Next Issue
Volume 5, December
Previous Issue
Volume 5, June
 
 

Cells, Volume 5, Issue 3 (September 2016) – 8 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
157 KiB  
Erratum
Erratum: Lazar-Karsten, P., et al. Generation and Characterization of Vascular Smooth Muscle Cell Lines Derived from a Patient with a Bicuspid Aortic Valve. Cells 2016, 5, 19.
by Pamela Lazar-Karsten, Gazanfer Belge, Detlev Schult-Badusche, Tim Focken, Arlo Radtke, Junfeng Yan, Pramod Ranabhat and Salah A. Mohamed
Cells 2016, 5(3), 36; https://doi.org/10.3390/cells5030036 - 20 Sep 2016
Viewed by 3224
Abstract
The authors wish to make the following erratum to this paper [1].[...] Full article
9104 KiB  
Article
Keratins Are Altered in Intestinal Disease-Related Stress Responses
by Terhi O. Helenius, Cecilia A. Antman, Muhammad Nadeem Asghar, Joel H. Nyström and Diana M. Toivola
Cells 2016, 5(3), 35; https://doi.org/10.3390/cells5030035 - 10 Sep 2016
Cited by 19 | Viewed by 6458
Abstract
Keratin (K) intermediate filaments can be divided into type I/type II proteins, which form obligate heteropolymers. Epithelial cells express type I-type II keratin pairs, and K7, K8 (type II) and K18, K19 and K20 (type I) are the primary keratins found in the [...] Read more.
Keratin (K) intermediate filaments can be divided into type I/type II proteins, which form obligate heteropolymers. Epithelial cells express type I-type II keratin pairs, and K7, K8 (type II) and K18, K19 and K20 (type I) are the primary keratins found in the single-layered intestinal epithelium. Keratins are upregulated during stress in liver, pancreas, lung, kidney and skin, however, little is known about their dynamics in the intestinal stress response. Here, keratin mRNA, protein and phosphorylation levels were studied in response to murine colonic stresses modeling human conditions, and in colorectal cancer HT29 cells. Dextran sulphate sodium (DSS)-colitis was used as a model for intestinal inflammatory stress, which elicited a strong upregulation and widened crypt distribution of K7 and K20. K8 levels were slightly downregulated in acute DSS, while stress-responsive K8 serine-74 phosphorylation (K8 pS74) was increased. By eliminating colonic microflora using antibiotics, K8 pS74 in proliferating cells was significantly increased, together with an upregulation of K8 and K19. In the aging mouse colon, most colonic keratins were upregulated. In vitro, K8, K19 and K8 pS74 levels were increased in response to lipopolysaccharide (LPS)-induced inflammation in HT29 cells. In conclusion, intestinal keratins are differentially and dynamically upregulated and post-translationally modified during stress and recovery. Full article
(This article belongs to the Special Issue Beyond Cell Mechanics: Novel Functions of Intermediate Filaments)
Show Figures

Figure 1

1796 KiB  
Review
Multiple Roles of the Small GTPase Rab7
by Flora Guerra and Cecilia Bucci
Cells 2016, 5(3), 34; https://doi.org/10.3390/cells5030034 - 18 Aug 2016
Cited by 266 | Viewed by 19685
Abstract
Rab7 is a small GTPase that belongs to the Rab family and controls transport to late endocytic compartments such as late endosomes and lysosomes. The mechanism of action of Rab7 in the late endocytic pathway has been extensively studied. Rab7 is fundamental for [...] Read more.
Rab7 is a small GTPase that belongs to the Rab family and controls transport to late endocytic compartments such as late endosomes and lysosomes. The mechanism of action of Rab7 in the late endocytic pathway has been extensively studied. Rab7 is fundamental for lysosomal biogenesis, positioning and functions, and for trafficking and degradation of several signaling receptors, thus also having implications on signal transduction. Several Rab7 interacting proteins have being identified leading to the discovery of a number of different important functions, beside its established role in endocytosis. Furthermore, Rab7 has specific functions in neurons. This review highlights and discusses the role and the importance of Rab7 on different cellular pathways and processes. Full article
(This article belongs to the Special Issue Regulation and Function of Small GTPases)
Show Figures

Figure 1

885 KiB  
Review
Skeletal Muscle Laminopathies: A Review of Clinical and Molecular Features
by Lorenzo Maggi, Nicola Carboni and Pia Bernasconi
Cells 2016, 5(3), 33; https://doi.org/10.3390/cells5030033 - 11 Aug 2016
Cited by 63 | Viewed by 10756
Abstract
LMNA-related disorders are caused by mutations in the LMNA gene, which encodes for the nuclear envelope proteins, lamin A and C, via alternative splicing. Laminopathies are associated with a wide range of disease phenotypes, including neuromuscular, cardiac, metabolic disorders and premature aging [...] Read more.
LMNA-related disorders are caused by mutations in the LMNA gene, which encodes for the nuclear envelope proteins, lamin A and C, via alternative splicing. Laminopathies are associated with a wide range of disease phenotypes, including neuromuscular, cardiac, metabolic disorders and premature aging syndromes. The most frequent diseases associated with mutations in the LMNA gene are characterized by skeletal and cardiac muscle involvement. This review will focus on genetics and clinical features of laminopathies affecting primarily skeletal muscle. Although only symptomatic treatment is available for these patients, many achievements have been made in clarifying the pathogenesis and improving the management of these diseases. Full article
(This article belongs to the Collection Lamins and Laminopathies)
Show Figures

Figure 1

9294 KiB  
Review
Intermediate Filaments and Polarization in the Intestinal Epithelium
by Richard A. Coch and Rudolf E. Leube
Cells 2016, 5(3), 32; https://doi.org/10.3390/cells5030032 - 15 Jul 2016
Cited by 36 | Viewed by 10805
Abstract
The cytoplasmic intermediate filament cytoskeleton provides a tissue-specific three-dimensional scaffolding with unique context-dependent organizational features. This is particularly apparent in the intestinal epithelium, in which the intermediate filament network is localized below the apical terminal web region and is anchored to the apical [...] Read more.
The cytoplasmic intermediate filament cytoskeleton provides a tissue-specific three-dimensional scaffolding with unique context-dependent organizational features. This is particularly apparent in the intestinal epithelium, in which the intermediate filament network is localized below the apical terminal web region and is anchored to the apical junction complex. This arrangement is conserved from the nematode Caenorhabditis elegans to humans. The review summarizes compositional, morphological and functional features of the polarized intermediate filament cytoskeleton in intestinal cells of nematodes and mammals. We emphasize the cross talk of intermediate filaments with the actin- and tubulin-based cytoskeleton. Possible links of the intermediate filament system to the distribution of apical membrane proteins and the cell polarity complex are highlighted. Finally, we discuss how these properties relate to the establishment and maintenance of polarity in the intestine. Full article
(This article belongs to the Special Issue Beyond Cell Mechanics: Novel Functions of Intermediate Filaments)
Show Figures

Graphical abstract

2301 KiB  
Article
Antisense-Based Progerin Downregulation in HGPS-Like Patients’ Cells
by Karim Harhouri, Claire Navarro, Camille Baquerre, Nathalie Da Silva, Catherine Bartoli, Frank Casey, Guedenon Koffi Mawuse, Yassamine Doubaj, Nicolas Lévy and Annachiara De Sandre-Giovannoli
Cells 2016, 5(3), 31; https://doi.org/10.3390/cells5030031 - 11 Jul 2016
Cited by 31 | Viewed by 8036
Abstract
Progeroid laminopathies, including Hutchinson-Gilford Progeria Syndrome (HGPS, OMIM #176670), are premature and accelerated aging diseases caused by defects in nuclear A-type Lamins. Most HGPS patients carry a de novo point mutation within exon 11 of the LMNA gene encoding A-type Lamins. This mutation [...] Read more.
Progeroid laminopathies, including Hutchinson-Gilford Progeria Syndrome (HGPS, OMIM #176670), are premature and accelerated aging diseases caused by defects in nuclear A-type Lamins. Most HGPS patients carry a de novo point mutation within exon 11 of the LMNA gene encoding A-type Lamins. This mutation activates a cryptic splice site leading to the deletion of 50 amino acids at its carboxy-terminal domain, resulting in a truncated and permanently farnesylated Prelamin A called Prelamin A Δ50 or Progerin. Some patients carry other LMNA mutations affecting exon 11 splicing and are named “HGPS-like” patients. They also produce Progerin and/or other truncated Prelamin A isoforms (Δ35 and Δ90) at the transcriptional and/or protein level. The results we present show that morpholino antisense oligonucleotides (AON) prevent pathogenic LMNA splicing, markedly reducing the accumulation of Progerin and/or other truncated Prelamin A isoforms (Prelamin A Δ35, Prelamin A Δ90) in HGPS-like patients’ cells. Finally, a patient affected with Mandibuloacral Dysplasia type B (MAD-B, carrying a homozygous mutation in ZMPSTE24, encoding an enzyme involved in Prelamin A maturation, leading to accumulation of wild type farnesylated Prelamin A), was also included in this study. These results provide preclinical proof of principle for the use of a personalized antisense approach in HGPS-like and MAD-B patients, who may therefore be eligible for inclusion in a therapeutic trial based on this approach, together with classical HGPS patients. Full article
(This article belongs to the Collection Lamins and Laminopathies)
Show Figures

Figure 1

993 KiB  
Review
Intermediate Filaments as Organizers of Cellular Space: How They Affect Mitochondrial Structure and Function
by Nicole Schwarz and Rudolf E. Leube
Cells 2016, 5(3), 30; https://doi.org/10.3390/cells5030030 - 05 Jul 2016
Cited by 53 | Viewed by 10547
Abstract
Intermediate filaments together with actin filaments and microtubules form the cytoskeleton, which is a complex and highly dynamic 3D network. Intermediate filaments are the major mechanical stress protectors but also affect cell growth, differentiation, signal transduction, and migration. Using intermediate filament-mitochondrial crosstalk as [...] Read more.
Intermediate filaments together with actin filaments and microtubules form the cytoskeleton, which is a complex and highly dynamic 3D network. Intermediate filaments are the major mechanical stress protectors but also affect cell growth, differentiation, signal transduction, and migration. Using intermediate filament-mitochondrial crosstalk as a prominent example, this review emphasizes the importance of intermediate filaments as crucial organizers of cytoplasmic space to support these functions. We summarize observations in different mammalian cell types which demonstrate how intermediate filaments influence mitochondrial morphology, subcellular localization, and function through direct and indirect interactions and how perturbations of these interactions may lead to human diseases. Full article
(This article belongs to the Special Issue Beyond Cell Mechanics: Novel Functions of Intermediate Filaments)
Show Figures

Figure 1

1961 KiB  
Review
Epithelial Intermediate Filaments: Guardians against Microbial Infection?
by Florian Geisler and Rudolf E. Leube
Cells 2016, 5(3), 29; https://doi.org/10.3390/cells5030029 - 27 Jun 2016
Cited by 30 | Viewed by 7032
Abstract
Intermediate filaments are abundant cytoskeletal components of epithelial tissues. They have been implicated in overall stress protection. A hitherto poorly investigated area of research is the function of intermediate filaments as a barrier to microbial infection. This review summarizes the accumulating knowledge about [...] Read more.
Intermediate filaments are abundant cytoskeletal components of epithelial tissues. They have been implicated in overall stress protection. A hitherto poorly investigated area of research is the function of intermediate filaments as a barrier to microbial infection. This review summarizes the accumulating knowledge about this interaction. It first emphasizes the unique spatial organization of the keratin intermediate filament cytoskeleton in different epithelial tissues to protect the organism against microbial insults. We then present examples of direct interaction between viral, bacterial, and parasitic proteins and the intermediate filament system and describe how this affects the microbe-host interaction by modulating the epithelial cytoskeleton, the progression of infection, and host response. These observations not only provide novel insights into the dynamics and function of intermediate filaments but also indicate future avenues to combat microbial infection. Full article
(This article belongs to the Special Issue Beyond Cell Mechanics: Novel Functions of Intermediate Filaments)
Show Figures

Graphical abstract

Previous Issue
Next Issue
Back to TopTop