Silage Maize and Sugar Beet for Biogas Production in Rotations and Continuous Cultivation: Dry Matter and Estimated Methane Yield
Abstract
:1. Introduction
2. Results
2.1. Annual DM Yield of Crop Rotation Elements and Triennial DM Yield of Entire Crop Rotations
Site | Crop | Annual Dry Matter Yield (t∙ha−1∙a−1) | Triennial Dry Matter Yield (t∙ha−1∙a−1) |
---|---|---|---|
Aiterhofen | SM | 27.4 a ± 4.8 | |
WW | 8.6 ± 0.8 | 44.2 B ± 4.3 | |
WW | 8.2 ± 1.3 | ||
SB | 23.0 bc ± 3.2 | ||
WW | 8.7 ± 0.6 | 40.1 C ± 2.7 | |
WW | 8.4 ± 1.1 | ||
SM | 25.2 b ± 5.6 | ||
SB | 21.7 c ± 2.4 | 55.4 A ± 5.9 | |
WW | 8.5 ± 0.4 | ||
Harste | SM | 19.5 ab ± 1.5 | |
WW | 8.6 ± 1.2 | 36.3 C ± 1.6 | |
WW | 8.2 ± 1.5 | ||
SB | 17.7 bc ± 1.1 | ||
WW | 8.7 ± 0.7 | 34.6 C ± 2.0 | |
WW | 8.3 ± 1.7 | ||
SM | 21.0 a ± 3.0 | ||
SB | 17.0 c ± 1.6 | 46.6 B ± 2.5 | |
WW | 8.6 ± 1.0 | ||
SM (continuous) | 19.8 ab ± 3.2 | 59.4 A ± 2.5 | |
SB (continuous) | 15.4 c ± 3.3 | 46.2 B ± 7.2 | |
WW (continuous) | 8.3 ± 1.2 | 24.8 D ± 0.3 | |
Etzdorf | SM (continuous) | 22.7 a ± 5.4 | 68.1 A ± 8.3 |
SB (continuous) | 10.7 b ± 6.9 | 32.2 B ± 5.4 | |
WW (continuous) | 7.4 ± 1.3 | 22.3 B ± 2.1 |
2.2. Estimated Methane Yield of Silage Maize and Sugar Beet Root
3. Discussion
3.1. Dry Matter Yield of Silage Maize and Sugar Beet Root Cultivated in Different Crop Rotations
Year | Site | ||||||
---|---|---|---|---|---|---|---|
Aiterhofen | Harste | Etzdorf | |||||
SM | SB | SM | SB | SM | SB | ||
2011 | Sowing | 04-18 | 03-29 | 04-18 | 03-24 | 04-18 | 04-07 |
Harvest | 09-12 | 10-13 | 09-14 | 09-28 | 09-22 | 10-05 | |
Degree days (°Cd) | 2448 | 3056 | 2339 | 2764 | 2542 | 2842 | |
Global radiation ((MJ m−2) days) | 2817 | 3465 | 2560 | 3107 | 2680 | 2970 | |
2012 | Sowing | 04-25 | 03-29 | 04-19 | 03-28 | 04-24 | 04-02 |
Harvest | 09-18 | 10-15 | 09-13 | 09-28 | 09-06 | 10-09 | |
Degree days (°Cd) | 2534 | 3029 | 2565 | 2927 | 2270 | 2847 | |
Global radiation ((MJ m−2) days) | 2812 | 3430 | 2409 | 2798 | 2386 | 2990 | |
2013 | Sowing | 04-27 | 04-17 | 04-25 | 04-16 | 04-26 | 04-25 |
Harvest | 09-17 | 10-09 | 09-13 | 09-24 | 10-01 | 10-21 | |
Degree days (°Cd) | 2392 | 2756 | 2368 | 2616 | 2547 | 2759 | |
Global radiation ((MJ m−2) days) | 2695 | 3083 | 2414 | 2646 | 2572 | 2701 |
3.2. Dry Matter Yield Evaluated in Terms of Entire Crop Rotations
3.3. Estimated Methane Yield of Silage Maize and Sugar Beet Root as Driven by Dry Matter Yield
4. Experimental Section
4.1. Field Trials
Site | |||
---|---|---|---|
Aiterhofen | Harste | Etzdorf | |
Soil | Luvisol | Luvisol | Haplic Chernozem |
Soil texture | Silt loam | Silt loam | Silt loam |
Ø temperature (°C) a | 8.6 | 9.2 | 9.1 |
Ø precipitation (mm) a | 757 | 651 | 466 |
Field size (ha) | 5.3 | 4.9 | 0.6 |
Plot size (m2) | 420 | 230 | 70 |
Field replications | 4 | 3 | 4 |
P2O5 (mg 100 g−1) b | 39.3 | 17.1 | 31.5 |
K2O (mg 100 g−1) b | 16.2 | 14.7 | 23.0 |
MgO (mg 100 g−1) b | 17.5 | 15.9 | 21.0 |
pH value * | 7.3 | 7.2 | 7.4 |
Soil organic C (%) b | 1.0 | 1.3 | 1.9 |
Site | Variety Characteristics | Mineral Nitrogen Fertilizer Rate (kg∙N∙ha−1) | ||||
---|---|---|---|---|---|---|
SM | SB | WW | SM | SB | WW | |
Aiterhofen | FAO 280 | Rhizomania tolerant | High baking quality | 200 | 105 (80–135) | 220 (210–225) |
Harste | FAO 240 | Rhizomania tolerant, nematode tolerant | High baking quality | 125 (110–145) | 90 (60–120) | 205 (180–230) |
Etzdorf | FAO 300 | - | Baking quality | 140 | 100 | 160 |
4.2. Calculation of the Estimated Methane Yield
4.3. Statistical Analyses
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- European Union (EU). Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009. Off. J. Eur. Union 2009, L140, 16–62. [Google Scholar]
- Anonymous. Gesetz zur Neuregelung des Rechts der Eneuerbaren Energien im Strombereich. Bundesgesetzblatt Jahrgang 2004 Teil I Nr. 40, Ausgegeben zu Bonn am 31. Juli 2004. Available online: http://www.bgbl.de/banzxaver/bgbl/start.xav?startbk=Bundesanzeiger_BGBl&jumpTo=bgbl104s1918.pdf (accessed on 19 February 2015).
- Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (BMU); Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz (BMELV). National Biomass Action Plan for Germany—Biomass and Sustainable Energy Supply. Available online: http://www.bmel.de/SharedDocs/Downloads/EN/Publications/BiomassActionPlan.pdf?__blob=publicationFile (accessed on 26 September 2014).
- Anonymous. Gesetz für den Ausbau Erneuerbarer Energien. Bundesgesetzblatt Jahrgang 2014 Teil I Nr. 33, Ausgegeben zu Bonn am 24. Juli 2014. Available online: http://www.bgbl.de/banzxaver/bgbl/start.xav?startbk=Bundesanzeiger_BGBl&start=//*%255B@attr_id='bgbl114s1066.pdf'%255D#__bgbl__%2F%2F*%5B%40attr_id%3D%27bgbl114s1066.pdf%27%5D__1421158232228 (accessed on 22 August 2014).
- Bauer, A.; Leonhartsberger, C.; Boesch, P.; Amon, B.; Friedl, A.; Amon, T. Analysis of methane yields from energy crops and agricultural by-products and estimation of energy potential from sustainable crop rotation systems in EU-27. Clean Technol. Environ. Policy 2010, 12, 153–161. [Google Scholar] [CrossRef]
- Deutsches Biomasseforschungszentrum (DBFZ). Monitoring zur Wirkung des Erneuerbare-Energien-Gesetz (EEG) auf die Entwicklung der Stromerzeugung aus Biomasse. Available online: https://www.dbfz.de/web/fileadmin/user_upload/Berichte_Projektdatenbank/3330002_Stromerzeugung_aus_Biomasse_Endbericht_Ver%C3%B6ffentlichung_FINAL_FASSUNG.pdf (accessed on 25 June 2014).
- Graß, R.; Heuser, F.; Stülpnagel, R.; Piepho, H.P.; Wachendorf, M. Energy crop production in double-cropping systems: Results from an experiment at seven sites. Eur. J. Agron. 2013, 51, 120–129. [Google Scholar] [CrossRef]
- Schittenhelm, S. Chemical composition and methane yield of maize hybrids with contrasting maturity. Eur. J. Agron. 2008, 29, 72–79. [Google Scholar] [CrossRef]
- Nevens, F.; Reheul, D. Crop rotation versus monoculture; yield, N yield and ear fraction of silage maize at different levels of mineral N fertilization. Neth. J. Agric. Sci. 2001, 49, 405–425. [Google Scholar] [CrossRef]
- Ruppert, H.; Kappas, M.; Ibendorf, J. Sustainable Bioenergy Production: An Integrated Perspective. In Sustainable Bioenergy Production—An Integrated Approach; Ruppert, H., Kappas, M., Eds.; Springer Science: Dordrecht, The Netherlands, 2013; pp. 3–35. [Google Scholar]
- Herrmann, A. Biogas Production from Maize: Current State, Challenges and Prospects. 2. Agronomic and Environmental Aspects. Bioenerg. Res. 2013, 6, 372–387. [Google Scholar] [CrossRef]
- Karpenstein-Machan, M.; Weber, C. Energiepflanzen für Biogasanlagen. Veränderungen in der Fruchtfolge und der Bewirtschaftung von Ackerflächen in Niedersachsen. Naturschutz Landschaftsplanung 2010, 42, 312–320. [Google Scholar]
- Sieling, K.; Herrmann, A.; Wienforth, B.; Taube, F.; Ohl, S.; Hartung, E.; Kage, H. Biogas cropping systems: Short term response of yield performance and N use efficiency to biogas residue application. Eur. J. Agron. 2013, 47, 44–54. [Google Scholar] [CrossRef]
- Starke, P.; Hoffmann, C. Zuckerrüben als Substrat für die Biogaserzeugung. Sugar Ind. 2011, 136, 242–250. [Google Scholar]
- Weiland, P. Biogas production: Current state and perspectives. Appl. Microbiol. Biotechnol. 2010, 85, 849–860. [Google Scholar] [CrossRef] [PubMed]
- Stockfisch, N.; Gallasch, M.; Reineke, H.; Trimpler, K.; Mielke, C.; Reiners, M.; Risser, P.; Schmitz, K.; Märländer, B. Betriebsbefragung zur Produktionstechnik im Zuckerrübenanbau: Datenbasis und Basisdaten. Sugar Ind. 2013, 138, 656–663. [Google Scholar]
- Zegada-Lizarazu, W.; Monti, A. Energy crops in rotation. A review. Biomass. Bioenerg. 2011, 35, 12–25. [Google Scholar] [CrossRef]
- Amon, T.; Amon, B.; Kryvoruchko, V.; Machmüller, A.; Hopfner-Sixt, K.; Bodiroza, V.; Hrbek, R.; Friedel, J.; Pötsch, E.; Wagentristl, H.; et al. Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. Biores. Technol. 2007, 98, 3204–3212. [Google Scholar] [CrossRef] [PubMed]
- Grieder, C.; Dhillon, B.S.; Schipprack, W.; Melchinger, A.E. Breeding maize as biogas substrate in Central Europe: I. Quantitative-genetic parameters for testcross performance. Theor. Appl. Genet. 2012, 124, 971–980. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, A.; Sieling, K.; Wienforth, B.; Taube, F.; Kage, H. Short-term effects of biogas residue application on yield performance and N balance parameters of maize in different cropping systems. J. Agric. Sci. 2013, 151, 449–462. [Google Scholar] [CrossRef]
- Statistische Ämter des Bundes und der Länder. Regionaldatenbank Deutschland. Hektarerträge ausgewählter landwirtschaftlicher Feldfrüchte-Jahressumme—Regionale Tiefe: Kreise und krfr. Städte. Erhebungszeitraum 2011–2013. Available online: https://www.regionalstatistik.de/genesis/online/data;jsessionid=71D76CDF08FCB721BF12AA2C924CC55D?operation=abruftabelleAbrufen&selectionname=115-46-4&levelindex=1&levelid=1426857433694&index=1 (accessed on 19 March 2015).
- Märländer, B.; Hoffmann, C.; Koch, H.-J.; Ladewig, E.; Merkes, R.; Petersen, J.; Stockfisch, N. Environmental Situation and Yield Performance of the Sugar Beet Crop in Germany: Heading for Sustainable Development. J. Agron. Crop. Sci. 2003, 189, 201–226. [Google Scholar] [CrossRef]
- Buhre, C.; Kluth, C.; Bürcky, K.; Märländer, B.; Varrelmann, M. Integrated Control of Root and Crown Rot in Sugar Beet: Combined Effects of Cultivar, Crop Rotation, and Soil Tillage. Plant Dis. 2009, 93, 155–161. [Google Scholar] [CrossRef]
- Deumelandt, P.; Hofmann, B.; Christen, O. Der Einfluss unterschiedlicher Anbaukonzentrationen und Anbaupausen auf Bodeneigenschaften und Erträge im Zuckerrübenfruchtfolgeversuch Etzdorf. Arch. Agron. Soil Sci. 2010, 56, 393–404. [Google Scholar] [CrossRef]
- Führer-Ithurrart, M.E.F.; Buttner, G.; Petersen, J. Rhizoctonia root rot in sugar beet (Beta vulgaris ssp. altissima)—Epidemiological aspects in relation to maize (Zea mays) as a host plant. J. Plant Dis. Protect. 2004, 111, 302–312. [Google Scholar]
- Eckner, J.; Strauß, C.; Nehring, A.; Vetter, A. Entwicklung und Vergleich von optimierten Anbausystemen für die landwirtschaftliche Produktion von Energiepflanzen unter den verschiedenen Standortbedingungen Deutschlands (EVA II). Abschlussbericht zum Teilprojekt 1. Available online: http://www.eva-verbund.de/fileadmin/user_upload/PDFs/Aktuelles/Untersuchungsberichte/Teilprojekte/Pflanzenbau/AbschB_TP1_EVAII.pdf (accessed on 29 January 2015).
- Mayer, F.; Gerin, P.A.; Noo, A.; Lemaigre, S.; Stilmant, D.; Schmit, T.; Leclech, N.; Ruelle, L.; Gennen, J.; von Francken-Welz, H.; et al. Assessment of energy crops alternative to maize for biogas production in the Greater Region. Bioresource. Technol. 2014, 166, 358–367. [Google Scholar] [CrossRef] [PubMed]
- Amon, T.; Machmüller, A.; Kryvoruchko, V.; Milovanovic, D.; Hrbek, R.; Eder, W.; Stürmer, B. Optimierung der Methanausbeute aus Zuckerrüben, Silomais, Körnermais, Sonnenblumen, Ackerfutter, Getreide, Wirtschaftsdünger und Rohglyzerin unter den Standortbedingungen der Steiermark. Available online: http://www.wiso.boku.ac.at/fileadmin/data/H03000/H73000/H73300/pub/Biolandbau/2007_Endbericht_BMLFUW1421_Steiermark.pdf (accessed on 5 October 2012).
- Hoffmann, A.; Glauert, T. N-Sollwert gilt auch für Biogasanlagen. Land Forst 2015, 168, 30–31. [Google Scholar]
- Schumacher, B.; Böhmel, C.; Oechsner, H. Which Energy Maize Varieties when to Harvest for Biogas Production? Landtechnik 2006, 61, 84–85. [Google Scholar]
- Jacobs, A.; Brauer-Siebrecht, W.; Koch, H.-J.; Märländer, B.; Auburger, S.; Bahrs, E.; Pelka, N.; Buchholz, M.; Götze, P.; Rücknagel, J.; et al. The sugar beet as an energy crop in crop rotations on highly productive sites—An agronomic/economic system analysis. Sugar Ind. 2014, 139, 117–127. [Google Scholar]
- Deutscher Wetterdienst (DWD). Available online: ftp://ftp-cdc.dwd.de/pub/CDC/observations_germany/climate/multi_annual/mean_81-10/ (accessed on 13 January 2015).
- Maiswurzelbohrer-Bekämpfungsverordnung (MaiswBekV). Verordnung zur Bekämpfung des Westlichen Maiswurzelbohrers. Available online: http://www.gesetze-im-internet.de/maiswbekv/index.html (accessed on 29 April 2011).
- Weißbach, F. On Assessing the Gas Production Potential of Renewable Primary Products. Landtechnik 2008, 63, 356–358. [Google Scholar]
- Weißbach, F. Gas production potential of fresh and ensiled sugar beets in biogas production. Landtechnik 2009, 64, 394–397. [Google Scholar]
- Deutsche Landwirtschaftsgesellschaft (DLG). DLG-Futterwerttabellen für Wiederkäuer, 7th ed.; DLG-Verlag: Frankfurt am Main, Germany, 1997. [Google Scholar]
- Weißbach, F.; (Elmenhorst, Mecklenburg-Vorpommern, Germany). Personal Communication, 2013.
- Weißbach, F. Gas production potential of forage and cereal crops in biogas production. Landtechnik 2009, 64, 317–321. [Google Scholar]
- Baserga, U. Landwirtschaftliche Co-Vergärungs-Biogasanlagen. Biogas aus organischen Reststoffen und Energiegras. FAT-Berichte 1998, 512, 1–11. [Google Scholar]
- Keymer, U.; Schilcher, A. Überlegungen zur Errechnung theoretischer Gasausbeuten vergärbarer Substrate in Biogasanlagen. In Biogas—Menge und Qualität: Berechnung, Messmethoden, Optimierung; Mitterleitner, H., Ed.; Landtechnik-Bericht: Freising, Germany, 1999; Volume 32, pp. 15–17. [Google Scholar]
- Ohl, S. Ermittlung der Biogas- und Methanausbeute Ausgewählter Nawaro. Ph.D. Thesis, Kiel University, Kiel, Germany, 25 May 2011. [Google Scholar]
- Camargo, G.G.T.; Ryan, M.R.; Richard, T.L. Energy Use and Greenhouse Gas Emissions from Crop Production Using the Farm Energy Analysis Tool. BioScience 2013, 63, 263–273. [Google Scholar]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brauer-Siebrecht, W.; Jacobs, A.; Christen, O.; Götze, P.; Koch, H.-J.; Rücknagel, J.; Märländer, B. Silage Maize and Sugar Beet for Biogas Production in Rotations and Continuous Cultivation: Dry Matter and Estimated Methane Yield. Agronomy 2016, 6, 2. https://doi.org/10.3390/agronomy6010002
Brauer-Siebrecht W, Jacobs A, Christen O, Götze P, Koch H-J, Rücknagel J, Märländer B. Silage Maize and Sugar Beet for Biogas Production in Rotations and Continuous Cultivation: Dry Matter and Estimated Methane Yield. Agronomy. 2016; 6(1):2. https://doi.org/10.3390/agronomy6010002
Chicago/Turabian StyleBrauer-Siebrecht, Wiebke, Anna Jacobs, Olaf Christen, Philipp Götze, Heinz-Josef Koch, Jan Rücknagel, and Bernward Märländer. 2016. "Silage Maize and Sugar Beet for Biogas Production in Rotations and Continuous Cultivation: Dry Matter and Estimated Methane Yield" Agronomy 6, no. 1: 2. https://doi.org/10.3390/agronomy6010002
APA StyleBrauer-Siebrecht, W., Jacobs, A., Christen, O., Götze, P., Koch, H.-J., Rücknagel, J., & Märländer, B. (2016). Silage Maize and Sugar Beet for Biogas Production in Rotations and Continuous Cultivation: Dry Matter and Estimated Methane Yield. Agronomy, 6(1), 2. https://doi.org/10.3390/agronomy6010002