Abstract
Soil organic carbon (SOC) and total nitrogen (TN) are fundamental indicators of soil fertility and long-term agricultural sustainability. However, intensive cultivation, residue removal, and imbalanced fertilization have resulted in substantial declines in SOC and TN across many agroecosystems, particularly in Northeast China. This study investigated SOC and TN dynamics within the 0–35 cm profile of four representative soils in Northeast China under a continuous maize cropping system. Five treatments were assessed: conventional tillage (CT), deep tillage (DT), deep tillage with straw (SDT), deep tillage with organic fertilizer (MDT), and deep tillage combined with straw and organic fertilizer (SMDT). Compared with DT, organic amendment treatments increased SOC and TN contents in the 0–20 cm layer by 9.41–57.57% and 5.29–60.76%, respectively. The SMDT treatment achieved the highest SOC and TN stocks (65.03 Mg ha−1 and 7.91 Mg ha−1) and enhanced nutrient accumulation in the 20–35 cm layer. In the subsoil, the ratio of soil C and N (C/N) under SMDT increased by 3.11%, 11.08%, 2.10%, and −7.01% across the four soils, indicating improved C–N balance and reduced nutrient stratification. SOC and TN stocks were linearly correlated with cumulative C input, confirming that organic amendments were among the main drivers of C and N sequestration. Mantel and path analyses further revealed that clay content and mean annual precipitation enhanced SOC and TN storage by improving soil structure and C–N balance through increased C input and reduced bulk density. Overall, deep tillage combined with amendments strengthened C–N coupling, improved soil fertility, and provided a mechanistic basis for reconstructing fertile tillage layers and sustaining productivity in Northeast China.