Does Schistosoma Mansoni Facilitate Carcinogenesis?
Abstract
:1. Introduction
2. Search Strategy and Selection Criteria
3. Hepatic Schistosomiasis
4. Intestinal Schistosomiasis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AFB1 | aflatoxin B1 |
BLCA | bladder cancer |
Bregs | regulatory B cells |
CC | cholangiocarcinoma |
CD | cluster of differentiation |
CRC | colorectal carcinoma |
CXCR | C-X-C motif chemokine receptor |
DC | dendritic cell |
DEN | diethylnitrosamine |
ECM | extracellular matrix |
FceRI | high-affinity receptor for the Fc region of immunoglobulin E (IgE) |
HBV | hepatitis B virus |
HCC | hepatocellular carcinoma |
HCV | hepatitis C virus |
HSC | hepatic stellate cell |
IFN | interferon |
IL | interleukin |
IPSE | interleukin-4-inducing principle of schistosoma eggs |
M2φ | alternatively activated macrophages |
NAFLD | non-alcoholic fatty liver disease |
NASH | non-alcoholic steatohepatitis |
NF-κB | nuclear factor ‘kappa-light-chain-enhancer’ of activated B-cells |
NOD mice | non-obese diabetic mice |
PD-1 | programmed cell death protein 1 |
PKC | protein kinase C |
PTK | protein tyrosine kinases |
ROS | reactive oxygen species |
SCC | squamous cell carcinoma |
SEA | soluble egg antigens |
STAT3 | signal transducer and activator of transcription 3 |
Th1/2 | T helper cell Type 1/2 |
TNF-α | tumor necrosis factor alpha |
Tregs | regulatory T-cells |
VEGF | vascular endothelial growth factor |
ω-1 | T2 ribonuclease omega-1 |
WNT | wingless and int 1 |
References
- WHO Fact-Sheets Schistosomiasis. Available online: https://www.who.int/news-room/fact-sheets/detail/schistosomiasis (accessed on 20 May 2021).
- Schwartz, C.; Fallon, P.G. Schistosoma “eggs-iting” the host: Granuloma formation and egg excretion. Front. Immunol. 2018, 9, 2492. [Google Scholar] [CrossRef] [Green Version]
- Lingscheid, T.; Kurth, F.; Clerinx, J.; Marocco, S.; Trevino, B.; Schunk, M.; Muñoz, J.; Gjørup, I.E.; Jelinek, T.; Develoux, M.; et al. Schistosomiasis in European travelers and migrants: Analysis of 14 years TropNet surveillance data. Am. J. Trop Med. Hyg. 2017, 97, 567–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatz, C.F.R. Schistosomiasis: An underestimated problem in industrialized countries? J. Travel Med. 2005, 12, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Spear, R.C. Exposure versus Susceptibility as Alternative Bases for New Approaches to Surveillance for Schistosoma japonicum in Low Transmission Environments. PLoS Negl. Trop. Dis. 2016, 10, e0004425. [Google Scholar] [CrossRef]
- Boissier, J.; Grech-Angelini, S.; Webster, B.L.; Allienne, J.-F.; Huyse, T.; Mas-Coma, S.; Toulza, E.; Barré-Cardi, H.; Rollinson, D.; Kincaid-Smith, J.; et al. Outbreak of urogenital schistosomiasis in Corsica (France): An epidemiological case study. Lancet Infect. Dis. 2016, 16, 971–979. [Google Scholar] [CrossRef]
- Mulero, S.; Rey, O.; Arancibia, N.; Mas-Coma, S.; Boissier, J. Persistent establishment of a tropical disease in Europe: The preadaptation of schistosomes to overwinter. Parasit. Vectors 2019, 12, 379. [Google Scholar] [CrossRef] [PubMed]
- Oleaga, A.; Rey, O.; Polack, B.; Grech-Angelini, S.; Quilichini, Y.; Pérez-Sánchez, R.; Boireau, P.; Mulero, S.; Brunet, A.; Rognon, A.; et al. Epidemiological surveillance of schistosomiasis outbreak in Corsica (France): Are animal reservoir hosts implicated in local transmission? PLoS Negl. Trop. Dis. 2019, 13, e0007543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Léger, E.; Borlase, A.; Fall, C.B.; Diouf, N.D.; Diop, S.D.; Yasenev, L.; Catalano, S.; Thiam, C.T.; Ndiaye, A.; Emery, A.; et al. Prevalence and distribution of schistosomiasis in human, livestock, and snail populations in northern Senegal: A One Health epidemiological study of a multi-host system. Lancet Planet. Health 2020, 4, e330–e342. [Google Scholar] [CrossRef]
- McManus, D.P.; Dunne, D.W.; Sacko, M.; Utzinger, J.; Vennervald, B.J.; Zhou, X.-N. Schistosomiasis. Nat. Rev. Dis. Primers 2018, 4, 13. [Google Scholar] [CrossRef] [PubMed]
- Cheever, A.W.; Mosimann, J.E.; Deb, S.; Cheever, E.A.; Duvall, R.H. Natural history of Schistosoma mansoni infection in mice: Egg production, egg passage in the feces, and contribution of host and parasite death to changes in worm numbers. Am. J. Trop. Med. Hyg. 1994, 50, 269–280. [Google Scholar] [CrossRef] [Green Version]
- Colley, D.G.; Bustinduy, A.L.; Secor, W.E.; King, C.H. Human schistosomiasis. Lancet 2014, 383, 2253–2264. [Google Scholar] [CrossRef]
- Chabasse, D.; Bertrand, G.; Leroux, J.P.; Gauthey, N.; Hocquet, P. Bilharziose à Schistosoma mansoni évolutive découverte 37 ans après l’infestation. Bull. Soc. Pathol. Exot. Filiales 1985, 78, 643–647. [Google Scholar] [PubMed]
- Grevelding, C.G. Schistosoma. Curr. Biol. 2004, 14, R545. [Google Scholar] [CrossRef] [Green Version]
- Costain, A.H.; MacDonald, A.S.; Smits, H.H. Schistosome egg migration: Mechanisms, pathogenesis and host immune responses. Front. Immunol. 2018, 9, 3042. [Google Scholar] [CrossRef] [Green Version]
- Howley, P.M. Gordon Wilson Lecture: Infectious Disease Causes of Cancer: Opportunities for Prevention and Treatment. Trans. Am. Clin. Climatol. Assoc. 2015, 126, 117–132. [Google Scholar] [PubMed]
- Nair, U.; Bartsch, H.; Nair, J. Lipid peroxidation-induced DNA damage in cancer-prone inflammatory diseases: A review of published adduct types and levels in humans. Free Radic. Biol. Med. 2007, 43, 1109–1120. [Google Scholar] [CrossRef]
- WHO Globocan. 2020. Available online: https://gco.iarc.fr/today/data/factsheets/cancers/39-All-cancers-fact-sheet.pdf (accessed on 20 May 2021).
- de Martel, C.; Ferlay, J.; Franceschi, S.; Vignat, J.; Bray, F.; Forman, D.; Plummer, M. Global burden of cancers attributable to infections in 2008: A review and synthetic analysis. Lancet Oncol. 2012, 13, 607–615. [Google Scholar] [CrossRef]
- Van Tong, H.; Brindley, P.J.; Meyer, C.G.; Velavan, T.P. Parasite infection, carcinogenesis and human malignancy. EBioMedicine 2017, 15, 12–23. [Google Scholar] [CrossRef]
- Shindo, K. Significance of Schistosomiasis japonica in the development of cancer of the large intestine: Report of a case and review of the literature. Dis. Colon Rectum 1976, 19, 460–469. [Google Scholar] [CrossRef] [PubMed]
- El-Gazayerli, M.M.; Abdel-Aziz, A.S. On Bilharziasis and Male Breast Cancer in Egypt: A Preliminary Report and Review of the Literature. Br. J. Cancer 1963, 17, 566–571. [Google Scholar] [CrossRef] [Green Version]
- Afifi, M.A. Bilharzial Cancer: Radiological Diagnosis and Treatment, 1st ed.; H. K. Lewis & Co., Ltd.: London, UK, 1948. [Google Scholar]
- Biological Agents. Volume 100 B. A review of human carcinogens. IARC Monogr. Eval. Carcinog. Risks Hum. 2012, 100, 1–441. [Google Scholar]
- Gouveia, M.J.; Pakharukova, M.Y.; Laha, T.; Sripa, B.; Maksimova, G.A.; Rinaldi, G.; Brindley, P.J.; Mordvinov, V.A.; Amaro, T.; Santos, L.L.; et al. Infection with Opisthorchis felineus induces intraepithelial neoplasia of the biliary tract in a rodent model. Carcinogenesis 2017, 38, 929–937. [Google Scholar] [CrossRef]
- Pakharukova, M.Y.; Correia da Costa, J.M.; Mordvinov, V.A. The liver fluke Opisthorchis felineus as a group III or group I carcinogen. 4open 2019, 2, 23. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, M.H.; Brotherton, J.M.L.; Siddiqui, A.A. Hepatitis B Vaccines and HPV Vaccines Have Been Hailed as Major Public Health Achievements in Preventing Cancer--Could a Schistosomiasis Vaccine be the Third? PLoS Negl. Trop. Dis. 2015, 9, e0003598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brindley, P.J.; Costa, J.M.C.d.; Sripa, B. Why does infection with some helminths cause cancer? Trends Cancer 2015, 1, 174–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gouveia, M.J.; Brindley, P.J.; Rinaldi, G.; Gärtner, F.; da Costa, J.M.C.; Vale, N. Infection with carcinogenic helminth parasites and its production of metabolites induces the formation of DNA-adducts. Infect. Agents Cancer 2019, 14, 41. [Google Scholar] [CrossRef]
- Cardoso, R.; Lacerda, P.C.; Costa, P.P.; Machado, A.; Carvalho, A.; Bordalo, A.; Fernandes, R.; Soares, R.; Richter, J.; Alves, H.; et al. Estrogen Metabolism-Associated CYP2D6 and IL6-174G/C Polymorphisms in Schistosoma haematobium Infection. Int. J. Mol. Sci. 2017, 18, 2560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Botelho, M.C.; Alves, H.; Richter, J. Estrogen catechols detection as biomarkers in schistosomiasis induced cancer and infertility. Lett. Drug Des. Discov. 2017, 14, 135–138. [Google Scholar] [CrossRef] [PubMed]
- El-Tonsy, M.M.; Hussein, H.M.; Helal, T.E.-S.; Tawfik, R.A.; Koriem, K.M.; Hussein, H.M. Human Schistosomiasis mansoni associated with hepatocellular carcinoma in Egypt: Current perspective. J. Parasit. Dis. 2016, 40, 976–980. [Google Scholar] [CrossRef] [Green Version]
- Toda, K.S.; Kikuchi, L.; Chagas, A.L.; Tanigawa, R.Y.; Paranagua-Vezozzo, D.C.; Pfiffer, T.; Rocha, M.d.S.; Alves, V.A.F.; Carrilho, F.J. Hepatocellular carcinoma related to Schistosoma mansoni infection: Case series and Literature Review. J. Clin. Trans. Hep. 2015, 3, 260–264. [Google Scholar] [CrossRef] [Green Version]
- Abruzzi, A.; Fried, B.; Alikhan, S.B. Coinfection of Schistosoma species with hepatitis B or hepatitis C viruses. Adv. Parasitol 2016, 91, 111–231. [Google Scholar] [CrossRef]
- Abdel-Rahim, A.Y. Parasitic infections and hepatic neoplasia. Dig. Dis. 2001, 19, 288–291. [Google Scholar] [CrossRef]
- Bahgat, M.M. Interaction between the Neglected Tropical Disease Human Schistosomiasis and HCV Infection in Egypt: A Puzzling Relationship. J. Clin. Transl. Hepatol. 2014, 2, 134–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gentile, J.M.; Gentile, G.J. Implications for the involvement of the immune system in parasite-associated cancers. Mutat. Res. 1994, 305, 315–320. [Google Scholar] [CrossRef]
- Kamal, S.; Madwar, M.; Bianchi, L.; Tawil, A.E.; Fawzy, R.; Peters, T.; Rasenack, J.W. Clinical, virological and histopathological features: Long-term follow-up in patients with chronic hepatitis C co-infected with S. mansoni. Liver 2000, 20, 281–289. [Google Scholar] [CrossRef]
- Khurana, S.; Dubey, M.L.; Malla, N. Association of parasitic infections and cancers. Indian J. Med. Microbiol. 2005, 23, 74–79. [Google Scholar] [CrossRef]
- Palumbo, E. Association between schistosomiasis and cancer. Infect. Dis. Clin. Pract. 2007, 15, 145–148. [Google Scholar] [CrossRef]
- Shaker, Y.; Samy, N.; Ashour, E. Hepatobiliary Schistosomiasis. J. Clin. Transl. Hepatol. 2014, 2, 212–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strickland, G.T. Liver disease in Egypt: Hepatitis C superseded schistosomiasis as a result of iatrogenic and biological factors. Hepatology 2006, 43, 915–922. [Google Scholar] [CrossRef] [PubMed]
- Salim, O.E.H.; Hamid, H.K.S.; Mekki, S.O.; Suleiman, S.H.; Ibrahim, S.Z. Colorectal carcinoma associated with schistosomiasis: A possible causal relationship. World J. Surg. Oncol. 2010, 8, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ameh, E.A.; Nmadu, P.T. Colorectal adenocarcinoma in children and adolescents: A report of 8 patients from Zaria, Nigeria. West. Afr. J. Med. 2000, 19, 273–276. [Google Scholar]
- Herman, A.M.; Kishe, A.; Babu, H.; Shilanaiman, H.; Tarmohamed, M.; Lodhia, J.; Amsi, P.; Pyuza, J.; Mremi, A.; Mwasamwaja, A.; et al. Colorectal cancer in a patient with intestinal schistosomiasis: A case report from Kilimanjaro Christian Medical Center Northern Zone Tanzania. World J. Surg. Oncol. 2017, 15, 146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madbouly, K.M.; Senagore, A.J.; Mukerjee, A.; Hussien, A.M.; Shehata, M.A.; Navine, P.; Delaney, C.P.; Fazio, V.W. Colorectal cancer in a population with endemic Schistosoma mansoni: Is this an at-risk population? Int. J. Colorectal Dis. 2007, 22, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Soliman, A.S.; Bondy, M.L.; Levin, B.; Hamza, M.R.; Ismail, K.; Ismail, S.; Hammam, H.M.; el-Hattab, O.H.; Kamal, S.M.; Soliman, A.G.; et al. Colorectal cancer in Egyptian patients under 40 years of age. Int. J. Cancer 1997, 71, 26–30. [Google Scholar] [CrossRef]
- Zalata, K.R.; Nasif, W.A.; Ming, S.-C.; Lotfy, M.; Nada, N.A.; El-Hak, N.G.; Leech, S.H. p53, Bcl-2 and C-Myc expressions in colorectal carcinoma associated with schistosomiasis in Egypt. Cell Oncol. 2005, 27, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Kiremit, M.C.; Cakir, A.; Arslan, F.; Ormeci, T.; Erkurt, B.; Albayrak, S. The bladder carcinoma secondary to Schistosoma mansoni infection: A case report with review of the literature. Int. J. Surg. Case Rep. 2015, 13, 76–78. [Google Scholar] [CrossRef] [Green Version]
- Basílio-de-Oliveira, C.A.; Aquino, A.; Simon, E.F.; Eyer-Silva, W.A. Concomitant prostatic schistosomiasis and adenocarcinoma: Case report and review. Braz J. Infect. Dis. 2002, 6, 45–49. [Google Scholar] [CrossRef]
- de Andrade, D.R.; Ishioka, S.; Câmara-Lopes, L.H.; Meira, J.A. Associação da esquistossomose mansônica hepatoesplênica e linfoma histiocítico. Arq. Gastroenterol. 1982, 19, 77–80. [Google Scholar]
- Andrade, Z.A.; Abreu, W.N. Follicular lymphoma of the spleen in patients with hepatosplenic Schistosomiasis mansoni. Am. J. Trop. Med. Hyg. 1971, 20, 237–243. [Google Scholar] [CrossRef]
- Russell, H.J.; Penney, J.M.S.; Linder, C.; Joekes, E.C.; Bustinduy, A.L.; Stothard, J.R.; Rakotomampianina, D.A.L.; Andriamasy, E.H.; Mahary, L.R.; Ranjanoro, E.P.; et al. A cross-sectional study of periportal fibrosis and Schistosoma mansoni infection among school-aged children in a hard-to-reach area of Madagascar. Trans. R. Soc. Trop. Med. Hyg. 2020, 114, 315–322. [Google Scholar] [CrossRef]
- Roderfeld, M. Matrix metalloproteinase functions in hepatic injury and fibrosis. Matrix Biol. 2018, 68–69, 452–462. [Google Scholar] [CrossRef]
- Schuppan, D.; Afdhal, N.H. Liver cirrhosis. Lancet 2008, 371, 838–851. [Google Scholar] [CrossRef]
- Roeb, E. Matrix metalloproteinases and liver fibrosis (translational aspects). Matrix Biol. 2018, 68–69, 463–473. [Google Scholar] [CrossRef]
- Puche, J.E.; Saiman, Y.; Friedman, S.L. Hepatic stellate cells and liver fibrosis. Compr. Physiol. 2013, 3, 1473–1492. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Rebecca, L.S.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luedde, T.; Schwabe, R.F. NF-κB in the liver—linking injury, fibrosis and hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 2011, 8, 108–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruix, J.; Sherman, M. Management of hepatocellular carcinoma: An update. Hepatology 2011, 53, 1020–1022. [Google Scholar] [CrossRef] [PubMed]
- Churin, Y.; Roderfeld, M.; Roeb, E. Hepatitis B virus large surface protein: Function and fame. Hepatobiliary Surg. Nutr. 2015, 4, 1–10. [Google Scholar] [CrossRef]
- Roeb, E.; Steffen, H.M.; Bantel, H.; Baumann, U.; Canbay, A.; Demir, M.; Drebber, U.; Geier, A.; Hampe, J.; Hellerbrand, C.; et al. S2k-Leitlinie nicht alkoholische Fettlebererkrankungen. Z. Gastroenterol. 2015, 53, 668–723. [Google Scholar] [CrossRef]
- Roeb, E.; Geier, A. Nichtalkoholische Steatohepatitis (NASH)–aktuelle Behandlungsempfehlungen und zukünftige Entwicklungen. Z. Gastroenterol. 2019, 57, 508–517. [Google Scholar] [CrossRef]
- Starley, B.Q.; Calcagno, C.J.; Harrison, S.A. Nonalcoholic fatty liver disease and hepatocellular carcinoma: A weighty connection. Hepatology 2010, 51, 1820–1832. [Google Scholar] [CrossRef]
- Anstee, Q.M.; Reeves, H.L.; Kotsiliti, E.; Govaere, O.; Heikenwalder, M. From NASH to HCC: Current concepts and future challenges. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 411–428. [Google Scholar] [CrossRef] [PubMed]
- Dudek, M.; Pfister, D.; Donakonda, S.; Filpe, P.; Schneider, A.; Laschinger, M.; Hartmann, D.; Hüser, N.; Meiser, P.; Bayerl, F.; et al. Auto-aggressive CXCR6+ CD8 T cells cause liver immune pathology in NASH. Nature 2021, 592, 444–449. [Google Scholar] [CrossRef] [PubMed]
- Miura, N.; Horikawa, I.; Nishimoto, A.; Ohmura, H.; Ito, H.; Hirohashi, S.; Shay, J.W.; Oshimura, M. Progressive telomere shortening and telomerase reactivation during hepatocellular carcinogenesis. Cancer Genet. Cytogenet. 1997, 93, 56–62. [Google Scholar] [CrossRef]
- Marra, M.; Sordelli, I.M.; Lombardi, A.; Lamberti, M.; Tarantino, L.; Giudice, A.; Stiuso, P.; Abbruzzese, A.; Sperlongano, R.; Accardo, M.; et al. Molecular targets and oxidative stress biomarkers in hepatocellular carcinoma: An overview. J. Transl. Med. 2011, 9, 171. [Google Scholar] [CrossRef] [Green Version]
- Pfister, D.; Núñez, N.G.; Pinyol, R.; Govaere, O.; Pinter, M.; Szydlowska, M.; Gupta, R.; Qiu, M.; Deczkowska, A.; Weiner, A.; et al. NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature 2021, 592, 450–456. [Google Scholar] [CrossRef]
- El-Serag, H.B.; Rudolph, K.L. Hepatocellular carcinoma: Epidemiology and molecular carcinogenesis. Gastroenterology 2007, 132, 2557–2576. [Google Scholar] [CrossRef]
- Gasim, G.I.; Bella, A.; Adam, I. Schistosomiasis, hepatitis B and hepatitis C co-infection. Virol. J. 2015, 12, 19. [Google Scholar] [CrossRef] [Green Version]
- el-Kady, I.M.; el-Masry, S.A.; Badra, G.; Halafawy, K.A. Different cytokine patterns in patients coinfected with hepatitis C virus and Schistosoma mansoni. Egypt. J. Immunol. 2004, 11, 23–29. [Google Scholar] [PubMed]
- Han, Y.; Liu, D.; Li, L. PD-1/PD-L1 pathway: Current researches in cancer. Am. J. Cancer Res. 2020, 10, 727–742. [Google Scholar] [PubMed]
- Smith, P.; Walsh, C.M.; Mangan, N.E.; Fallon, R.E.; Sayers, J.R.; McKenzie, A.N.J.; Fallon, P.G. Schistosoma mansoni worms induce anergy of T cells via selective up-regulation of programmed death ligand 1 on macrophages. J. Immunol. 2004, 173, 1240–1248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, S.; Jin, X.; Li, Y.; Li, W.; Chen, X.; Xu, L.; Zhu, J.; Xu, Z.; Zhang, Y.; Liu, F.; et al. Blockade of PD-1 Signaling Enhances Th2 Cell Responses and Aggravates Liver Immunopathology in Mice with Schistosomiasis japonica. PLoS Negl. Trop. Dis. 2016, 10, e0005094. [Google Scholar] [CrossRef] [Green Version]
- Hernandez-Gea, V.; Toffanin, S.; Friedman, S.L.; Llovet, J.M. Role of the microenvironment in the pathogenesis and treatment of hepatocellular carcinoma. Gastroenterology 2013, 144, 512–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, B.; Zhang, J.; Chen, H.; Nie, H.; Miller, H.; Gong, Q.; Liu, C. T Lymphocyte-Mediated Liver Immunopathology of Schistosomiasis. Front. Immunol. 2020, 11, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almeida, C.A.; Goes, A.M. Human peripheral blood mononuclear cells stimulated by Schistosoma mansoni antigens: Association between protein tyrosine kinases, mitogen-activated protein kinases and cytokine production. Parasitol. Int. 2000, 48, 255–264. [Google Scholar] [CrossRef]
- Almeida, C.A.; Romano-Silva, M.A.; Goes, A.M. Inhibition of protein kinases prevents lymphocyte activation by Schistosoma mansoni antigens and reduces in vivo granuloma reaction. Immunol. Lett. 1998, 62, 137–143. [Google Scholar] [CrossRef]
- Almeida, C.A.; Leite, M.F.; Goes, A.M. Signal transduction events in human peripheral blood mononuclear cells stimulated by Schistosoma mansoni antigens. Hum. Immunol. 2001, 62, 1159–1166. [Google Scholar] [CrossRef]
- Oliveira-Prado, R.; Caldas, I.R.; Teixeira-Carvalho, A.; Andrade, M.V.; Fares, R.C.G.; Portugal, L.M.; Gazzinelli, A.; Corrêa-Oliveira, R.; Cunha-Melo, J.R. Cytokine profile, proliferation and phosphorylation of ERK1/2 and Akt in circulating mononuclear cells from individuals during the chronic intestinal phase of Schistosomiasis mansoni infection. BMC Infect. Dis. 2012, 12, 380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yegorov, S.; Joag, V.; Galiwango, R.M.; Good, S.V.; Mpendo, J.; Tannich, E.; Boggild, A.K.; Kiwanuka, N.; Bagaya, B.S.; Kaul, R. Schistosoma mansoni treatment reduces HIV entry into cervical CD4+ T cells and induces IFN-I pathways. Nat. Commun. 2019, 10, 2296. [Google Scholar] [CrossRef]
- Chaudhary, B.; Elkord, E. Regulatory T Cells in the Tumor Microenvironment and Cancer Progression: Role and Therapeutic Targeting. Vaccines 2016, 4, 28. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Wu, T.; Zheng, B.; Chen, L. Individualized precision treatment: Targeting TAM in HCC. Cancer Lett. 2019, 458, 86–91. [Google Scholar] [CrossRef]
- Meevissen, M.H.J.; Driessen, N.N.; Smits, H.H.; Versteegh, R.; van Vliet, S.J.; van Kooyk, Y.; Schramm, G.; Deelder, A.M.; Haas, H.; Yazdanbakhsh, M.; et al. Specific glycan elements determine differential binding of individual egg glycoproteins of the human parasite Schistosoma mansoni by host C-type lectin receptors. Int. J. Parasitol. 2012, 42, 269–277. [Google Scholar] [CrossRef]
- Abdulla, M.-H.; Lim, K.-C.; McKerrow, J.H.; Caffrey, C.R. Proteomic identification of IPSE/alpha-1 as a major hepatotoxin secreted by Schistosoma mansoni eggs. PLoS. Negl. Trop. Dis. 2011, 5, e1368. [Google Scholar] [CrossRef] [Green Version]
- Everts, B.; Hussaarts, L.; Driessen, N.N.; Meevissen, M.H.J.; Schramm, G.; van der Ham, A.J.; van der Hoeven, B.; Scholzen, T.; Burgdorf, S.; Mohrs, M.; et al. Schistosome-derived omega-1 drives Th2 polarization by suppressing protein synthesis following internalization by the mannose receptor. J. Exp. Med. 2012, 209, 1753–1767. [Google Scholar] [CrossRef] [Green Version]
- Knuhr, K.; Langhans, K.; Nyenhuis, S.; Viertmann, K.; Kildemoes, A.M.O.; Doenhoff, M.J.; Haas, H.; Schramm, G. Schistosoma mansoni Egg-Released IPSE/alpha-1 Dampens Inflammatory Cytokine Responses via Basophil Interleukin (IL)-4 and IL-13. Front. Immunol. 2018, 9, 2293. [Google Scholar] [CrossRef] [Green Version]
- Kaur, I.; Schramm, G.; Everts, B.; Scholzen, T.; Kindle, K.B.; Beetz, C.; Montiel-Duarte, C.; Blindow, S.; Jones, A.T.; Haas, H.; et al. Interleukin-4-Inducing Principle from Schistosoma mansoni Eggs Contains a Functional C-Terminal Nuclear Localization Signal Necessary for Nuclear Translocation in Mammalian Cells but Not for Its Uptake. Infect. Immun. 2011, 79, 1779–1788. [Google Scholar] [CrossRef] [Green Version]
- Pennington, L.F.; Alouffi, A.; Mbanefo, E.C.; Ray, D.; Heery, D.M.; Jardetzky, T.S.; Hsieh, M.H.; Falcone, F.H. H-IPSE is a pathogen-secreted host nucleus infiltrating protein (infiltrin) expressed exclusively by the Schistosoma haematobium egg stage. Infec. Immun. 2017, 85, e00301-17. [Google Scholar] [CrossRef] [Green Version]
- Fahel, J.S.; Macedo, G.C.; Pinheiro, C.S.; Caliari, M.V.; Oliveira, S.C. IPSE/alpha-1 of Schistosoma mansoni egg induces enlargement of granuloma but does not alter Th2 balance after infection. Parasite Immunol. 2010, 32, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Sica, A.; Mantovani, A. Macrophage plasticity and polarization: In vivo veritas. J. Clin. Investig. 2012, 122, 787–795. [Google Scholar] [CrossRef]
- Mbanefo, E.C.; Le, L.; Pennington, L.F.; Hsieh, Y.-J.; Odegaard, J.I.; Lapira, K.; Jardetzky, T.S.; Falcone, F.H.; Hsieh, M.H. IPSE, a urogenital parasite-derived immunomodulatory molecule, suppresses bladder pathogenesis and anti-microbial peptide gene expression in bacterial urinary tract infection. Parasit. Vectors 2020, 13, 615. [Google Scholar] [CrossRef] [PubMed]
- Steinfelder, S.; Andersen, J.F.; Cannons, J.L.; Feng, C.G.; Joshi, M.; Dwyer, D.; Caspar, P.; Schwartzberg, P.L.; Sher, A.; Jankovic, D. The major component in schistosome eggs responsible for conditioning dendritic cells for Th2 polarization is a T2 ribonuclease (omega-1). J. Exp. Med. 2009, 206, 1681–1690. [Google Scholar] [CrossRef]
- Oliveira, K.C.; Cardoso, R.; Dos Santos, A.C.; Fernandes, R.; Botelho, M.C. Imbalance of Steroid Hormones in Hamsters Infected with Schistosoma mansoni. Endocr. Metab. Immune Disord. Drug Targets 2019, 19, 1122–1126. [Google Scholar] [CrossRef]
- Stadecker, M.J.; Asahi, H.; Finger, E.; Hernandez, H.J.; Rutitzky, L.I.; Sun, J. The immunobiology of Th1 polarization in high-pathology schistosomiasis. Immunol. Rev. 2004, 201, 168–179. [Google Scholar] [CrossRef]
- Mantovani, A.; Allavena, P.; Sica, A.; Balkwill, F. Cancer-related inflammation. Nature 2008, 454, 436–444. [Google Scholar] [CrossRef]
- Budhu, A.; Forgues, M.; Ye, Q.-H.; Jia, H.-L.; He, P.; Zanetti, K.A.; Kammula, U.S.; Chen, Y.; Qin, L.-X.; Tang, Z.-Y.; et al. Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment. Cancer Cell 2006, 10, 99–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, Y.; Lo, C.M.; Ling, C.C.; Liu, X.B.; Ng, K.T.-P.; Chu, A.C.Y.; Ma, Y.Y.; Li, C.X.; Fan, S.T.; Man, K. Regulatory B cells accelerate hepatocellular carcinoma progression via CD40/CD154 signaling pathway. Cancer Lett. 2014, 355, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Haeberlein, S.; Obieglo, K.; Ozir-Fazalalikhan, A.; Chayé, M.A.M.; Veninga, H.; van der Vlugt, L.E.P.M.; Voskamp, A.; Boon, L.; den Haan, J.M.M.; Westerhof, L.B.; et al. Schistosome egg antigens, including the glycoprotein IPSE/alpha-1, trigger the development of regulatory B cells. PLoS Pathog. 2017, 13, e1006539. [Google Scholar] [CrossRef] [Green Version]
- Lurje, I.; Hammerich, L.; Tacke, F. Dendritic Cell and T Cell Crosstalk in Liver Fibrogenesis and Hepatocarcinogenesis: Implications for Prevention and Therapy of Liver Cancer. Int. J. Mol. Sci. 2020, 21, 7378. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Li, N.; Li, H.; Zhang, T.; Wang, F.; Li, Q. Increased prevalence of regulatory T cells in the tumor microenvironment and its correlation with TNM stage of hepatocellular carcinoma. J. Cancer Res. Clin. Oncol. 2010, 136, 1745–1754. [Google Scholar] [CrossRef] [PubMed]
- Cooke, A.; Tonks, P.; Jones, F.M.; O’Shea, H.; Hutchings, P.; Fulford, A.J.; Dunne, D.W. Infection with Schistosoma mansoni prevents insulin dependent diabetes mellitus in non-obese diabetic mice. Parasite Immunol. 1999, 21, 169–176. [Google Scholar] [CrossRef]
- Xu, Z.-P.; Chang, H.; Ni, Y.-Y.; Li, C.; Chen, L.; Hou, M.; Ji, M.-J. Schistosoma japonicum infection causes a reprogramming of glycolipid metabolism in the liver. Parasit. Vectors 2019, 12, 388. [Google Scholar] [CrossRef]
- Weglage, J.; Wolters, F.; Hehr, L.; Lichtenberger, J.; Wulz, C.; Hempel, F.; Baier, A.; Quack, T.; Köhler, K.; Longerich, T.; et al. Schistosoma mansoni eggs induce Wnt/β-catenin signaling and activate the protooncogene c-Jun in human and hamster colon. Sci. Rep. 2020, 10, 2492. [Google Scholar] [CrossRef] [PubMed]
- Roderfeld, M.; Padem, S.; Lichtenberger, J.; Quack, T.; Weiskirchen, R.; Longerich, T.; Schramm, G.; Churin, Y.; Irungbam, K.; Tschuschner, A.; et al. Schistosoma mansoni egg secreted antigens activate HCC-associated transcription factors c-Jun and STAT3 in hamster and human hepatocytes. Hepatology 2020, 72, 626–641. [Google Scholar] [CrossRef] [Green Version]
- Osada, Y.; Shimizu, S.; Kumagai, T.; Yamada, S.; Kanazawa, T. Schistosoma mansoni infection reduces severity of collagen-induced arthritis via down-regulation of pro-inflammatory mediators. Int. J. Parasitol. 2009, 39, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Shen, J.; Wen, H.; Zhong, Z.; Luo, Q.; Chu, D.; Qi, Y.; Xu, Y.; Wei, W. Impact of Schistosoma japonicum infection on collagen-induced arthritis in DBA/1 mice: A murine model of human rheumatoid arthritis. PLoS ONE 2011, 6, e23453. [Google Scholar] [CrossRef]
- Driss, V.; El Nady, M.; Delbeke, M.; Rousseaux, C.; Dubuquoy, C.; Sarazin, A.; Gatault, S.; Dendooven, A.; Riveau, G.; Colombel, J.F.; et al. The schistosome glutathione S-transferase P28GST, a unique helminth protein, prevents intestinal inflammation in experimental colitis through a Th2-type response with mucosal eosinophils. Mucosal Immunol. 2016, 9, 322–335. [Google Scholar] [CrossRef] [PubMed]
- Floudas, A.; Aviello, G.; Schwartz, C.; Jeffery, I.B.; O’Toole, P.W.; Fallon, P.G. Schistosoma mansoni worm infection regulates the intestinal microbiota and susceptibility to colitis. Infect. Immun. 2019, 87, e00275. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Xie, H.; Xu, L.; Liao, Q.; Wan, S.; Yu, Z.; Lin, D.; Zhang, B.; Lv, Z.; Wu, Z.; et al. rSj16 Protects against DSS-Induced Colitis by Inhibiting the PPAR-α Signaling Pathway. Theranostics 2017, 7, 3446–3460. [Google Scholar] [CrossRef] [PubMed]
- Yan, K.; Wang, B.; Zhou, H.; Luo, Q.; Shen, J.; Xu, Y.; Zhong, Z. Amelioration of type 1 diabetes by recombinant fructose-1,6-bisphosphate aldolase and cystatin derived from Schistosoma japonicum in a murine model. Parasitol. Res. 2020, 119, 203–214. [Google Scholar] [CrossRef]
- Li, H.; Wang, S.; Zhan, B.; He, W.; Chu, L.; Qiu, D.; Li, N.; Wan, Y.; Zhang, H.; Chen, X.; et al. Therapeutic effect of Schistosoma japonicum cystatin on bacterial sepsis in mice. Parasit. Vectors 2017, 10, 222. [Google Scholar] [CrossRef] [Green Version]
- He, G.; Yu, G.-Y.; Temkin, V.; Ogata, H.; Kuntzen, C.; Sakurai, T.; Sieghart, W.; Peck-Radosavljevic, M.; Leffert, H.L.; Karin, M. Hepatocyte IKKbeta/NF-kappaB inhibits tumor promotion and progression by preventing oxidative stress-driven STAT3 activation. Cancer Cell 2010, 17, 286–297. [Google Scholar] [CrossRef] [Green Version]
- Eissa, M.M.; Mostafa, D.K.; Ghazy, A.A.; El Azzouni, M.Z.; Boulos, L.M.; Younis, L.K. Anti-Arthritic Activity of Schistosoma mansoni and Trichinella spiralis Derived-Antigens in Adjuvant Arthritis in Rats: Role of FOXP3+ Treg Cells. PLoS ONE 2016, 11, e0165916. [Google Scholar] [CrossRef] [PubMed]
- Hasby, E.A.; Hasby Saad, M.A.; Shohieb, Z.; El Noby, K. FoxP3+ T regulatory cells and immunomodulation after Schistosoma mansoni egg antigen immunization in experimental model of inflammatory bowel disease. Cell Immunol. 2015, 295, 67–76. [Google Scholar] [CrossRef]
- Cleenewerk, L.; Garssen, J.; Hogenkamp, A. Clinical Use of Schistosoma mansoni Antigens as Novel Immunotherapies for Autoimmune Disorders. Front. Immunol. 2020, 11, 1821. [Google Scholar] [CrossRef]
- Osada, Y.; Fujiyama, T.; Kamimura, N.; Kaji, T.; Nakae, S.; Sudo, K.; Ishiwata, K.; Kanazawa, T. Dual genetic absence of STAT6 and IL-10 does not abrogate anti-hyperglycemic effects of Schistosoma mansoni in streptozotocin-treated diabetic mice. Exp. Parasitol. 2017, 177, 1–12. [Google Scholar] [CrossRef]
- Hussaarts, L.; García-Tardón, N.; van Beek, L.; Heemskerk, M.M.; Haeberlein, S.; van der Zon, G.C.; Ozir-Fazalalikhan, A.; Berbée, J.F.P.; van Willems Dijk, K.; van Harmelen, V.; et al. Chronic helminth infection and helminth-derived egg antigens promote adipose tissue M2 macrophages and improve insulin sensitivity in obese mice. FASEB J. 2015, 29, 3027–3039. [Google Scholar] [CrossRef]
- Tang, C.-L.; Yu, X.-H.; Li, Y.; Zhang, R.-H.; Xie, J.; Liu, Z.-M. Schistosoma japonicum Soluble Egg Antigen Protects against Type 2 Diabetes in Leprdb/db Mice by Enhancing Regulatory T Cells and Th2 Cytokines. Front. Immunol. 2019, 10, 271. [Google Scholar] [CrossRef]
- Tang, H.; Liang, Y.-B.; Chen, Z.-B.; Du, L.-L.; Zeng, L.-J.; Wu, J.-G.; Yang, W.; Liang, H.-P.; Ma, Z.-F. Soluble Egg Antigen Activates M2 Macrophages via the STAT6 and PI3K Pathways, and Schistosoma Japonicum Alternatively Activates Macrophage Polarization to Improve the Survival Rate of Septic Mice. J. Cell Biochem. 2017, 118, 4230–4239. [Google Scholar] [CrossRef]
- El-Tonsy, M.M.; Hussein, H.M.; Helal, T.; Tawfik, R.A.; Koriem, K.M.; Hussein, H.M. Schistosoma mansoni infection: Is it a risk factor for development of hepatocellular carcinoma? Acta Trop. 2013, 128, 542–547. [Google Scholar] [CrossRef]
- He, G.; Dhar, D.; Nakagawa, H.; Font-Burgada, J.; Ogata, H.; Jiang, Y.; Shalapour, S.; Seki, E.; Yost, S.E.; Jepsen, K.; et al. Identification of liver cancer progenitors whose malignant progression depends on autocrine IL-6 signaling. Cell 2013, 155, 384–396. [Google Scholar] [CrossRef] [Green Version]
- He, G.; Karin, M. NF-κB and STAT3 - key players in liver inflammation and cancer. Cell Res. 2011, 21, 159–168. [Google Scholar] [CrossRef] [Green Version]
- Verzella, D.; Pescatore, A.; Capece, D.; Vecchiotti, D.; Ursini, M.V.; Franzoso, G.; Alesse, E.; Zazzeroni, F. Life, death, and autophagy in cancer: NF-κB turns up everywhere. Cell Death Dis. 2020, 11, 210. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.T.W.; Cheng, P.C.; Chang, K.C.; Cao, J.P.; Feng, J.L.; Chen, C.C.; Lam, H.Y.P.; Peng, S.Y. Activation of the NLRP3 and AIM2 inflammasomes in a mouse model of Schistosoma mansoni infection. J. Helminthol. 2019, 94, e72. [Google Scholar] [CrossRef]
- Vennervald, B.J.; Polman, K. Helminths and malignancy. Parasite Immunol. 2009, 31, 686–696. [Google Scholar] [CrossRef]
- de Oliveira, R.B.; Senger, M.R.; Vasques, L.M.; Gasparotto, J.; dos Santos, J.P.A.; Pasquali, M.A.d.B.; Moreira, J.C.F.; Silva, F.P.; Gelain, D.P. Schistosoma mansoni infection causes oxidative stress and alters receptor for advanced glycation endproduct (RAGE) and tau levels in multiple organs in mice. Int. J. Parasitol. 2013, 43, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Habib, S.L.; Said, B.; Awad, A.T.; Mostafa, M.H.; Shank, R.C. Novel adenine adducts, N7-guanine-AFB1 adducts, and p53 mutations in patients with schistosomiasis and aflatoxin exposure. Cancer Detect. Prev. 2006, 30, 491–498. [Google Scholar] [CrossRef]
- Jusakul, A.; Cutcutache, I.; Yong, C.H.; Lim, J.Q.; Huang, M.N.; Padmanabhan, N.; Nellore, V.; Kongpetch, S.; Ng, A.W.T.; Ng, L.M.; et al. Whole-Genome and Epigenomic Landscapes of Etiologically Distinct Subtypes of Cholangiocarcinoma. Cancer Discov. 2017, 7, 1116–1135. [Google Scholar] [CrossRef] [Green Version]
- Bromberg, J.F.; Wrzeszczynska, M.H.; Devgan, G.; Zhao, Y.; Pestell, R.G.; Albanese, C.; Darnell, J.E. Stat3 as an oncogene. Cell 1999, 98, 295–303. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Niu, G.; Kortylewski, M.; Burdelya, L.; Shain, K.; Zhang, S.; Bhattacharya, R.; Gabrilovich, D.; Heller, R.; Coppola, D.; et al. Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat. Med. 2004, 10, 48–54. [Google Scholar] [CrossRef]
- Fuest, M.; Willim, K.; MacNelly, S.; Fellner, N.; Resch, G.P.; Blum, H.E.; Hasselblatt, P. The transcription factor c-Jun protects against sustained hepatic endoplasmic reticulum stress thereby promoting hepatocyte survival. Hepatology 2012, 55, 408–418. [Google Scholar] [CrossRef] [PubMed]
- Stepniak, E.; Ricci, R.; Eferl, R.; Sumara, G.; Sumara, I.; Rath, M.; Hui, L.; Wagner, E.F. c-Jun/AP-1 controls liver regeneration by repressing p53/p21 and p38 MAPK activity. Genes Dev. 2006, 20, 2306–2314. [Google Scholar] [CrossRef] [Green Version]
- Eferl, R.; Ricci, R.; Kenner, L.; Zenz, R.; David, J.-P.; Rath, M.; Wagner, E.F. Liver tumor development. c-Jun antagonizes the proapoptotic activity of p53. Cell 2003, 112, 181–192. [Google Scholar] [CrossRef] [Green Version]
- Min, L.; Ji, Y.; Bakiri, L.; Qiu, Z.; Cen, J.; Chen, X.; Chen, L.; Scheuch, H.; Zheng, H.; Qin, L.; et al. Liver cancer initiation is controlled by AP-1 through SIRT6-dependent inhibition of survivin. Nat. Cell Biol. 2012, 14, 1203–1211. [Google Scholar] [CrossRef]
- Machida, K.; Tsukamoto, H.; Liu, J.-C.; Han, Y.-P.; Govindarajan, S.; Lai, M.M.C.; Akira, S.; Ou, J.-H.J. c-Jun mediates hepatitis C virus hepatocarcinogenesis through signal transducer and activator of transcription 3 and nitric oxide-dependent impairment of oxidative DNA repair. Hepatology 2010, 52, 480–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CHEEVER, A. Hepatic vascular lesions in mice infected with Schistosoma mansoni. Arch. Pathol. 1961, 72, 648–657. [Google Scholar] [PubMed]
- Shariati, F.; Pérez-Arellano, J.L.; Carranza, C.; López-Abán, J.; Vicente, B.; Arefi, M.; Muro, A. Evaluation of the role of angiogenic factors in the pathogenesis of schistosomiasis. Exp. Parasitol. 2011, 128, 44–49. [Google Scholar] [CrossRef]
- Freedman, D.O.; Ottesen, E.A. Eggs of Schistosoma mansoni stimulate endothelial cell proliferation in vitro. J. Infect. Dis. 1988, 158, 556–562. [Google Scholar] [CrossRef]
- Loeffler, D.A.; Lundy, S.K.; Singh, K.P.; Gerard, H.C.; Hudson, A.P.; Boros, D.L. Soluble egg antigens from Schistosoma mansoni induce angiogenesis-related processes by up-regulating vascular endothelial growth factor in human endothelial cells. J. Infect. Dis. 2002, 185, 1650–1656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keum, N.; Giovannucci, E. Global burden of colorectal cancer: Emerging trends, risk factors and prevention strategies. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 713–732. [Google Scholar] [CrossRef]
- Montminy, E.M.; Jang, A.; Conner, M.; Karlitz, J.J. Screening for Colorectal Cancer. Med. Clin. N. Am. 2020, 104, 1023–1036. [Google Scholar] [CrossRef]
- Elbaz, T.; Esmat, G. Hepatic and intestinal schistosomiasis: Review. J. Adv. Res. 2013, 4, 445–452. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, A.R.; al Karawi, M.; Yasawy, M.I. Schistosomal colonic disease. Gut 1990, 31, 439–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Issa, I.; Osman, M.; Aftimos, G. Schistosomiasis manifesting as a colon polyp: A case report. J. Med. Case Rep. 2014, 8, 331. [Google Scholar] [CrossRef] [Green Version]
- Jamal, M.; Rayes, O.; Samuel, L.; Tibbetts, R.; Pimentel, J.D. The Brief Case: Benign Rectal Polyp with Schistosoma mansoni. J. Clin. Microbiol. 2017, 55, 992–995. [Google Scholar] [CrossRef] [Green Version]
- Raso, P.; Sander, E.M.; Raso, L.A.M.; Andrade Filho, J.d.S. Anal polyp caused by Schistosoma mansoni. Rev. Soc. Bras. Med. Trop. 2013, 46, 252–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ata, A.A.; el-Raziky, S.H.; el-Hawey, A.M.; Rafla, H. A clinicopathological study of schistosomal colonic polyposis and their pathogenesis. J. Egypt. Med. Assoc. 1970, 53, 762–772. [Google Scholar]
- Akere, A.; Oluwasola, A.O.; Fakoya, T.O.; Lawan, A. Schistosomiasis presenting as colonic polypoid masses in a nigerian patient. Ann. Ib. Postgrad. Med. 2017, 15, 61–64. [Google Scholar]
- Ch’en, M.C.; Hu, J.C.; Chang, P.Y.; Chuang, C.Y.; Ts’ao, P.F.; Chang, S.H.; Wang, F.P.; Ch’en, T.L.; Chou, S.C. Pathogenesis of carcinoma of the colon and rectum in schistosomiasis japonica: A study on 90 cases. Chin. Med. J. 1965, 84, 513–525. [Google Scholar] [PubMed]
- el Malatawy, A.; el Habashy, A.; Lechine, N.; Dixon, H.; Davis, A.; Mott, K.E. Selective population chemotherapy among schoolchildren in Beheira governorate: The UNICEF/Arab Republic of Egypt/WHO Schistosomiasis Control Project. Bull. World Health Organ. 1992, 70, 47–56. [Google Scholar]
- Ming-Chai, C.; Chi-Yuan, C.; Pei-Yu, C.; Jen-Chun, H. Evolution of colorectal cancer in schistsosomiasis: Transitional mucosal changes adjacent to large intestinal carcinoma in colectomy specimens. Cancer 1980, 46, 1661–1675. [Google Scholar] [CrossRef]
- Faust, C.L.; Osakunor, D.N.M.; Downs, J.A.; Kayuni, S.; Stothard, J.R.; Lamberton, P.H.L.; Reinhard-Rupp, J.; Rollinson, D. Schistosomiasis Control: Leave No Age Group Behind. Trends Parasitol. 2020, 36, 582–591. [Google Scholar] [CrossRef] [PubMed]
- Kabatereine, N.B.; Kemijumbi, J.; Ouma, J.H.; Kariuki, H.C.; Richter, J.; Kadzo, H.; Madsen, H.; Butterworth, A.E.; Ørnbjerg, N.; Vennervald, B.J. Epidemiology and morbidity of Schistosoma mansoni infection in a fishing community along Lake Albert in Uganda. Trans. R. Soc. Trop. Med. Hyg. 2004, 98, 711–718. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Hanai, J.; Gui, L. Peanut lectin-binding sites and mucins in benign and malignant colorectal tissues associated with schistomatosis. Histol. Histopathol. 1998, 13, 961–966. [Google Scholar] [CrossRef]
- Soliman, A.S.; Bondy, M.L.; El-Badawy, S.A.; Mokhtar, N.; Eissa, S.; Bayoumy, S.; Seifeldin, I.A.; Houlihan, P.S.; Lukish, J.R.; Watanabe, T.; et al. Contrasting molecular pathology of colorectal carcinoma in Egyptian and Western patients. Br. J. Cancer 2001, 85, 1037–1046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eissa, M.M.; Ismail, C.A.; El-Azzouni, M.Z.; Ghazy, A.A.; Hadi, M.A. Immuno-therapeutic potential of Schistosoma mansoni and Trichinella spiralis antigens in a murine model of colon cancer. Investig. New Drugs 2019, 37, 47–56. [Google Scholar] [CrossRef]
- Almeida, G.F.G.; Sarinho, F.W.; Carvalho de Abreu, E.; Lima, P.; Oliveira Filho, J.B.; Moura, M.A.d.L.; Ribeiro, L.N.B.; Rolim de Brito, B.; Lira, M.M.d.M.; Maior, M.d.R.M.S.; et al. DNA repair defect and RAS mutation in two patients with Schistosoma mansoni-associated colorectal cancer: Carcinogenesis steps or mere coincidence? J. Glob. Oncol. 2017, 3, 423–426. [Google Scholar] [CrossRef]
- Nacif-Pimenta, R.; da Silva Orfanó, A.; Mosley, I.A.; Karinshak, S.E.; Ishida, K.; Mann, V.H.; Coelho, P.M.Z.; da Costa, J.M.C.; Hsieh, M.H.; Brindley, P.J.; et al. Differential responses of epithelial cells from urinary and biliary tract to eggs of Schistosoma haematobium and S. mansoni. Sci. Rep. 2019, 9, 10731. [Google Scholar] [CrossRef] [Green Version]
- Schatoff, E.M.; Leach, B.I.; Dow, L.E. Wnt signaling and colorectal cancer. Curr. Colorectal Cancer Rep. 2017, 13, 101–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Molecule | Effect | Type of Cancer Associated with Infection | Expressing Lifecycle Stage | Reference (PMID) |
---|---|---|---|---|
Opisthorchis viverrini | ||||
Granulin (Ov-GRN-1) | angiogenesis | eggs, metacercariae, juveniles, adults | 25450776 | |
wound healing | CC | 26485648 | ||
proliferation | 19816559 | |||
Clonorchis sinensis | ||||
CsGRN | cell migration and invasion | CC, HCC | adults | 28545547 |
Csseverin | anti-apoptotic | metacercariae and adults | 24367717 | |
Schistosoma haematobium | ||||
IPSE/α1 | proliferation and angiogenesis | BLCA, SCC | eggs only | 33101456 |
Schistosoma mansoni | ||||
IPSE/α1 | proliferation, c-Jun and STAT3 activation | HCC | eggs only | 30053321 |
CRC | 33361772 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
von Bülow, V.; Lichtenberger, J.; Grevelding, C.G.; Falcone, F.H.; Roeb, E.; Roderfeld, M. Does Schistosoma Mansoni Facilitate Carcinogenesis? Cells 2021, 10, 1982. https://doi.org/10.3390/cells10081982
von Bülow V, Lichtenberger J, Grevelding CG, Falcone FH, Roeb E, Roderfeld M. Does Schistosoma Mansoni Facilitate Carcinogenesis? Cells. 2021; 10(8):1982. https://doi.org/10.3390/cells10081982
Chicago/Turabian Stylevon Bülow, Verena, Jakob Lichtenberger, Christoph G. Grevelding, Franco H. Falcone, Elke Roeb, and Martin Roderfeld. 2021. "Does Schistosoma Mansoni Facilitate Carcinogenesis?" Cells 10, no. 8: 1982. https://doi.org/10.3390/cells10081982
APA Stylevon Bülow, V., Lichtenberger, J., Grevelding, C. G., Falcone, F. H., Roeb, E., & Roderfeld, M. (2021). Does Schistosoma Mansoni Facilitate Carcinogenesis? Cells, 10(8), 1982. https://doi.org/10.3390/cells10081982