Association of Single Nucleotide Polymorphisms Located in LOXL1 with Exfoliation Glaucoma in Southwestern Sweden
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Ophthalmic Examinations
2.3. Genetic Analysis
2.4. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Resnikoff, S.; Pascolini, D.; Etya’Ale, D.; Kocur, I.; Pararajasegaram, R.; Pokharel, G.P.; Mariotti, S.P. Global data on visual impairment in the year 2002. Bull. World Health Organ. 2004, 82, 844–851. [Google Scholar] [PubMed]
- Leske, M.C.; Heijl, A.; Hussein, M.; Bengtsson, B.; Hyman, L.; Komaroff, E.; Early Manifest Glaucoma Trial Group. Factors for glaucoma progression and the effect of treatment: The early manifest glaucoma trial. Arch. Ophthalmol. 2003, 121, 48–56. [Google Scholar] [CrossRef]
- Åström, S.; Stenlund, H.; Lindén, C. Incidence and prevalence of pseudoexfoliations and open-angle glaucoma in northern Sweden: II. Results after 21 years of follow-up. Acta Ophthalmol. Scand. 2007, 85, 832–837. [Google Scholar] [CrossRef]
- Ritch, R.; Schlotzer-Schrehardt, U. Exfoliation syndrome. Surv. Ophthalmol. 2001, 45, 265–315. [Google Scholar] [CrossRef]
- Dewundara, S.; Pasquale, L.R. Exfoliation syndrome: A disease with an environmental component. Curr. Opin. Ophthalmol. 2015, 26, 78–81. [Google Scholar] [CrossRef] [PubMed]
- Ritch, R. Ocular and Systemic Manifestations of Exfoliation Syndrome. J. Glaucoma 2014, 23 (Suppl. 1), S1–S8. [Google Scholar] [CrossRef] [Green Version]
- Pasquale, L.R.; Borrás, T.; Fingert, J.H.; Wiggs, J.L.; Ritch, R. Exfoliation syndrome: Assembling the puzzle pieces. Acta Ophthalmol. 2016, 94, e505–e512. [Google Scholar] [CrossRef] [Green Version]
- Wiggs, J.L.; Pasquale, L.R. Genetics of glaucoma. Hum. Mol. Genet. 2017, 26, R21–R27. [Google Scholar] [CrossRef] [PubMed]
- Pasutto, F.; Zenkel, M.; Hoja, U.; Berner, D.; Uebe, S.; Ferrazzi, F.; Schödel, J.; Liravi, P.; Ozaki, M.; Paoli, D.; et al. Pseudoexfoliation syndrome-associated genetic variants affect transcription factor binding and alternative splicing of LOXL1. Nat. Commun. 2017, 8, 15466. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Allingham, R.R. Major review: Molecular genetics of primary open-angle glaucoma. Exp. Eye Res. 2017, 160, 62–84. [Google Scholar] [CrossRef]
- Aung, T.; Ozaki, M.; Lee, M.C.; Schlötzer-Schrehardt, U.; Thorleifsson, G.; Mizoguchi, T.; Igo, R.P., Jr.; Haripriya, A.; Williams, S.E.; Astakhov, Y.S.; et al. Genetic association study of exfoliation syndrome identifies a protective rare variant at LOXL1 and five new susceptibility loci. Nat. Genet. 2017, 49, 993–1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorleifsson, G.; Magnusson, K.P.; Sulem, P.; Walters, G.B.; Gudbjartsson, D.F.; Stefansson, H.; Jonsson, T.; Jonasdottir, A.; Stefansdottir, G.; Masson, G.; et al. Common Sequence Variants in the LOXL1 Gene Confer Susceptibility to Exfoliation Glaucoma. Science 2007, 317, 1397–1400. [Google Scholar] [CrossRef]
- Sterner, T.R.; Ahlner, F.; Blennow, K.; Dahlin-Ivanoff, S.; Falk, H.; Johansson, L.H.; Hoff, M.; Holm, M.; Hörder, H.; Jacobsson, T.; et al. The Gothenburg H70 Birth cohort study 2014–16: Design, methods and study population. Eur. J. Epidemiol. 2019, 34, 191–209. [Google Scholar] [CrossRef] [Green Version]
- Havstam Johansson, L.; Škiljić, D.; Falk Erhag, H.; Ahlner, F.; Pernheim, C.; Rydberg Sterner, T.; Wetterberg, H.; Skoog, I.; Zetterberg, M. Vision-related quality of life and visual function in a 70-year-old Swedish population. Acta Ophthalmol. 2020, 98, 521–529. [Google Scholar] [CrossRef]
- European Glaucoma Society Terminology and Guidelines for Glaucoma, 4th Edition—Chapter 2: Classification and terminologySupported by the EGS Foundation: Part 1: Foreword; Introduction; Glossary; Chapter 2 Classification and Terminology. Br. J. Ophthalmol. 2017, 101, 73–127. [CrossRef] [Green Version]
- Ren, R.; Ding, J.; Wang, N.; Teng, C.C.; de Moraes, G.V.; Jonas, J.B.; Ritch, R. Clinical Signs and Characteristics of Exfoliation Syndrome and Exfoliative Glaucoma in Northern China. Asia-Pac. J. Ophthalmol. 2015, 4, 86–88. [Google Scholar] [CrossRef] [PubMed]
- Åström, S.; Lindén, C. Incidence and prevalence of pseudoexfoliation and open-angle glaucoma in northern Sweden: I. Baseline report. Acta Ophthalmol. Scand. 2007, 85, 828–831. [Google Scholar] [CrossRef]
- Lemmelä, S.; Forsman, E.; Onkamo, P.; Nurmi, H.; Laivuori, H.; Kivelä, T.; Puska, P.; Heger, M.; Eriksson, A.; Forsius, H.; et al. Association of LOXL1 gene with Finnish exfoliation syndrome patients. J. Hum. Genet. 2009, 54, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Anastasopoulos, E.; Coleman, A.L.; Wilson, M.R.; Sinsheimer, J.S.; Yu, F.; Katafigiotis, S.; Founti, P.; Salonikiou, A.; Pappas, T.; Koskosas, A.; et al. Association ofLOXL1Polymorphisms With Pseudoexfoliation, Glaucoma, Intraocular Pressure, and Systemic Diseases in a Greek Population. The Thessaloniki Eye Study. Investig. Opthalmol. Vis. Sci. 2014, 55, 4238–4243. [Google Scholar] [CrossRef] [Green Version]
- de Juan-Marcos, L.; Escudero-Domínguez, F.A.; Hernández-Galilea, E.; Cabrillo-Estévez, L.; Cruz-González, F.; Cieza-Borrella, C.; Sánchez-Barba, M.; González-Sarmiento, R. Association of Lysyl Oxidase-Like 1 Gene Polymorphisms in Pseudoexfoliation Syndrome and Pseudoexfoliation Glaucoma in a Spanish Population. Ophthalmic Genet. 2016, 37, 25–30. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Yu, Y.; Fu, S.; Zhao, W.; Liu, P. LOXL1 Gene Polymorphism with Exfoliation Syndrome/Exfoliation Glaucoma: A Meta-Analysis. J. Glaucoma 2016, 25, 62–94. [Google Scholar] [CrossRef]
- Williams, S.E.I.; Whigham, B.T.; Liu, Y.; Carmichael, T.R.; Qin, X.; Schmidt, S.; Ramsay, M.; Hauser, M.A.; Allingham, R.R. Major LOXL1 risk allele is reversed in exfoliation glaucoma in a black South African population. Mol. Vis. 2010, 16, 705–712. [Google Scholar]
- Schlötzer-Schrehardt, U.; Khor, C.C. Pseudoexfoliation syndrome and glaucoma: From genes to disease mechanisms. Curr. Opin. Ophthalmol. 2021, 32, 118–128. [Google Scholar] [CrossRef]
- Schlötzer-Schrehardt, U.; Zenkel, M. The role of lysyl oxidase-like 1 (LOXL1) in exfoliation syndrome and glaucoma. Exp. Eye Res. 2019, 189, 107818. [Google Scholar] [CrossRef] [PubMed]
- Smith-Mungo, L.I.; Kagan, H.M. Lysyl oxidase: Properties, regulation and multiple functions in biology. Matrix Biol. 1998, 16, 387–398. [Google Scholar] [CrossRef]
- Zenkel, M. Extracellular Matrix Regulation and Dysregulation in Exfoliation Syndrome. J. Glaucoma 2018, 27 (Suppl. 1), S24–S28. [Google Scholar] [CrossRef] [PubMed]
- Challa, P.; Johnson, W.M. Composition of Exfoliation Material. J. Glaucoma 2018, 27 (Suppl. 1), S29–S31. [Google Scholar] [CrossRef] [PubMed]
- Eivers, S.B.; Greene, A.G.; Dervan, E.; O’Brien, C.; Wallace, D. Prevalence of Pseudoexfoliation Glaucoma Risk–associated Variants Within Lysyl Oxidase–like 1 in an Irish Population. J. Glaucoma 2020, 29, 417–422. [Google Scholar] [CrossRef]
- Taghavi, E.; Daneshvar, R.; Noormohammadi, Z.; Modarresi, S.M.-H.; Sedaghat, M.R. Association of LOXL1 Gene Polymorphisms in Exfoliation Glaucoma Patients. Iran. J. Public Health 2020, 48, 1827–1837. [Google Scholar] [CrossRef]
- Yaz, Y.; Yıldırım, N.; Yaz, Y.A.; Çilingir, O.; Yüksel, Z.; Mutlu, F. Three Single Nucleotide Polymorphisms of LOXL1’ in a Turkish Population with Pseudoexfoliation Syndrome and Pseudoexfoliation Glaucoma. Turk. J. Ophthalmol. 2018, 48, 215–220. [Google Scholar] [CrossRef]
Control (n = 1011) | EXFG (n = 136) | Test | p-Values | |
---|---|---|---|---|
Age (mean) (SD) | 70.55 (0.28) | 73.02 (6.16) | Mann–Whitney | <0.001 * |
Sex (M/F) (%) | 457/554 (45/55) | 62/74 (46/54) | chi-square | 0.46 |
Rs-ID | Genotype | Control (n = 1011) | EXFG (n = 136) | p-Values |
---|---|---|---|---|
rs3825942 | G:G (n) (%) | 732 (72.4) | 135 (99.2) | 7 × 10−11 * |
G:A (n) (%) | 256 (25.3) | 1 (0.7) | ||
A:A (n) (%) | 23 (2.3) | 0 (0) | ||
rs2165241 | C:C (n) (%) | 260 (25.7) | 9 (6.7) | 3 × 10−15 * |
T:C (n) (%) | 510 (50.4) | 51 (37.3) | ||
T:T (n) (%) | 241 (23.9) | 76 (56) | ||
rs1048661 | G:G (n) (%) | 445 (44) | 84 (61.8) | 3 × 10−4 * |
T:G (n) (%) | 448 (44.3) | 45 (33.1) | ||
T:T (n) (%) | 118 (11.6) | 7 (5.1) |
Rs-ID | Minor Allele (1) | Control (n = 2022) | EXFG (2) (n = 272) | p-Values |
---|---|---|---|---|
rs3825942 | A < G (n) (%) | 354 17.5 | 2 0.7 | 2 × 10−12 * |
rs2165241 | T < C (n) (%) | 989 48.9 | 203 74.6 | 3 × 10−16 * |
rs1048661 | T < G (n) (%) | 679 33.7 | 59 21.7 | 2 × 10−6 * |
Rs-ID | Model Unadjusted for Age and Sex | Model Adjusted for Age and Sex | ||
---|---|---|---|---|
Odds Ratio (Exp β) (95% Conf. Int) | p-Values (Corrected p-Values 1) | Odds Ratio (Exp β) (95% Conf. Int) | p-Values (Corrected p-Values 1) | |
rs3825942 | 23.61 (5.83–95.56) | 5 × 10−5 * (1 × 10−4) * | 17.91 (4.41–72.69) | 9 × 10−6 * (2 × 10−5) * |
rs2165241 | 3.16 (2.35–4.25) | 2 × 10−11 * (6 × 10−11) * | 2.96 (2.16–4.07) | 2 × 10−14 * (6 × 10−14) * |
rs1048661 | 1.82 (1.31–2.51) | 3 × 10−4 * (9 × 10−4) * | 1.82 (1.34–2.46) | 1 × 10−4 * (3 × 10−4) * |
Rs-ID | Model Unadjusted for Age and Sex | Model Adjusted for Age and Sex | ||
---|---|---|---|---|
Odds Ratio (Exp β) (95% Conf. Int) | p-Values (Corrected p-Values 1) | Odds Ratio (Exp β) (95% Conf. Int) | p-Values (Corrected p-Values 1) | |
rs3825942 | 4.53 × 10−9 | 0.99 (N.A.) | 5.67 × 10−9 | 0.99 (N.A.) |
rs2165241 | 4.84 (2.09–11.21) | 3 × 10−4 * (9 × 10−4) * | 4.11 (1.74–9.71) | 1 × 10−3 * (3 × 10−3) * |
rs1048661 | 2.88 (1.04–7.99) | 5 × 10−2 * (0.15) | 2.51 (0.86–7.29) | 0.09 (0.27) |
Rs-ID | Model Unadjusted for Age and Sex | Model Adjusted for Age and Sex | ||
---|---|---|---|---|
Odds Ratio (Exp β) (95% Conf. Int) | p-Values (Corrected p-Values 1) | Odds Ratio (Exp β) (95% Conf. Int) | p-Values (Corrected p-Values 1) | |
rs3825942 | 25.53 (6.27–103.86) | 6 × 10−6 * (2 × 10−5) * | 19.28 (4.72–78.75) | 4 × 10−5 * (1 × 10−4) * |
rs2165241 | 0.20 (0.09–0.48) | 2 × 10−4 * (6 × 10−4) * | 0.24 (0.11–0.57) | 1 × 10−3 * (3 × 10−3) * |
rs1048661 | 0.35 (0.12–0.96) | 4 × 10−2 * (0.12) | 0.40 (0.18–1.15) | 0.09 (0.27) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayala, M.; Zetterberg, M.; Skoog, I.; Zettergren, A. Association of Single Nucleotide Polymorphisms Located in LOXL1 with Exfoliation Glaucoma in Southwestern Sweden. Genes 2021, 12, 1384. https://doi.org/10.3390/genes12091384
Ayala M, Zetterberg M, Skoog I, Zettergren A. Association of Single Nucleotide Polymorphisms Located in LOXL1 with Exfoliation Glaucoma in Southwestern Sweden. Genes. 2021; 12(9):1384. https://doi.org/10.3390/genes12091384
Chicago/Turabian StyleAyala, Marcelo, Madeleine Zetterberg, Ingmar Skoog, and Anna Zettergren. 2021. "Association of Single Nucleotide Polymorphisms Located in LOXL1 with Exfoliation Glaucoma in Southwestern Sweden" Genes 12, no. 9: 1384. https://doi.org/10.3390/genes12091384
APA StyleAyala, M., Zetterberg, M., Skoog, I., & Zettergren, A. (2021). Association of Single Nucleotide Polymorphisms Located in LOXL1 with Exfoliation Glaucoma in Southwestern Sweden. Genes, 12(9), 1384. https://doi.org/10.3390/genes12091384