The ADAR Family in Amphioxus: RNA Editing and Conserved Orthologous Site Predictions
Abstract
1. Introduction
2. Materials and Methods
2.1. Phylogenetic Tree of ADAR Family Genes
2.2. Third Generation In Situ Hybridization Chain Reaction (HCR) for Detecting Gene Expression
2.3. Basic Single Nucleotide Variants Filter for RNA-Editing Candidates
2.4. Using Genomic Reads to Filter out Confirmed SNPs
2.5. GO Analysis
2.6. Orthologous RNA-Editing with Human Editing
3. Results
3.1. The European Amphioxus has Two ADAR Genes
3.2. ADAR and ADARB Expression through Development by HCR In Situ Hybridisation
3.3. A-to-I Editing: SNV Predictions
3.4. Orthology-Based Approach to Infer RNA-Editing Conservation
4. Discussion
4.1. Expression and Conservation of ADAR and ADARB in B. Lanceolatum
4.2. An Orthology-Based Approach for Highly Polymorphic Species
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Irimia, M.; Blencowe, B.J. Alternative splicing: Decoding an expansive regulatory layer. Curr. Opin. Cell Biol. 2012, 24, 323–332. [Google Scholar] [CrossRef]
- Irimia, M.; Denuc, A.; Burguer, D.; Somorjai, I.; Martín-Durán, J.M.; Genikhovich, G.; Jimenez-Delgado, S.; Technau, U.; Roy, S.W.; Marfany, G.; et al. Stepwise assembly of the Nova-regulated alternative splicing network in the vertebrate brain. Proc. Natl. Acad. Sci. USA 2011, 108, 5319–5324. [Google Scholar] [CrossRef]
- Liscovitch-Brauer, N.; Alon, S.; Porath, H.T.; Elstein, B.; Unger, R.; Ziv, T.; Admon, A.; Levanon, E.Y.; Rosenthal, J.J.C.; Eisenberg, E. Trade-off between Transcriptome Plasticity and Genome Evolution in Cephalopods. Cell 2017, 169, 191–202.e11. [Google Scholar] [CrossRef]
- Schmitz, J.F.; Zimmer, F.; Bornberg-Bauer, E. Mechanisms of transcription factor evolution in Metazoa. Nucleic Acids Res. 2016, 44, 6287–6297. [Google Scholar] [CrossRef]
- Savva, Y.A.; Rieder, L.E.; Reenan, R.A. The ADAR protein family. Genome Biol. 2012, 13, 252. [Google Scholar] [CrossRef] [PubMed]
- Porath, H.T.; Knisbacher, B.A.; Eisenberg, E.; Levanon, E.Y. Massive A-to-I RNA editing is common across the Metazoa and correlates with dsRNA abundance. Genome Biol. 2017, 18, 185. [Google Scholar] [CrossRef] [PubMed]
- Takenaka, M.; Zehrmann, A.; Verbitskiy, D.; Härtel, B.; Brennicke, A. RNA editing in plants and its evolution. Annu. Rev. Genet. 2013, 47, 335–352. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, Q.; He, Y.; Chen, L.; Hao, C.; Jiang, C.; Li, Y.; Dai, Y.; Kang, Z.; Xu, J.R. Genome-wide A-to-I RNA editing in fungi independent of ADAR enzymes. Genome Res. 2016, 26, 499–509. [Google Scholar] [CrossRef]
- Thomas, J.M.; Beal, P.A. How do ADARs bind RNA? New protein-RNA structures illuminate substrate recognition by the RNA editing ADARs. BioEssays 2017, 39, 1600187. [Google Scholar] [CrossRef]
- Deffit, S.N.; Hundley, H.A. To edit or not to edit: Regulation of ADAR editing specificity and efficiency. Wiley Interdiscip. Rev. RNA 2016, 7, 113–127. [Google Scholar] [CrossRef]
- Wang, Q.; Miyakoda, M.; Yang, W.; Khillan, J.; Stachura, D.L.; Weiss, M.J.; Nishikura, K. Stress-induced Apoptosis Associated with Null Mutation of ADAR1 RNA Editing Deaminase Gene. J. Biol. Chem. 2004, 279, 4952–4961. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, M.; Maas, S.; Single, F.N.; Hartner, J.; Rozov, A.; Burnashev, N.; Feldmeyer, D.; Sprengel, R.; Seeburg, P.H. Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature 2000, 406, 78–81. [Google Scholar] [CrossRef] [PubMed]
- Lamers, M.M.; van den Hoogen, B.G.; Haagmans, B.L. ADAR1: “Editor-in-Chief” of Cytoplasmic Innate Immunity. Front. Immunol. 2019, 10, 1763. [Google Scholar] [CrossRef] [PubMed]
- Irimia, M.; Denuc, A.; Ferran, J.L.; Pernaute, B.; Puelles, L.; Roy, S.W.; Garcia-Fernàndez, J.; Marfany, G. Evolutionarily conserved A-to-I editing increases protein stability of the alternative splicing factor Nova1. RNA Biol. 2012, 9, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.H.; Li, Q.; Shanmugam, R.; Piskol, R.; Kohler, J.; Young, A.N.; Liu, K.I.; Zhang, R.; Ramaswami, G.; Ariyoshi, K.; et al. Dynamic landscape and regulation of RNA editing in mammals. Nature 2017, 550, 249–254. [Google Scholar] [CrossRef]
- Pinto, Y.; Cohen, H.Y.; Levanon, E.Y. Mammalian conserved ADAR targets comprise only a small fragment of the human editosome. Genome Biol. 2014, 15, 31–33. [Google Scholar] [CrossRef]
- Picardi, E.; Manzari, C.; Mastropasqua, F.; Aiello, I.; D’Erchia, A.M.; Pesole, G. Profiling RNA editing in human tissues: Towards the inosinome Atlas. Sci. Rep. 2015, 5, 1–17. [Google Scholar] [CrossRef]
- Marlétaz, F.; Firbas, P.N.; Maeso, I.; Tena, J.J.; Bogdanovic, O.; Perry, M.; Wyatt, C.D.R.; de la Calle-Mustienes, E.; Bertrand, S.; Burguera, D.; et al. Amphioxus functional genomics and the origins of vertebrate gene regulation. Nature 2018, 564, 64–70. [Google Scholar] [CrossRef]
- Katoh, K.; Rozewicki, J.; Yamada, K.D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 2019, 20, 1160–1166. [Google Scholar] [CrossRef]
- Trifinopoulos, J.; Nguyen, L.-T.; von Haeseler, A.; Minh, B.Q. W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016, 44, W232–W235. [Google Scholar] [CrossRef]
- Andrews, T.G.R.; Gattoni, G.; Busby, L.; Schwimmer, M.A.; Benito-Gutiérrez, È. Hybridization Chain Reaction for Quantitative and Multiplex Imaging of Gene Expression in Amphioxus Embryos and Adult Tissues. In Methods in Molecular Biology; Humana Press Inc.: New York, NY, USA, 2020; Volume 2148, pp. 179–194. [Google Scholar]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed]
- Götz, S.; García-Gómez, J.M.; Terol, J.; Williams, T.D.; Nagaraj, S.H.; Nueda, M.J.; Robles, M.; Talón, M.; Dopazo, J.; Conesa, A. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 2008, 36, 3420–3435. [Google Scholar] [CrossRef] [PubMed]
- Picardi, E.; D’Erchia, A.M.; Lo Giudice, C.; Pesole, G. REDIportal: A comprehensive database of A-to-I RNA editing events in humans. Nucleic Acids Res. 2017, 45, D750–D757. [Google Scholar] [CrossRef]
- Yates, A.D.; Achuthan, P.; Akanni, W.; Allen, J.; Allen, J.; Alvarez-Jarreta, J.; Amode, M.R.; Armean, I.M.; Azov, A.G.; Bennett, R.; et al. Ensembl 2020. Nucleic Acids Res. 2020, 48, D682–D688. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, H.; Deng, D.; Zhao, K.; Liu, K.; Hendrix, D.A.; Mathews, D.H. LinearFold: Linear-time approximate RNA folding by 5′-to-3′ dynamic programming and beam search. Bioinformatics 2019, 35, i295–i304. [Google Scholar] [CrossRef]
- Benito-Gutiérrez, È.; Illas, M.; Comella, J.X.; Garcia-Fernàndez, J. Outlining the nascent nervous system of Branchiostoma floridae (amphioxus) by the pan-neural marker AmphiElav. Brain Res. Bull. 2005, 66, 518–521. [Google Scholar] [CrossRef]
- Misra, K.; Mishra, K.; Gui, H.; Matise, M.P. Prox1 regulates a transitory state for interneuron neurogenesis in the spinal cord. Dev. Dyn. 2008, 237, 393–402. [Google Scholar] [CrossRef]
- Riedmann, E.M.; Schopoff, S.; Hartner, J.C.; Jantsch, M.F. Specificity of ADAR-mediated RNA editing in newly identified targets. RNA 2008, 14, 1110–1118. [Google Scholar] [CrossRef]
- Uhlén, M.; Fagerberg, L.; Hallström, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, Å.; Kampf, C.; Sjöstedt, E.; Asplund, A.; et al. Tissue-based map of the human proteome. Science 2015, 347. [Google Scholar] [CrossRef]
- Grice, L.F.; Degnan, B.M. The origin of the ADAR gene family and animal RNA editing. BMC Evol. Biol. 2015, 15, 4. [Google Scholar] [CrossRef]
- Choi, H.M.T.; Schwarzkopf, M.; Fornace, M.E.; Acharya, A.; Artavanis, G.; Stegmaier, J.; Cunha, A.; Pierce, N.A. Third-generation in situ hybridization chain reaction: Multiplexed, quantitative, sensitive, versatile, robust. Development 2018, 145, dev165753. [Google Scholar] [CrossRef]
- Herrera-Úbeda, C.; Marín-Barba, M.; Navas-Pérez, E.; Gravemeyer, J.; Albuixech-Crespo, B.; Wheeler, G.N.; Garcia-Fernàndez, J. Microsyntenic Clusters Reveal Conservation of lncRNAs in Chordates Despite Absence of Sequence Conservation. Biology 2019, 8, 61. [Google Scholar] [CrossRef] [PubMed]
- Benito-Gutiérrez, È. A gene catalogue of the amphioxus nervous system. Int. J. Biol. Sci. 2006, 2, 149–160. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ratti, A.; Fallini, C.; Cova, L.; Fantozzi, R.; Calzarossa, C.; Zennaro, E.; Pascale, A.; Quattrone, A.; Silani, V. A role for the ELAV RNA-binding proteins in neural stem cells: Stabilization of Msi1 mRNA. J. Cell Sci. 2006, 119, 1442–1452. [Google Scholar] [CrossRef] [PubMed]
- Perrone-Bizzozero, N.; Bolognani, F. Role of HuD and other RNA-binding proteins in neural development and plasticity. J. Neurosci. Res. 2002, 68, 121–126. [Google Scholar] [CrossRef]
- Kaltezioti, V.; Kouroupi, G.; Oikonomaki, M.; Mantouvalou, E.; Stergiopoulos, A.; Charonis, A.; Rohrer, H.; Matsas, R.; Politis, P.K. Prox1 regulates the notch1-mediated inhibition of neurogenesis. PLoS Biol. 2010, 8, e1000565. [Google Scholar] [CrossRef]
- Choksi, S.P.; Southall, T.D.; Bossing, T.; Edoff, K.; de Wit, E.; Fischer, B.E.; van Steensel, B.; Micklem, G.; Brand, A.H. Prospero acts as a binary switch between self-renewal and differentiation in Drosophila neural stem cells. Dev. Cell 2006, 11, 775–789. [Google Scholar] [CrossRef]
- Takahashi, M.; Yoshimoto, T.; Shimoda, M.; Kono, T.; Koizumi, M.; Yazumi, S.; Shimada, Y.; Doi, R.; Chiba, T.; Kubo, H. Loss of function of the candidate tumor suppressor prox1 by RNA mutation in human cancer cells. Neoplasia 2006, 8, 1003–1010. [Google Scholar] [CrossRef]
- Putnam, N.H.; Butts, T.; Ferrier, D.E.K.; Furlong, R.F.; Hellsten, U.; Kawashima, T.; Robinson-Rechavi, M.; Shoguchi, E.; Terry, A.; Yu, J.-K.; et al. The amphioxus genome and the evolution of the chordate karyotype. Nature 2008, 453, 1064–1071. [Google Scholar] [CrossRef]
- Pinto, Y.; Levanon, E.Y. Computational approaches for detection and quantification of A-to-I RNA-editing. Methods 2019, 156, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Kiran, A.; Baranov, P.V. DARNED: A DAtabase of RNA editing in humans. Bioinformatics 2010, 26, 1772–1776. [Google Scholar] [CrossRef] [PubMed]
Class 0 | Class 1 | Class 2 | Class 3 | Class 4 | Total | |
---|---|---|---|---|---|---|
Window Size = 0 | 198 | 177 | 132 | 409 | 875 | 1588 |
Window Size = 1 | 253 | 230 | 366 | 499 | 2791 | 3339 |
Window Size = 5 | 451 | 405 | 1048 | 915 | 5920 | 6291 |
Window Size = Inf | 9814 | 7476 | 20,955 | 16,383 | 57,075 | 58,597 |
SNV_Coordinates | Tissues | Bla_ID | Hsa_ID | AA_Change | Alignment | Variant in dsRNA | Description |
---|---|---|---|---|---|---|---|
Sc0000141|28964 | Embr15h | BL95820 | ACTB | K->R | Good | OK | actin and actin-related protein |
Sc0000141|28964 | Embr15h | BL95820 | ACTG1 | K->R | Good | OK | actin and actin-related protein |
Sc0000141|28935 | Embr10h | BL95820 | ACTG1 | N->D | Good | NO | actin and actin-related protein |
Sc0000010|5845185 | Epidermis | BL03760 | CASP7 | Q->R | Good | OK | protease |
Sc0000003|746129 | Epidermis | BL22951 | CD163 | N->D | Good | NO | serine protease |
Sc0000036|339483 | Embr8h | BL13691 | CEP295 | R->G | Good | NO | Centrosomal protein |
Sc0000036|339492 | Gills | BL13691 | CEP295 | T->A | Good | OK | Centrosomal protein |
Sc0000169|5290 | Embr15h | BL06213 | CLN5 | T->A | Good | NO | Ceroid-Lipofuscinosis Neuronal Protein |
Sc0000106|847254 | Cirri; Embr8h | BL04964 | CNTN6 | K->R | Good | NO | scaffold/adaptor protein |
Sc0000013|2542412 | Hepatic | BL22946 | CYP3A43 | K->R | Good | NO | oxygenase |
Sc0000017|3071594 | Cirri; Embr36h; Hepatic; MaleGonads | BL14540 | ERAP1 | I->V | Good | NO | metalloprotease |
Sc0000170|219193 | Cirri | BL20200 | FBXO11 | H->R | Good | NO | ubiquitin-protein ligase |
Sc0000176|48786 | Embr15h | BL03944 | GNL3 | K->E | Good | NO | GTPase activity |
Sc0000644|3600 | NeuralTube | BL15637 | GRIK2 | I->V | Good | OK | Glutamate receptor |
Sc0000049|546225 | Epidermis | BL12702 | IFT81 | X->W | Good | NO | Intraflagellar transport protein |
Sc0000154|605189 | Cirri;Hepatic | BL95836 | IGFBP7 | K->E | Good | NO | insulin-like growth factor binding |
Sc0000038|1503269 | Embr8h; Embr15h | BL03525 | KLHL29 | H->R | Good | NO | scaffold/adaptor protein |
Sc0000054|734626 | Embr8h | BL06611 | MAP4K4 | T->A | Good | NO | transferase activity |
Sc0000021|2537001 | Cirri; Embr36h | BL23627 | MICAL3 | Q->R | Good | NO | actin binding and Rab GTPase binding |
Sc0000176|396675 | Gut | BL74980 | NUDT6 | I->V | Good | NO | nucleotide phosphatase |
xfSc0000677|1518 | Cirri; Embr8h; Embr10h; Epidermis;FemGonads;Gills;Gut; Hepatic;MaleGonads | BL09048 | NUDT6 | K->R | Good | OK | nucleotide phosphatase |
Sc0000080|164844 | NeuralTube | BL07116 | OXSM | I->V | Good | NO | 3-oxoacyl-[acyl-carrier-protein] synthase activity |
Sc0000027|1956570 | Embr8h; Embr10h; Embr15h; Epidermis; FemGonads; NeuralTube | BL54853 | PDHA1 | K->R | Good | NO | oxidoreductase activity |
Sc0000000|9845821 | Cirri; Embr8h; Embr10h; Embr15h; Embr36h; Epidermis; FemGonads; Gut; Hepatic; NeuralTube | BL07590 | PRIMPOL | Y->C | Good | NO | DNA-directed DNA polymerase activity |
Sc0000312|38338 | Embr10h | BL18204 | PSIP1 | K->E | Good | OK | transcription cofactor |
Sc0000100|854356 | NeuralTube | BL07716 | RPS5 | K->R | Good | OK | ribosomal protein |
Sc0000029|517144 | Gills; Gut | BL02932 | SLC35A3 | X->W | Good | OK | transporter |
Sc0000017|3058040 | Gut | BL14540 | TRHDE | N->S | Good | NO | metalloprotease |
Sc0000119|132511 | Gills | BL04457 | TUBA1B | K->E | Good | NO | tubulin |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zawisza-Álvarez, M.; Pérez-Calles, C.; Gattoni, G.; Garcia-Fernàndez, J.; Benito-Gutiérrez, È.; Herrera-Úbeda, C. The ADAR Family in Amphioxus: RNA Editing and Conserved Orthologous Site Predictions. Genes 2020, 11, 1440. https://doi.org/10.3390/genes11121440
Zawisza-Álvarez M, Pérez-Calles C, Gattoni G, Garcia-Fernàndez J, Benito-Gutiérrez È, Herrera-Úbeda C. The ADAR Family in Amphioxus: RNA Editing and Conserved Orthologous Site Predictions. Genes. 2020; 11(12):1440. https://doi.org/10.3390/genes11121440
Chicago/Turabian StyleZawisza-Álvarez, Michał, Claudia Pérez-Calles, Giacomo Gattoni, Jordi Garcia-Fernàndez, Èlia Benito-Gutiérrez, and Carlos Herrera-Úbeda. 2020. "The ADAR Family in Amphioxus: RNA Editing and Conserved Orthologous Site Predictions" Genes 11, no. 12: 1440. https://doi.org/10.3390/genes11121440
APA StyleZawisza-Álvarez, M., Pérez-Calles, C., Gattoni, G., Garcia-Fernàndez, J., Benito-Gutiérrez, È., & Herrera-Úbeda, C. (2020). The ADAR Family in Amphioxus: RNA Editing and Conserved Orthologous Site Predictions. Genes, 11(12), 1440. https://doi.org/10.3390/genes11121440