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Abstract: Schistosomiasis is one of the most prominent parasite-induced infectious diseases, causing
tremendous medical and socioeconomic problems. Current studies have reported on the spread of
endemic regions and the fear of development of resistance against praziquantel, the only effective
drug available. Among the Schistosoma species, only S. haematobium is classified as a Group 1
carcinogen (definitely cancerogenic to humans), causing squamous cell carcinoma of the bladder,
whereas infection with S. mansoni is included in Group 3 of carcinogenic hazards to humans by the
International Agency for Research on Cancer (IARC), indicating insufficient evidence to determine its
carcinogenicity. Nevertheless, although S. mansoni has not been discussed as an organic carcinogen,
the multiplicity of case reports, together with recent data from animal models and cell culture
experiments, suggests that this parasite can predispose patients to or promote hepatic and colorectal
cancer. In this review, we discuss the current data, with a focus on new developments regarding
the association of S. mansoni infection with human cancer and the recently discovered biomolecular
mechanisms by which S. mansoni may predispose patients to cancer development and carcinogenesis.
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1. Introduction

Schistosomiasis is one of the most common parasitic infectious diseases worldwide,
with at least 236 million people requiring preventive treatment in 2019 (WHO 2021) [1].
While the majority of people at risk live in the endemic regions of Africa, Schistosoma species
are also prevalent in the Middle East, the Caribbean, South America, and Southeast Asia [2].
Schistosomiasis is increasingly being imported into regions with temperate climates by
immigrants and travelers from endemic areas [3,4]. Epidemiological case studies of an
outbreak of urogenital schistosomiasis in Corsica, France, and the transmission of African
schistosomiasis in China underline the potential risk of schistosomiasis spreading into
novel areas [5,6]. Two recently published studies analyzed the spread of the intermediate
host, a freshwater snail, and zoonotic implications, which might be causative for the
current expansion of schistosomiasis [7,8]. Moreover, the development of new hybrid
species, which originated from humans via zoonotic spillover from livestock populations,
has recently been described in areas where S. haematobium is co-endemic with S. bovis [9].

After contact with fresh water, these parasitic blood flukes infect their host by pene-
trating the skin as cercariae, the free-swimming infectious stage of schistosomes [10]. Adult
male and female worms live within the venules of their human host, where they mate.
Depending on the species, paired schistosomes can produce approximately 300-2000 eggs
daily, which are deposited into the stool or urine to reach the environment for continuing
their lifecycle [11].

There are three major species infecting humans: Schistosoma mansoni, Schistosoma
haematobium, and Schistosoma japonicum [12]. Both S. mansoni and S. haematobium are present
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in Africa and the Middle East, while S. mansoni also occurs in South America. S. japonicum
is confined to Asia, mainly China and the Philippines. Schistosomes live an average of
3-10 years but, in some cases, lifespans of nearly 40 years have been reported [13].

Following infection of the final host, schistosome cercariae develop to schistosomulae,
the juvenile form of this blood fluke. Schistosomula migrate via the bloodstream to the liver,
where they reach the adult stage. Male and female schistosomes pair, and, as couples, they
migrate to the urogenital veins (S. haematobium) or mesenteric veins of the gut (S. mansoni).
Following pairing, the male-dependent sexual maturation of the female is completed [14]
and egg production starts. S. mansoni couples live within the mesenteric veins, where
they produce eggs [2]. Chronification of schistosomiasis begins several weeks to months
after the cercariae enter their definite host. The symptoms depend on the degree of worm
infestation, the rate of oviposition, and the organ site of granulomatous entrapment of the
eggs. During chronic stages of infection, half to two-thirds of the eggs are swept away in
the circulation to multiple organs instead of being excreted via the stool [2]. The majority
of those eggs end up in the liver, causing symptoms of hepatic schistosomiasis [2,11].

Simultaneously to the hepatic manifestation, intestinal schistosomiasis develops when
eggs pass through or become trapped in the intestinal tissues [15]. Severe chronic infections
with S. mansoni are mostly associated with hepatic and intestinal pathogenesis, while
urogenital schistosomiasis is mainly caused by S. haematobium [10]. The eggs provoke a
granulomatous host immune response, which induces chronic inflammation that leads to
the pathologic manifestations of schistosomiasis, i.e., portal and pulmonary hypertension,
bloody diarrhea, vaginal discomfort, hemospermia, nephropathy, and other organ-specific
manifestations [15]. The granulomatous inflammation facilitates the translocation process
of the eggs into the gastrointestinal lumen [15]. However, the egg granuloma also protects
the host from an exaggerated immune response against the antigenic eggs [2].

In general, infections might initiate or promote carcinogenesis through chronic inflam-
mation due to prolonged persistence of the inducing agent in the host [16]. Amongst other,
infections can promote damage of the DNA, proteins, and cell membranes, as well as the
modulation of enzyme activities and gene expression [17].

The global burden of cancer was estimated to be 19.2 million new cases and 10 million
cancer-related deaths in 2020 [18]. Approximately 20% of human cancers are caused by
infectious diseases [16,19]. It was estimated that 0.4% of the new cancers attributable to
infections were caused by the trematodes S. haematobium (0.3%), Opisthorchis viverrini, and
Clonorchis sinensis (both liver flukes together: 0.1%), which are considered as Group 1
carcinogens by the International Agency for Research on Cancer (IARC) [18]. Infection
with the liver flukes O. viverrini and C. sinensis increases the risk of developing cholan-
giocarcinoma, while in endemic areas, 46-75% of all bladder cancers can be attributed to
S. haematobium [20]. Important references to schistosomiasis and cancer date back to the
1940s [21-23]. Among the Schistosoma species, only S. haematobium is classified as a Group 1
carcinogen (definitely cancerogenic to humans), causing squamous cell carcinoma of the
bladder, whereas infection with S. mansoni is included in Group 3, indicating insufficient
evidence to determine its carcinogenicity [24]. In addition, a related liver fluke, Opisthorchis
felineus, is also classified as a Group 3 agent in a similar manner to S. mansoni. Several
reports have linked infection with Opisthorchis felineus to cancer [25,26]. Interestingly, vac-
cination against S. haematobium has been discussed as an important major public health
achievement in preventing cancer, similar to hepatitis B vaccines and HPV vaccines [27].
The question “Why does infection with some helminths cause cancer?” has been intensively
discussed and reviewed in the context of S. haematobium, O. viverrini, and C. sinensis [28].
For these three species, even concrete concepts of chemical carcinogenesis, including malig-
nant molecular mediators as well as mechanisms such as the formation of DNA adducts of
parasite-released oxysterols and estrogen-like metabolites, have been suggested [29-31]. A
future-oriented concept might be to study the known carcinogenic mechanisms induced by
S. haematobium, O. viverrini, and C. sinensis in models of S. mansoni infection.
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The data linking S. mansoni to cancer are insufficient and, in part, conflicting [32,33].
Nonetheless, case reports and descriptive studies from endemic regions have discussed the
possibility of an association between S. mansoni infestation and cancer, including hepatocel-
lular carcinoma (HCC) [33—-42], colorectal cancer (CRC) [43-48], bladder carcinoma [49],
prostate cancer [50], and follicular lymphomas [51,52]. Although S. mansoni is classified
as a Group 3 carcinogen, the multiplicity of case reports, together with data from animal
models and cell cultures, suggests that S. mansoni can at least predispose a patient to- or
promote cancer. Overall, the epidemiological evidence associating S. mansoni infection
with cancer is lacking, and studies are often of poor quality or conflicting. Therefore, well-
planned, rigorous epidemiological, experimental, and clinical studies are urgently needed
to determine the cause—effect relationship between S. mansoni and malignancy, and to
define the molecular mechanisms involved. In this review, we summarized current data on
the association of S. mansoni infection with human cancer and reviewed the biomolecular
mechanisms by which S. mansoni may predispose a patient to cancer development and
promote carcinogenesis, as schematically merged in Figure 1.
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Figure 1. Infection with S. mansoni induces processes predisposing a patient to malignant transforma-

tion and/or promoting hepatocellular carcinogenesis (HCC) and/or colorectal carcinogenesis (CRC).
Created with BioRender.com, online link: https:/ /biorender.com/, (accessed on 25 March 2021).

2. Search Strategy and Selection Criteria

For the literature retrieval and study selection process, Medline was searched via the
internet using the search engine PubMed (http:/ /www.ncbi.nih.gov/entrez/query.fcgi,
accessed on 23 March 2021). The aim of the literature search strategy was to identify
case reports and scientific studies of S. mansoni infection associated with cancer. The
primary search retrieved all studies published between 1980 and 2020 using the following
search terms: “Schistosoma” OR “Schistosoma mansoni” OR “Schistosomiasis” (title and
abstract) AND/OR “HCC OR hepatocellular cancer” OR “CRC OR colorectal cancer” (title
and abstract) AND “HBV” OR “HCV” OR “IPSE” (title and abstract) AND “1980-2021"
(publication date) AND “journal article” (publication type) AND “English OR German”
(language). A secondary search was conducted to locate reviews and editorials. The
reference lists of all retrieved papers were searched manually to detect additional hits
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not found by the primary Medline search. All the selected studies had been published as
full papers. For the current review, the choice of studies was focused on papers targeting
malignancy in the context of S. mansoni infection.

3. Hepatic Schistosomiasis

Hepatic schistosomiasis results from the host’s granulomatous cell-mediated immune
response and the metabolically active and highly antigenic ova of S. mansoni. The eggs
are swept from the mesenteric veins into the small portal branches of the liver via the
portal vein, where they are trapped in the pre-sinusoidal periportal tissues. At the site
of egg deposition, an excessive granulomatous response develops, which is harmful to
the liver by provoking progressive fibrosis. This can impair the blood flow and thereby
induce portal hypertension [12,53]. Progressive fibrosis in the portal tract often leads to
obstructive portal lesions and portal hypertension, and might result in hepatomegaly, often
in combination with splenomegaly, gastrointestinal bleeding, ascites, hepatic encephalopa-
thy, and liver failure [2]. This severe form of schistosomiasis might be fatal. Hepatic
fibrosis displays a wound-healing process, with progressive replacement of functional
parenchyma by the extracellular matrix [54,55]. Hepatic stellate cell (HSC) activation and
their trans-differentiation into myofibroblasts causes an overproduction of the extracellular
matrix (ECM), thus leading to increased vascular resistance, dysregulation of inflamma-
tory responses, and cirrhosis [56,57]. Regarding S. mansoni infection, the time from initial
infection to advanced fibrosis is usually 5-15 years [12].

HCC represents a fatal outcome of chronic liver disease of different etiologies, which
is the fourth-leading cause of cancer-related deaths globally [58]. The risk of HCC depends
on hepatic background factors, of which chronic inflammation and fibrosis are major
determinants [59]. Patients with liver fibrosis of any etiology belong to the high-risk group
for the development of HCC [60,61]. The increase in the incidence of HCC in recent years
is partly attributable to the increase in Type 2 diabetes and metabolic syndrome, which
can result in non-alcoholic fatty liver disease (NAFLD) and especially in non-alcoholic
steatohepatitis (NASH), with or without fibrosis [62-64].

The mechanisms involved in oncogene activation, tumor suppressor gene inactivation,
chromosomal rearrangement in combination with immune- and inflammatory responses
such as the induction of auto-aggressive CXCR6* CD8" T-cells and PD1* CD8" T-cells,
telomere shortening, DNA damage, oxidative stress, and autophagy are crucial for HCC
development [65-69]. The relationship between HCC and S. mansoni has been debated in
human cases [32,33]. Most Schistosoma-associated HCC cases develop in the presence of
advanced chronic liver disease related to chronic hepatitis C virus (HCV) infection, chronic
HBYV infection, and alcohol abuse [34]. Both HBV and HCV are considered to be major
causes of the progression to liver cirrhosis and HCC [70]. Co-infection with S. mansoni
and HCV or HBV is common in regions where schistosomiasis occurs endemically [71].
The available literature indicates that the co-infection with Schistosoma and HBV or HCV
likely acts as a cofactor by prolonging the carriage state and resulting more often in chronic
hepatitis with fibrosis, as well as higher mortality [34]. A study from Egypt reported on a
higher HCC occurrence in patients with co-infection with HCV and S. mansoni, suggesting
an increased incidence with co-infection [32]. In patients with concomitant HCV and
schistosomiasis, HCC was more commonly multifocal and advanced.

Several studies have shown that distinct T cell subpopulations have specific roles
not only in immune defense but also in maintaining immune homeostasis. Disturbance
of this balance can lead to undesirable side effects such as inflammation, susceptibility
to infection, or even autoimmune phenomena, such as the induction of auto-aggressive
CXCR6* CD8* T cells and PD1* CD8* T cells in the context of NASH [66,69]. Patients
co-infected with S. mansoni and HCV exhibited a dominant Th2 response, while the HCV-
induced Th1 response was downregulated [72]. Programmed Cell Death Protein 1 (PD-1)
plays a vital role in inhibiting immune responses and promoting self-tolerance [73]. As PD-
L1 plays an important role in various malignancies, therapeutic modulation of PD-1/PD-L1
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signaling is currently being investigated in order to generate novel therapeutic anticancer
strategies [73]. Most intriguing, PD-1 signaling is disturbed by S. mansoni [74], which may
indicate a possible link between S. mansoni-promoted carcinogenesis and PD-L1. Moreover,
it has been shown that the blockade of PD-1 signaling enhanced the Th2 cell responses and
aggravated liver immunopathology in mice infected with S. japonicum [75].

There is evidence that the cancer environment generated by the host’s inflamma-
tory cells is a crucial element in the neoplastic process [76]. Infection with S. mansoni
induces a predictable immunological reaction in the host, a Type 1 immune-dominated
response in the acute phase reaction, mainly targeted at worm antigens and characterized
by interleukin (IL)-12 and interferon (IFN)-y [2]. The early Th1l response switches to a
Th2-dominated response after the onset of parasite egg production. The release of cy-
tokines such as IL-4, IL-5, IL-10, and IL-13 is a hallmark of the egg-induced granulomatous
host immune response driven by Type 2 lymphocytes [77]. S. mansoni antigen-induced
cytokine production [78], T-cell proliferation, and in vitro granuloma formation involve
the activation of protein tyrosine kinases (PTKSs) and protein kinase C (PKC) [79]. It has
been speculated that immunomodulation might either influence PTKs activity or be the
result of altered PTK regulation [80]. Interestingly, SEA-stimulated CD4" T cells from
S. mansoni-infected patients had a lower proliferation rate than the same cells from the
non-infected group [81]. Most importantly, S. mansoni treatment reduces HIV entry into
cervical CD4* T cells and induces IEN-I pathways [82]. This observation may open a
new venue for HIV therapy, as S. mansoni infection has been linked with an increased
risk of HIV acquisition in women [82]. The authors concluded that the identification
of the signaling pathways and mechanisms by which treatment of S. mansoni infection
could reduce female HIV acquisition is an important step toward designing effective HIV
prevention programs [82]. Nevertheless, it is still rather uncertain whether these signal
transduction pathways may be involved in S. mansoni-associated carcinogenesis. Moreover,
recent studies have shown that Th9, Th17, and T follicular helper cells (Tth) cells might also
promote hepatic granulomas and fibrogenesis in schistosomiasis [77]. Additionally, hepatic
stellate cells, alternatively activated macrophages, eosinophils, and regulatory T cells have
been implicated in the fibrogranulomatous reaction [12]. Regulatory T cells and alterna-
tively activated macrophages in carcinogenesis suppress anti-tumor immune responses
and contribute to the development of an immunosuppressive tumor microenvironment,
thus promoting immune evasion and cancer progression [83,84].

It is important to emphasize that the schistosome eggs are bioactive entities that
proactively interact with the host to achieve their excretion. To this end, the eggs actively
manipulate the host’s immune system [2]. The effect of schistosome eggs on host cells
can be studied by co-culturing but also by stimulating host cells with egg-conditioned
media, soluble egg antigens (SEA), purified biomolecules from the eggs, and recombinantly
produced egg proteins. SEA of S. mansoni bear hundreds of glycosylated proteins with
immunomodulatory potential [85]. Among these, the glycoproteins alpha-1/IL4-inducing
principle from S. mansoni eggs (IPSE/ «1) and omega-1 (w-1) are the most abundant and
require interactions with selective C-type lectins on immune cells [86-88]. IPSE/ «1 has a
C-terminal nuclear localization signal (NLS) that conveys “infiltrin” activity, the ability
to infiltrate the nucleus by crossing the cell and nuclear membranes [89,90]. Importantly,
IPSE/ 1 further contributes to enlargement of hepatic granulomas [91]. IPSE [92] binds
to immunoglobulins, with a high affinity for IgE [88]. Once IPSE binds to IgE-bound
FceRI receptors on the surface of basophils, it triggers the release of IL-4 and IL-13 [89,93],
which directly induces the differentiation of monocytes into the alternatively activated
macrophage-like M2 phenotype.

w-1 is a member of the T2 RNase family, which enters the cell by binding to the
mannose receptor on dendritic cells [2], subsequently being internalized into the cell and
degrading cellular mRNA and rRNA products. w-1 has been identified as a powerful
Th2-inducing factor. Both the RNase activity and the glycan group are essential for Th2
skewing [87,94].
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The identification and characterization of trematode antigens is a relatively young
discipline and few data about carcinogenic effects of these antigens have been published
yet. Table 1 summarizes the carcinogenesis-associated mechanisms that can be induced
by IPSE, a major component secreted from schistosomal eggs, along with a list of the
analogous antigens of known Group I carcinogens:

Table 1. Table summarizing the identified parasite-derived proteins with suspected pro-carcinogenic activity. BLCA,
bladder cancer; CC, cholangiocarcinoma; CRC, colorectal carcinoma; HCC, hepatocellular carcinoma; SCC, squamous
cell carcinoma.

Type of Cancer Associated Expressing
Molecule Effect with Infection Lifecycle Stage Reference (PMID)
Opisthorchis viverrini
Granulin angiogenesis eggs, metacercariae 25450776
(OwCRN-1) wound healing cc B e 26485648
proliferation J ' 19816559
Clonorchis sinensis
cell migration
CsGRN and invasion CC, HCC adults 28545547
Csseverin anti-apoptotic metacercariae and adults 24367717
Schistosoma haematobium
IPSE/«1 angrg:;;;téﬁzsis BLCA, SCC eggs only 33101456
Schistosoma mansoni
proliferation, HCC 30053321
IPSE/ x1 c-Jun and STAT3 eggs only
activation CRC 33361772

Nevertheless, also other biologically active substances released by S. mansoni eggs
might influence their carcinogenic potential. It has been shown that S. mansoni alters the
levels of steroid hormones, which may change the status of the cancer environment by
affecting the endocrine system [95].

The firmly established Th2 milieu in chronic schistosomiasis is critical for the subse-
quent reduction of the T-cell response and immunopathology, and also for the development
of fibrosis [96]. Thus, this Th2 milieu might be involved in the progression of malignancy;,
as Th2 cytokines are related to cancer growth or metastasis [97,98]. Regulatory B-cells
(Bregs) accelerate HCC formation by induction of the growth and migratory potential of
cancer cells [99]. Schistosome egg antigens, including the glycoprotein IPSE/ 1, trigger
the development of Bregs [100]. Additionally, Bregs are capable of producing IL-10, which
induces Treg differentiation, thereby supporting a tolerogenic microenvironment [100].
While inflammatory injury drives both fibrogenesis and carcinogenesis, the tolerogenic
microenvironment of the liver conveys immunosuppressive effects that encourage cancer
growth [101]. In particular, the prevalence of Tregs is strongly correlated with HCC pro-
gression [102]. In schistosomiasis, regulatory T-cells (Tregs) exert an immunosuppressive
role to limit the granulomatous inflammation and fibrosis [77].

The dominant Th2 response of S. mansoni infection might have therapeutic activity,
e.g., reducing the incidence and development of diabetes in NOD mice [103]. Metabolic
changes correlated with the eggs deposited in the liver have been shown in S. japonicum-
infected mice, indicating the promotion of glycolysis-related genes on the one hand and
downregulation of gluconeogenesis-related genes on the other hand [104]. In addition to
the metabolic changes induced by the schistosome ova, SEA have the potential to alter
cancerogenic signaling at the molecular level in vitro and in vivo [105,106]. In cancer pro-
gression, metabolic reprogramming, oxidative stress, and DNA damage display crucial
events. Whether S. mansoni SEA induce metabolic changes in the liver or even a reprogram-
ming of the hepatic glucose metabolism remains ambiguous. However, it is tempting to
speculate that the eggs benefit from the host’s metabolic environment to ensure their own
survival, thereby disturbing the host’;s metabolic balance.
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Studies on animal models have demonstrated amelioration of arthritis [107,108],
colitis [109-111], Type 1 diabetes [112], and sepsis [113] with concomitant schistosome
infection through induction of Th2-specific and immune modulatory cytokines IL-4, IL-5,
IL-13, and IL-10 and suppression of Thl-specific cytokines IL-1(3, IL-6, IL12, TNF«, and
IFNy. In this context, it is interesting to note that the protective effect of S. japonicum
infection in an arthritis model is infection stage-dependent and was attributed to the Th2-
dominated response after the onset of parasite egg production, while the early Th1 response
in schistosomiasis exacerbated arthritis [108,114]. In addition, S. mansoni can induce Foxp3*
Tregs, tolerogenic dendritic cells (DCs), and alternatively activated macrophages, which
provide protective effects in arthritis [115], colitis [111,116], autoimmune diseases [117],
Type 1[112,118] and Type 2 diabetes [119,120], and sepsis [121].

Although the above mentioned positive immune modulatory effects of schistosomi-
asis and schistosomal products have been shown for different diseases, the Th2 milieu,
Tregs, and tolerogenic DCs are known to suppress tumor-specific immune responses, thus
establishing an immunosuppressive tumor microenvironment [83], which may account for
the procarcinogenic properties of S. mansoni infections.

The role of S. mansoni as a risk factor for developing HCC was studied in a mouse
model by inducing HCC with diethylnitrosamine (DEN) and concomitant schistosomi-
asis [122]. The cancerogenic effect of DEN was enhanced by S. mansoni. This led to the
conclusion that S. mansoni is able to accelerate dysplastic changes in the presence of another
risk factor, thus promoting cancer development, which appeared to be more aggressive
in the presence of S. mansoni [122]. However, in this early study, it became clear that data
are missing to explain how infection with S. mansoni may predispose patients to HCC
development and how S. mansoni alters cancer growth, angiogenesis, and metastasis. In
the liver of DEN-treated mice, infiltrating macrophages may facilitate the initiation of
cancer development by the release of TNF- and IL-6, which are able to activate essential
morbidity-associated nuclear factors and signaling pathways such as NF-«xB and STAT3
in HCC progenitor cells [114,123]. Aberrant NF-«kB and STAT3 signaling is important
for cell survival, and it has been involved in the pathogenesis of most human malignan-
cies [124,125]. In this context, it has been demonstrated that S. mansoni infection caused
mitochondrial damage, resulted in the release of ROS and superoxide, and upregulated
NF-kB (p65) expression [126]. Thus, it appears likely that S. mansoni-dependent activation
of NF-«kB signaling in DEN-treated mouse livers may provide cancer cells with a survival
advantage by the forced induction of anti-apoptotic genes.

Macrophages and eosinophils generate free radicals and nitrogen species in response
to parasites [127]. These products can oxidize and damage DNA, induce DNA mutations,
and may lead to genetic instabilities and malignant transformation [116]. Dysregulation
of the enzymatic antioxidant system has been observed in a S. mansoni-infected mouse
model. This was accompanied by the significantly lower activity of superoxide dismutase
but increased catalase activity in the liver [128].

An Egyptian study with subjects infected with S. mansoni, S. haematobium, or both
in parallel analyzed the most frequent mutations in human HCC [129]. A mutation in
codon 249 of the p53 gene was identified in populations exposed to a high dietary intake
of aflatoxin B1(AFB1) [129]. S. haematobium is known to cause mutations in the p53 gene.
The combination of schistosomiasis and aflatoxin B1 increased the incidence of p53 gene
mutations [129]. The mutations in codon 249 of the p53 gene were increased in patients
infected with S. haematobium compared with those infected with S. mansoni or a combination
of both species and compared with control subjects [129]. No p53 gene mutation was
detected in hepatic DNA from schistosomiasis-free patients [129]. Significant amounts of
N7-guanine-AFB1 adducts and novel adenine adducts (p < 0.01) were detected in patients
with schistosomiasis, mostly in patients infected with S. haematobium or a combination of
both species, suggesting that schistosomiasis and exposure to aflatoxin Bl act synergistically
to increase the incidence of p53 gene mutations [129]. The authors concluded that the
increase in p53 mutations might enhance the progression of HCC at an early age in patients
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with schistosomiasis [129]. Discrete mutation profiles that differ between liver fluke-
associated cholangiocarcinoma and non-liver fluke-associated cholangiocarcinoma have
been described [130]. In this regard, the identification of mutational signatures for HCC
with concurrent infection with S. mansoni might be a promising approach to gain further
insights into the mechanisms that might link S. mansoni to HCC.

Data from a hamster model, cell culture studies, and human biopsies provided ev-
idence that antigens released from the S. mansoni ova are able to modulate host-specific
cancerogenic pathways by activation of c-Jun and STAT3, correlating with cell-cycle activa-
tion and DNA double-strand breaks [106]. In vitro experiments with primary hepatocytes
and Huh? revealed that the activation of c-Jun and STAT3 as well as DNA repair were
induced by soluble egg antigens (SEA) and egg-conditioned medium, and, in particular,
by IPSE/ «1. STAT is constitutively expressed in cancer cells and is involved in cancero-
genesis and survival [131]. Furthermore, the constitutive activation of STAT3 inhibited
the maturation of dendritic cells through enhanced expression of IL-10 and VEGEF. Block-
ing STAT3 resulted in the activation of both the innate and adaptive anti-tumor immune
responses [132]. c-Jun is a major regulator of survival and proliferation during hepatic
regeneration [133,134]. In vivo studies have underlined the importance of c-Jun for the
induction and survival of liver cancer [135,136]. The HCV core protein potentiated chemi-
cally induced HCC through c-Jun and Stat3 activation in transgenic mice, which, in turn,
enhanced cell proliferation, suppressed apoptosis, and impaired oxidative DNA damage
repair, finally leading to hepatocellular transformation [137]. The permanent activation
of hepatocellular carcinoma-associated proto-oncogenes such as c-Jun and the associated
transcription factors, including Stat3, by substances released from tissue-trapped schisto-
some eggs may represent important factors contributing to the development of liver cancer,
e.g., in HBV or HCV patients with concomitant S. mansoni infection [106].

Schistosome-induced angiogenesis has been described in human studies and exper-
imental models. During murine infection, vascularization was found to be significantly
enhanced in regions with a high egg concentration. In addition, the protein level of the
pro-angiogenic factor VEGF was significantly higher in human subjects. Inhibition of
angiogenesis by endostatin in infected mice reduced hepatic egg deposition, worm load,
and mRNA expression of hepatic VEGF [138,139]. Studies identified living eggs and SEA
as the inducers of endothelial proliferation [140], which may promote angiogenesis within
hepatic granulomas by upregulating endothelial cell VEGE. The conditions created by
vessel occlusion, such as hypoxia, acidic aid pH, and low glucose concentrations, may also
contribute to the observed neovascularization [141]. Similar to what has been observed
in cancer, the growth of new vessels would maintain blood flow in scenarios of vessel
occlusion, which would enable the recruitment of leucocytes to developing granulomas
and ensure an adequate supply of oxygen and nutrients at these sites [15].

Figure 2 summarizes the known biomolecular factors and pathways induced by
S. mansoni that alter cellular processes such as proliferation, apoptosis, or DNA damage
that are linked to malignant hallmarks such as immune escape, survival, or tumor growth.
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Figure 2. Egg-secreted factors induce tolerogenic and cancer-promoting immune modulations,
i.e., the suppression of anti-tumor immune responses, and contribution to the development of an
immunosuppressive tumor microenvironment. Egg-secreted factors trigger cellular processes that

may predispose hepatocytes to neoplastic transformation or promote malignancy. Created with
BioRender.com, online link: https://biorender.com/ (accessed on 25 March 2021).

4. Intestinal Schistosomiasis

Globally, colorectal cancer (CRC) is the third most commonly diagnosed malignancy
and the second leading cause of cancer death [142]. Advanced colon polyps are strong risk
factors for colorectal cancer [143]. The primary presenting symptoms of intestinal schistoso-
miasis are usually tenesmus and the rectal passage of blood and mucous and bloody diar-
rhea [144]. Egg deposition and granuloma formation eventually lead to acute then chronic
schistosomal colitis and are commonly associated with polyp formation [145-148]. The
preferential site of schistosomal polyps is the rectum, followed by the sigmoid colon [149].
Histopathological evaluation of the polyps revealed granulomatous inflammation with
multiple, mostly calcified S. mansoni eggs in the center [145-147,150]. Several case reports
have described the associations of S. mansoni with prostate adenocarcinoma and colorectal
cancer [43,45,46,50]. It has been shown that S. mansoni-associated colorectal cancer is char-
acterized by a high percentage of synchronous tumors and mucinous adenocarcinomas,
and a higher frequency of advanced Stage IIl and IV tumors [46]. Schistosomal CRC (SCRC)
shares unique characteristics independently of the Schistosoma species:

a. SCRC occurs at a younger age—6-16 years earlier than ordinary CRC [21,46,151-153]—
which could be due to early environmental exposure to schistosomal infections
in childhood. Preschool-aged children may already have been exposed to this
disease [154].

b.  SCRC incidence is consistently higher in males [46,151,153]. This male predominance
was related to greater employment in agricultural work, and higher rates of contact
with water, such as in workers busy with car washing [155].

C. SCRC appears preferentially in the rectum, with a mucinous histology [46,156,157].

Contrarily, one study demonstrated that treatment with S. mansoni antigens reduced
the number of tumors and the diameter of 1,2-dimethylhydrazine-induced CRC in mice [158].
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The authors hypothesized that the protective effects resulted from a S. mansoni antigen-
induced non-specific immune response or a cross-reactive adaptive immune response
induced by S. mansoni glycosylated antigens [158].

There are only a few data available about the molecular mechanisms of intestinal
schistosomiasis from S. mansoni infection analyzing the dysregulation of the malignant
colon. A recent study described a DNA repair defect and a RAS mutation in two patients
with S. mansoni-associated CRC [159]. The authors discussed whether these mutations
might have been crucial for carcinogenesis or mere coincidence [159]. Several studies
indicated the involvement of p53 [46,48,160]. Madbouly et al. found a significantly higher
expression of p53 in SCRC compared with non-S. mansoni-infected CRC patients [46]. In
contrast, in another study with 75 Egyptian CRC specimens, Zalata et al. found similar
expression patterns of p53 and c-Myc in both groups, but significantly more SCRC patients
were Bcl-2 positive compared with CRC patients without S. mansoni infection [48]. Bcl-2
was positivity correlated with greater apoptotic activity in cancers of the non-infected
group. Zalata et al. concluded that the genotoxic agents produced endogenously during
S. mansoni infection might be involved in the pathogenesis of CRC, with the overexpression
of Bcl-2 leading to a reduction in programmed cell death in potential latent cancer foci [48].
In the study of Nacif-Pimenta et al., the regulatory effects of eggs from S. mansoni and
S. haematobium on epithelial cell lines from the urinary and biliary tract were investigated
in vitro [160]. It was demonstrated that S. haematobium eggs had a higher potential to
induce proliferation in epithelial cells [160]. Nevertheless, gene expression analysis of
oncogenes in human urothelial cells confronted with both schistosome species revealed that
only S. mansoni eggs induced a significant dysregulation of the CRC signaling pathways,
including the upregulation of TNF, RUNXI, the proto-oncogenes c-Myc and c-Jun, NF-«kB1,
Scr, and Bcl-2 [160]. In contrast, p53-associated pathways were downregulated by both
S. mansoni and S. haematobium eggs [160]. Previously, we reported the upregulation of the
JNK/c-Jun signaling pathway in the liver of S. mansoni-infected hamsters, human liver
samples, and primary liver cells exposed to S. mansoni SEA [106]. Interestingly, a similar
activation pattern of the proto-oncogene c-Jun was discovered in epithelial colon cells and
colon specimens exposed to S. mansoni SEA [105]. Urothelial cells co-cultured with either
S. mansoni eggs or S. haematobium eggs resulted in the upregulation of WNT5a and WNT5b,
which have been implicated in CRC via the non-canonical WNT signaling pathway [161].
Activation of the non-canonical WNT signaling pathway was also found in epithelial colon
cells exposed to SEA [105]. Hence, it can be speculated that the carcinogenicity of chronic
infection with schistosomes may not only depend on the schistosome species but also on
the host tissue exposed to SEA.

5. Conclusions

Egg-triggered processes such as the activation of protooncogenes, Th2-immune mod-
ulation, and the tolerogenic reprogramming of DC and Tregs may be molecular triggers
for S. mansoni-promoted carcinogenesis. Clinical data including more extensive cohort
studies about affected patients may allow better insights into the association of S. mansoni
with HCC and CRC. Globalization, the expansion of endemic areas, the justified fear of
developing resistance to praziquantel, and the association with malignancy may underline
the urgency to find new ways to control schistosomiasis.
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