Gene Regulation Analysis Reveals Perturbations of Autism Spectrum Disorder during Neural System Development
Abstract
1. Introduction
2. Results
2.1. Differential Expression and Pathway Analyses Highlighted the NPC Stage of ASD
2.2. Construct Brain- and Neural-Specific Regulator-Target Regulation Pairs
2.3. Expression Correlations between Regulators and Target Genes
2.4. Construction of Regulatory Cascades of ASD
3. Materials and Methods
3.1. RNA-Seq Data Process and Differential Expression Analysis
3.2. Pathway Activation Assessment via GSVA Score
3.3. lncRNA-Involved Regulations
3.4. Regulatory Cascade Construction
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclaimers
References
- Marchetto, M.C.; Belinson, H.; Tian, Y.; Freitas, B.C.; Fu, C.; Vadodaria, K.; Beltrao-Braga, P.; Trujillo, C.A.; Mendes, A.P.; Padmanabhan, K.; et al. Altered proliferation and networks in neural cells derived from idiopathic autistic individuals. Mol. Psychiatry 2017, 22, 820–835. [Google Scholar] [CrossRef]
- Voineagu, I.; Wang, X.; Johnston, P.; Lowe, J.K.; Tian, Y.; Horvath, S.; Mill, J.; Cantor, R.M.; Blencowe, B.J.; Geschwind, D.H. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 2011, 474, 380–384. [Google Scholar] [CrossRef]
- National Institute of Mental Health. Autism Spectrum Disorder. Available online: https://www.nimh.nih.gov/health/topics/autism-spectrum-disorders-asd (accessed on 27 October 2021).
- Centers for Disease Control and Prevention. Data & Statistics on Autism Spectrum Disorder. Available online: cdc.gov (accessed on 27 October 2021).
- National Human Genome Research Institute. National Institute of Health about Autism. Available online: https://www.genome.gov/Genetic-Disorders/Autism (accessed on 27 October 2021).
- Moss, J.; Richards, C.; Nelson, L.; Oliver, C. Prevalence of autism spectrum disorder symptomatology and related behavioural characteristics in individuals with Down syndrome. Autism 2013, 17, 390–404. [Google Scholar] [CrossRef]
- Wheeler, A.C.; Mussey, J.; Villagomez, A.; Bishop, E.; Raspa, M.; Edwards, A.; Bodfish, J.; Bann, C.; Bailey, D.B. DSM-5 changes and the prevalence of parent-reported autism spectrum symptoms in Fragile X syndrome. J. Autism Dev. Disord. 2015, 45, 816–829. [Google Scholar] [CrossRef]
- Rizzo, R.; Pavone, P. Aripiprazole for the treatment of irritability and aggression in children and adolescents affected by autism spectrum disorders. Expert Rev. Neurother. 2016, 16, 867–874. [Google Scholar] [CrossRef]
- Skafidas, E.; Testa, R.; Zantomio, D.; Chana, G.; Everall, I.P.; Pantelis, C. Predicting the diagnosis of autism spectrum disorder using gene pathway analysis. Mol. Psychiatry 2014, 19, 504–510. [Google Scholar] [CrossRef]
- Spann, M.N.; Sourander, A.; Surcel, H.M.; Hinkka-Yli-Salomäki, S.; Brown, A.S. Prenatal toxoplasmosis antibody and childhood autism. Autism Res. 2017, 10, 769–777. [Google Scholar] [CrossRef]
- Cusco, I.; Medrano, A.; Gener, B.; Vilardell, M.; Gallastegui, F.; Villa, O.; González, E.; Rodríguez-Santiago, B.; Vilella, E.; Del Campo, M.; et al. Autism-specific copy number variants further implicate the phosphatidylinositol signaling pathway and the glutamatergic synapse in the etiology of the disorder. Hum. Mol. Genet. 2009, 18, 1795–1804. [Google Scholar] [CrossRef]
- Ziats, M.N.; Rennert, O.M. Aberrant expression of long noncoding RNAs in autistic brain. J. Mol. Neurosci. 2013, 49, 589–593. [Google Scholar] [CrossRef]
- Pramparo, T.; Lombardo, M.V.; Campbell, K.; Barnes, C.C.; Marinero, S.; Solso, S.; Young, J.; Mayo, M.; Dale, A.; Ahrens-Barbeau, C.; et al. Cell cycle networks link gene expression dysregulation, mutation, and brain maldevelopment in autistic toddlers. Mol. Syst. Biol. 2015, 11, 841. [Google Scholar] [CrossRef]
- Chow, M.L.; Pramparo, T.; Winn, M.E.; Barnes, C.C.; Li, H.R.; Weiss, L.; Fan, J.B.; Murray, S.; April, C.; Belinson, H.; et al. Age-dependent brain gene expression and copy number anomalies in autism suggest distinct pathological processes at young versus mature ages. PLoS Genet. 2012, 8, e1002592. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Alberts, I.; Li, X. Dysregulation of the IGF-I/PI3K/AKT/mTOR signaling pathway in autism spectrum disorders. Int. J. Dev. Neurosci. 2014, 35, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Hänzelmann, S.; Castelo, R.; Guinney, J. GSVA: Gene set variation analysis for microarray and RNA-seq data. BMC Bioinform. 2013, 14, 1–15. [Google Scholar] [CrossRef]
- Marbach, D.; Lamparter, D.; Quon, G.; Kellis, M.; Kutalik, Z.; Bergmann, S. Tissue-specific regulatory circuits reveal variable modular perturbations across complex diseases. Nat. Methods 2016, 13, 366–370. [Google Scholar] [CrossRef]
- Khan, A.; Fornes, O.; Stigliani, A.; Gheorghe, M.; Castro-Mondragon, J.A.; Van Der Lee, R.; Bessy, A.; Cheneby, J.; Kulkarni, S.R.; Tan, G.; et al. JASPAR 2018: Update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res. 2018, 46, D260–D266. [Google Scholar] [CrossRef]
- Korhonen, J.; Martinmäki, P.; Pizzi, C.; Rastas, P.; Ukkonen, E. MOODS: Fast search for position weight matrix matches in DNA sequences. Bioinformatics 2009, 25, 3181–3182. [Google Scholar] [CrossRef]
- Jin, Y.; Choi, J.; Won, J.; Hong, Y. The relationship between autism spectrum disorder and melatonin during fetal development. Molecules 2018, 23, 198. [Google Scholar] [CrossRef]
- Goines, P.E.; Ashwood, P. Cytokine dysregulation in autism spectrum disorders (ASD): Possible role of the environment. Neurotoxicol. Teratol. 2013, 36, 67–81. [Google Scholar] [CrossRef]
- Schneider, A.G.; Abi Abdallah, D.S.; Butcher, B.A.; Denkers, E.Y. Toxoplasma gondii triggers phosphorylation and nuclear translocation of dendritic cell STAT1 while simultaneously blocking IFNγ-induced STAT1 transcriptional activity. PLoS ONE 2013, 8, e60215. [Google Scholar] [CrossRef]
- Abdoli, A.; Dalimi, A. Are there any relationships between latent Toxoplasma gondii infection, testosterone elevation, and risk of autism spectrum disorder? Front. Behav. Neurosci. 2014, 8, 339. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Tang, Y.; Katuri, V.; Iqbal, S.; Narayan, T.; Wang, Z.; Lu, R.S.; Mishra, L.; Mishra, B. ELF a β-spectrin is a neuronal precursor cell marker in developing mammalian brain; structure and organization of the elf/β-G spectrin gene. Oncogene 2002, 21, 5255–5267. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Zerbino, D.R.; Achuthan, P.; Akanni, W.; Amode, M.R.; Barrell, D.; Bhai, J.; Billis, K.; Cummins, C.; Gall, A.; Girón, C.G.; et al. Ensembl 2018. Nucleic Acids Res. 2018, 46, D754–D761. [Google Scholar] [CrossRef] [PubMed]
- Trapnell, C.; Roberts, A.; Goff, L.; Pertea, G.; Kim, D.; Kelley, D.R.; Pimentel, H.; Salzberg, S.L.; Rinn, J.L.; Pachter, L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 2012, 7, 562–578. [Google Scholar] [CrossRef]
- Anders, S.; Pyl, P.T.; Huber, W. HTSeq—A Python framework to work with high-throughput sequencing data. Bioinformatics 2015, 31, 166–169. [Google Scholar] [CrossRef]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef]
- Rhead, B.; Karolchik, D.; Kuhn, R.M.; Hinrichs, A.S.; Zweig, A.S.; Fujita, P.A.; Diekhans, M.; Smith, K.E.; Rosenbloom, K.R.; Raney, B.J.; et al. The UCSC genome browser database: Update 2010. Nucleic Acids Res. 2010, 38, D613–D619. [Google Scholar] [CrossRef]
- Mi, H.; Muruganujan, A.; Thomas, P.D. PANTHER in 2013: Modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res. 2012, 41, D377–D386. [Google Scholar] [CrossRef]
- Inoue, F.; Kreimer, A.; Ashuach, T.; Ahituv, N.; Yosef, N. Identification and massively parallel characterization of regulatory elements driving neural induction. Cell Stem Cell 2019, 25, 713–727. [Google Scholar] [CrossRef]
- Rylaarsdam, L.; Guemez-Gamboa, A. Genetic causes and modifiers of autism spectrum disorder. Front. Cell. Neurosci. 2019, 13, 385. [Google Scholar] [CrossRef]
- Tovar, H.; García-Herrera, R.; Espinal-Enríquez, J.; Hernández-Lemus, E. Transcriptional master regulator analysis in breast cancer genetic networks. Comput. Biol. Chem. 2015, 59, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Bae, T.; Rho, K.; Choi, J.W.; Horimoto, K.; Kim, W.; Kim, S. Identification of upstream regulators for prognostic expression signature genes in colorectal cancer. BMC Syst. Biol. 2013, 7, 1–10. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sawle, A.; Kebschull, M.; Demmer, R.; Papapanou, P. Identification of master regulator genes in human periodontitis. J. Dent. Res. 2016, 95, 1010–1017. [Google Scholar] [CrossRef] [PubMed]
- Gubelmann, C.; Schwalie, P.C.; Raghav, S.K.; Röder, E.; Delessa, T.; Kiehlmann, E.; Waszak, S.M.; Corsinotti, A.; Udin, G.; Holcombe, W.; et al. Identification of the transcription factor ZEB1 as a central component of the adipogenic gene regulatory network. Elife 2014, 3, e03346. [Google Scholar] [CrossRef] [PubMed]
- Consortium, F. A promoter-level mammalian expression atlas. Nature 2014, 507, 462. [Google Scholar]
- Andersson, R.; Gebhard, C.; Miguel-Escalada, I.; Hoof, I.; Bornholdt, J.; Boyd, M.; Chen, Y.; Zhao, X.; Schmidl, C.; Suzuki, T.; et al. An atlas of active enhancers across human cell types and tissues. Nature 2014, 507, 455–461. [Google Scholar] [CrossRef]
iPSC | Term | p-Value | Benjamini |
---|---|---|---|
GOTERM_BP_DIRECT | cerebral cortex GABAergic interneuron fate commitment | 2.5 × 10−3 | 0.48 |
GOTERM_CC_DIRECT | endoplasmic reticulum | 2.6 × 10−3 | 0.16 |
GOTERM_BP_DIRECT | subpallium development | 3.7 × 10−3 | 0.39 |
GOTERM_BP_DIRECT | regulation of transcription from RNA polymerase II promoter involved in forebrain neuron fate commitment | 3.7 × 10−3 | 0.39 |
NPC | Term | p-Value | Benjamini |
KEGG_PATHWAY | Neuroactive ligand-receptor interaction * | 1.9 × 10−3 | 0.3 |
KEGG_PATHWAY | Pathways in cancer | 2.5 × 10−3 | 0.21 |
KEGG_PATHWAY | Focal adhesion * | 51 × 10−3 | 0.27 |
KEGG_PATHWAY | Calcium signaling pathway * | 6.1 × 10−3 | 0.25 |
KEGG_PATHWAY | Retrograde endocannabinoid signaling | 1.1 × 10−2 | 0.34 |
KEGG_PATHWAY | Wnt signaling pathway * | 1.4 × 10−2 | 0.36 |
KEGG_PATHWAY | Regulation of lipolysis in adipocytes | 0.02 | 0.42 |
KEGG_PATHWAY | PI3K-Akt signaling pathway * | 2.7 × 10−2 | 0.47 |
Neuron | Term | p-Value | Benjamini |
KEGG_PATHWAY | ECM-receptor interaction | 1.7 × 10−13 | 2.9 × 10−11 |
KEGG_PATHWAY | Protein digestion and absorption | 2.8 × 10−12 | 2.3 × 10−10 |
KEGG_PATHWAY | Focal adhesion * | 2 × 10−9 | 1.1 × 10−7 |
KEGG_PATHWAY | PI3K-Akt signaling pathway * | 3 × 10−9 | 1.3 × 10−7 |
KEGG_PATHWAY | Amoebiasis | 4.2 × 10−4 | 1.4 × 10−2 |
KEGG_PATHWAY | Neuroactive ligand-receptor interaction * | 8.2 × 10−4 | 2.3 × 10−2 |
KEGG_PATHWAY | TGF-beta signaling pathway | 2 × 10−3 | 4.8 × 10−2 |
KEGG_PATHWAY | Renin-angiotensin system | 1.2 × 10−2 | 0.23 |
KEGG_PATHWAY | Platelet activation | 2.1 × 10−2 | 0.33 |
KEGG_PATHWAY | Hypertrophic cardiomyopathy (HCM) | 2.5 × 10−2 | 0.35 |
KEGG_PATHWAY | Proteoglycans in cancer | 2.7 × 10−2 | 0.35 |
KEGG_PATHWAY | Dilated cardiomyopathy | 3.4 × 10−2 | 0.38 |
KEGG_PATHWAY | Regulation of actin cytoskeleton | 3.7 × 10−2 | 0.39 |
KEGG_PATHWAY | Calcium signaling pathway * | 3.8 × 10−2 | 0.37 |
NPC ASD | Term | p-Value | Benjamini |
---|---|---|---|
KEGG_PATHWAY | Phosphatidylinositol signaling system * | 4.3 × 10−3 | 0.6 |
KEGG_PATHWAY | ECM-receptor interaction * | 8 × 10−3 | 0.57 |
KEGG_PATHWAY | Morphine addiction | 0.01 | 0.51 |
KEGG_PATHWAY | Inositol phosphate metabolism | 1.1 × 10−2 | 0.44 |
KEGG_PATHWAY | PI3K-Akt signaling pathway * | 0.02 | 0.58 |
KEGG_PATHWAY | Circadian entrainment * | 0.04 | 0.76 |
KEGG_PATHWAY | Focal adhesion * | 4.7 × 10−2 | 0.76 |
KEGG_PATHWAY | Calcium signaling pathway * | 4.8 × 10−2 | 0.72 |
Neuron ASD | Term | p-Value | Benjamini |
KEGG_PATHWAY | DNA replication | 1.5 × 10−3 | 0.31 |
KEGG_PATHWAY | RNA transport | 1.7 × 10−3 | 0.19 |
KEGG_PATHWAY | Mismatch repair | 4.4 × 10−3 | 0.3 |
KEGG_PATHWAY | Protein processing in endoplasmic reticulum * | 8.1 × 10−3 | 0.39 |
KEGG_PATHWAY | RNA degradation | 1.2 × 10−2 | 0.44 |
KEGG_PATHWAY | Nucleotide excision repair | 2.6 × 10−2 | 0.65 |
KEGG_PATHWAY | Spliceosome | 2.8 × 10−2 | 0.63 |
KEGG_PATHWAY | Biosynthesis of antibiotics | 5.4 × 10−2 | 0.81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Xu, J.; Yang, M.Q. Gene Regulation Analysis Reveals Perturbations of Autism Spectrum Disorder during Neural System Development. Genes 2021, 12, 1901. https://doi.org/10.3390/genes12121901
Li D, Xu J, Yang MQ. Gene Regulation Analysis Reveals Perturbations of Autism Spectrum Disorder during Neural System Development. Genes. 2021; 12(12):1901. https://doi.org/10.3390/genes12121901
Chicago/Turabian StyleLi, Dan, Joshua Xu, and Mary Qu Yang. 2021. "Gene Regulation Analysis Reveals Perturbations of Autism Spectrum Disorder during Neural System Development" Genes 12, no. 12: 1901. https://doi.org/10.3390/genes12121901
APA StyleLi, D., Xu, J., & Yang, M. Q. (2021). Gene Regulation Analysis Reveals Perturbations of Autism Spectrum Disorder during Neural System Development. Genes, 12(12), 1901. https://doi.org/10.3390/genes12121901