 | 8.722 | 0.000 | |
Clones | 9537.561 | 17 | 596.098 | 52.888 | 0.000 | ||
LW | Ploidies | 1381.965 | 2 | 690.983 | 52.699 | 0.000 | |
Clones | 22,243.955 | 17 | 1390.247 | 106.031 | 0.000 | ||
LA | Ploidies | 2094.263 | 2 | 1047.132 | 50.369 | 0.000 | |
Clones | 52,480.706 | 17 | 3280.044 | 157.777 | 0.000 | ||
LSI | Ploidies | 0.062 | 2 | 0.031 | 45.204 | 0.000 | |
Clones | 0.448 | 17 | 0.028 | 40.827 | 0.000 | ||
H1 | Ploidies | 1.134 | 2 | 0.567 | 19.432 | 0.000 | |
Clones | 8.551 | 17 | 0.503 | 17.233 | 0.000 | ||
BD1 | Ploidies | 40.849 | 2 | 20.425 | 5.609 | 0.004 | |
Clones | 768.524 | 17 | 45.207 | 12.415 | 0.000 | ||
2 | H2 | Ploidies | 11.561 | 2 | 5.780 | 51.216 | 0.000 |
Clones | 49.619 | 17 | 2.919 | 25.861 | 0.000 | ||
BD2 | Ploidies | 1188.035 | 2 | 594.017 | 20.235 | 0.000 | |
Clones | 11,578.139 | 17 | 681.067 | 23.200 | 0.000 | ||
3 | H3 | Ploidies | 10.208 | 2 | 5.104 | 17.961 | 0.000 |
Clones | 53.331 | 17 | 3.137 | 11.040 | 0.000 | ||
BD3 | Ploidies | 3447.691 | 2 | 1723.845 | 12.493 | 0.000 | |
clones | 19,963.911 | 17 | 1174.348 | 8.511 | 0.000 | ||
DBH3 | Ploidies | 1520.343 | 2 | 760.171 | 12.494 | 0.000 | |
Clones | 10,930.117 | 17 | 642.948 | 10.567 | 0.000 | ||
V3 | Ploidies | 0.000 | 2 | 0.000 | 11.397 | 0.000 | |
Clones | 0.001 | 17 | 0.000 | 10.387 | 0.000 | ||
4 | H4 | Ploidies | 10.998 | 2 | 5.499 | 14.636 | 0.000 |
Clones | 95.784 | 17 | 5.634 | 14.996 | 0.000 | ||
BD4 | Ploidies | 3632.942 | 2 | 1816.471 | 12.494 | 0.000 | |
Clones | 39,929.279 | 17 | 2348.781 | 16.155 | 0.000 | ||
DBH4 | Ploidies | 1067.266 | 2 | 533.633 | 5.536 | 0.005 | |
Clones | 21,225.208 | 17 | 1248.542 | 12.952 | 0.000 | ||
V4 | Ploidies | 0.000 | 2 | 0.000 | 4.829 | 0.009 | |
Clones | 0.006 | 17 | 0.000 | 13.033 | 0.000 |
Tree Ages | Traits | Average | SD | GCV | PCV | R |
---|---|---|---|---|---|---|
1 | Pn | 19.24 | 1.73 | 6.36 | 9.26 | 0.89 |
Ci | 277.96 | 18.89 | 4.85 | 6.94 | 0.90 | |
Gs | 0.40 | 0.10 | 18.15 | 25.18 | 0.91 | |
Tr | 4.49 | 0.84 | 16.51 | 19.68 | 0.96 | |
WUE | 4.43 | 0.83 | 15.80 | 19.58 | 0.94 | |
LL | 127.01 | 10.61 | 6.35 | 6.88 | 0.98 | |
LW | 147.80 | 16.18 | 8.37 | 8.72 | 0.99 | |
LA | 134.29 | 24.44 | 14.17 | 14.57 | 0.99 | |
LSI | 0.86 | 0.08 | 6.37 | 7.05 | 0.98 | |
H1 | 1.98 | 0.27 | 11.60 | 14.46 | 0.94 | |
BD1 | 16.75 | 2.63 | 12.83 | 17.16 | 0.92 | |
2 | H2 | 3.83 | 0.61 | 14.58 | 17.02 | 0.96 |
BD2 | 44.43 | 9.16 | 19.15 | 22.70 | 0.96 | |
3 | H3 | 5.64 | 0.79 | 9.98 | 13.75 | 0.91 |
BD3 | 73.30 | 16.10 | 14.64 | 21.71 | 0.88 | |
DBH3 | 46.65 | 11.26 | 17.24 | 24.01 | 0.91 | |
V3 | 0.005 | 0.003 | 41.01 | 57.40 | 0.90 | |
4 | H4 | 7.37 | 0.98 | 10.37 | 13.29 | 0.93 |
BD4 | 95.61 | 19.51 | 16.36 | 20.66 | 0.94 | |
DBH4 | 66.06 | 14.69 | 17.13 | 22.68 | 0.92 | |
V4 | 0.013 | 0.007 | 42.89 | 56.70 | 0.92 |
Elite Clone | Traits | Mean Values of Elite Clones | Mean Values of Control Clones | Mean Values of Population | Mean Values of Elite Clones Higher Than Control (%) | Genetic Gain (%) |
---|---|---|---|---|---|---|
HY3.3, SY3.1, and SY3.2 | LW | 153.28 | 139.00 | 147.8 | 25.08 | 17.46 |
LA | 160.97 | 123.67 | 134.29 | 35.58 | 24.70 | |
SX3.2, SY3.1, and BCXH | Gs | 0.42 | 0.44 | 0.40 | 13.19 | 22.19 |
Ci | 280 | 286.70 | 277.96 | 3.06 | 5.65 | |
Tr | 4.31 | 4.74 | 4.49 | 2.42 | 7.83 | |
SX3.1, SY3.1, and XY4.2 | H2 | 4.32 | 4.07 | 3.83 | 6.32 | 12.42 |
BD2 | 52.68 | 46.65 | 44.43 | 12.92 | 17.76 | |
H3 | 6.31 | 5.90 | 5.64 | 7.03 | 10.87 | |
BD3 | 86.83 | 81.07 | 73.3 | 7.11 | 16.30 | |
DBH3 | 57.11 | 51.70 | 46.65 | 10.46 | 20.29 | |
V3 | 0.008 | 0.007 | 0.005 | 26.19 | 51.62 | |
H4 | 8.39 | 7.68 | 7.37 | 9.16 | 12.85 | |
BD4 | 119.48 | 104.67 | 95.61 | 14.15 | 23.42 | |
DBH4 | 83.48 | 69.89 | 66.06 | 19.45 | 24.33 | |
V4 | 0.0230 | 0.015 | 0.013 | 51.02 | 64.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, L.; Xu, X.; Cai, Q.; Han, R.; Tigabu, M.; Jiang, T.; Zhao, X. Variations in Growth and Photosynthetic Traits of Polyploid Poplar Hybrids and Clones in Northeast China. Genes 2022, 13, 2161. https://doi.org/10.3390/genes13112161
Jiang L, Xu X, Cai Q, Han R, Tigabu M, Jiang T, Zhao X. Variations in Growth and Photosynthetic Traits of Polyploid Poplar Hybrids and Clones in Northeast China. Genes. 2022; 13(11):2161. https://doi.org/10.3390/genes13112161
Chicago/Turabian StyleJiang, Luping, Xiangzhu Xu, Qun Cai, Rui Han, Mulualem Tigabu, Tingbo Jiang, and Xiyang Zhao. 2022. "Variations in Growth and Photosynthetic Traits of Polyploid Poplar Hybrids and Clones in Northeast China" Genes 13, no. 11: 2161. https://doi.org/10.3390/genes13112161
APA StyleJiang, L., Xu, X., Cai, Q., Han, R., Tigabu, M., Jiang, T., & Zhao, X. (2022). Variations in Growth and Photosynthetic Traits of Polyploid Poplar Hybrids and Clones in Northeast China. Genes, 13(11), 2161. https://doi.org/10.3390/genes13112161