Mapping the Climatic Suitability for Olive Groves in Greece
Abstract
1. Introduction
2. Materials and Methods
- Each parameter is assigned a score ranging from 1 to 10. The score 1 is assigned to acceptable conditions of the parameter in relation to olive tree cultivation, and score 10 is assigned to the optimal conditions of this parameter. We can also assign a score of 0 where this parameter is unsuitable for cultivation. Therefore, in case the conditions are unsuitable for olive groves, the score is zero (0), and, when they are suitable for this cultivation, the score can range from 1 (the lower suitability) to 10 (the higher suitability). Suppose a model’s parameter score is 0 at a site. In that case, that site remains unsuitable, regardless of the scores of the other parameters. The score tables can be found in the Supplementary Materials (Tables S1–S11).
- The geomorphological parameters, after classification into suitability scores (Figures S2–S5), have been summed to create a final geomorphological score raster. This raster has been linearly normalized to obtain a score from 1 to 10 for suitable sites. If one parameter receives a score of zero (0), this value remains in the final geomorphological map.
- The climatic parameter rasters have been classified according to the related score tables (Tables S5–S11) and mapped. After this step, the climatic score rasters have been summed up to a final climatic score raster. This raster has been linearly normalized to range from 1 for the less suitable areas to 10 for the optimal areas in terms of climatic conditions, and has been mapped accordingly. In cases where a climatic parameter does not allow olive cultivation, the final raster has been set to zero.
- Finally, the geomorphology raster score and the climatic raster score have been added to a final suitability score raster. Geomorphology accounts for 20% of the final score, while climate accounts for the remaining 80% in this version of the model. This proportion stems from the empirical observation of the olive tree’s ability to thrive in a variety of geomorphological settings. The final score map has been linearly normalized to have scores from 1 to 10 for the suitable areas and 0 for unsuitable areas.
3. Results and Discussion
4. Conclusions
- Individually, the overall geomorphological and climate suitability for olive cultivation is high in Greece.
- A quite extensive area (34.44% surface coverage) appears with very high score geomorphological conditions for olive cultivation.
- Large areas (59.4% surface coverage) result in very high climatic conditions for olive cultivation.
- The conjunction of geomorphological suitability and climatic suitability mapping highlights a substantial part of the country’s area (approximately 60%) that appears as a very high score for olive groves.
- Overall, the olive suitability model may be characterized as efficient.
- The observed differences between the model-derived final suitability map and the recorded olive-growing areas in Greece (CLC) may be justified by the application of limited climate and geomorphology components in the model.
- This document provides mapping data to help policymakers organize the agricultural sector. Information on location and suitability scores supports targeted measures for olive cultivation, helping to create informed sustainability plans in response to climate change.
- The current modeling procedure can serve as a tool for identifying suitable areas for the development of sustainable and productive olive cultivation.
- The model is characterized by simplicity, usability, and flexibility.
- Introducing environmental parameters impacted by future climate change into the model may create a new map of climatic suitability.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- International Olive Council World Market of Olive Oil and Table Olives—Data from December 2024. Available online: https://www.internationaloliveoil.org/world-market-of-olive-oil-and-table-olives-data-from-december-2024/ (accessed on 23 September 2025).
- Marakis, G.; Gaitis, F.; Mila, S.; Papadimitriou, D.; Tsigarida, E.; Mousia, Z.; Karpouza, A.; Magriplis, E.; Zampelas, A. Attitudes towards Olive Oil Usage, Domestic Storage, and Knowledge of Quality: A Consumers’ Survey in Greece. Nutrients 2021, 13, 3709. [Google Scholar] [CrossRef]
- Kostelenos, G.; Kiritsakis, A. Olive Tree History and Evolution. In Olives and Olive Oil as Functional Foods; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; pp. 1–12. ISBN 978-1-119-13534-0. [Google Scholar]
- den Herder, M.; Moreno, G.; Mosquera-Losada, R.M.; Palma, J.H.N.; Sidiropoulou, A.; Santiago Freijanes, J.J.; Crous-Duran, J.; Paulo, J.A.; Tomé, M.; Pantera, A.; et al. Current Extent and Stratification of Agroforestry in the European Union. Agric. Ecosyst. Environ. 2017, 241, 121–132. [Google Scholar] [CrossRef]
- Lees, M.; Morin, J.-F. FoodIntegrity Handbook: A Guide to Food Authenticity Issues and Analytical Solutions; Eurofins Analytics France: Nantes, France, 2018; ISBN 2-9566303-0-X. [Google Scholar]
- Michalopoulos, G.; Kasapi, K.A.; Koubouris, G.; Psarras, G.; Arampatzis, G.; Hatzigiannakis, E.; Kavvadias, V.; Xiloyannis, C.; Montanaro, G.; Malliaraki, S.; et al. Adaptation of Mediterranean Olive Groves to Climate Change through Sustainable Cultivation Practices. Climate 2020, 8, 54. [Google Scholar] [CrossRef]
- Solomou, A.D.; Sfougaris, A. Contribution of Agro-Environmental Factors to Yield and Plant Diversity of Olive Grove Ecosystems (Olea europaea L.) in the Mediterranean Landscape. Agronomy 2021, 11, 161. [Google Scholar] [CrossRef]
- Foscolou, A.; Critselis, E.; Panagiotakos, D. Olive Oil Consumption and Human Health: A Narrative Review. Maturitas 2018, 118, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Arvaniti, O.S.; Rodias, E.; Terpou, A.; Afratis, N.; Athanasiou, G.; Zahariadis, T. Bactrocera Oleae Control and Smart Farming Technologies for Olive Orchards in the Context of Optimal Olive Oil Quality: A Review. Agronomy 2024, 14, 2586. [Google Scholar] [CrossRef]
- Jimenez-Lopez, C.; Carpena, M.; Lourenço-Lopes, C.; Gallardo-Gomez, M.; Lorenzo, J.M.; Barba, F.J.; Prieto, M.A.; Simal-Gandara, J. Bioactive Compounds and Quality of Extra Virgin Olive Oil. Foods 2020, 9, 1014. [Google Scholar] [CrossRef]
- Fraga, H.; Moriondo, M.; Leolini, L.; Santos, J.A. Mediterranean Olive Orchards under Climate Change: A Review of Future Impacts and Adaptation Strategies. Agronomy 2021, 11, 56. [Google Scholar] [CrossRef]
- Moriondo, M.; Trombi, G.; Ferrise, R.; Brandani, G.; Dibari, C.; Ammann, C.M.; Lippi, M.M.; Bindi, M. Olive Trees as Bio-Indicators of Climate Evolution in the Mediterranean Basin. Glob. Ecol. Biogeogr. 2013, 22, 818–833. [Google Scholar] [CrossRef]
- Lionello, P.; Giorgi, F.; Rohling, E.; Seager, R. Chapter 3—Mediterranean Climate: Past, Present and Future. In Oceanography of the Mediterranean Sea; Schroeder, K., Chiggiato, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 41–91. ISBN 978-0-12-823692-5. [Google Scholar]
- Beck, H.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Lutsko, N.J.; Dufour, A.; Zeng, Z.; Jiang, X.; van Dijk, A.I.J.M.; Miralles, D.G. High-Resolution (1 Km) Köppen-Geiger Maps for 1901–2099 Based on Constrained CMIP6 Projections. Sci. Data 2023, 10, 724. [Google Scholar] [CrossRef]
- Koubouris, G.; Psarras, G. Pedoclimatic and Landscape Conditions of Greek Olive Groves. In The Olive Landscapes of the Mediterranean: Key Challenges and Opportunities for Their Sustainability in the Early XXIst Century; Muñoz-Rojas, J., García-Ruiz, R., Eds.; Springer: Cham, Switzerland, 2024; pp. 223–227. ISBN 978-3-031-57956-1. [Google Scholar]
- Manna, P.; Bonfante, A.; Colandrea, M.; Di Vaio, C.; Langella, G.; Marotta, L.; Mileti, F.A.; Minieri, L.; Terribile, F.; Vingiani, S.; et al. A Geospatial Decision Support System to Assist Olive Growing at the Landscape Scale. Comput. Electron. Agric. 2020, 168, 105143. [Google Scholar] [CrossRef]
- Honorio, F.; Aguirado, C.; Paniagua, L.L.; García-Martín, A.; Rebollo, L.; Rebollo, F.J. Exploring the Climate and Topography of Olive Orchards in Extremadura, Southwestern Spain. Land 2024, 13, 495. [Google Scholar] [CrossRef]
- López-Bernal, Á.; Morales, A.; García-Tejera, O.; Testi, L.; Orgaz, F.; De Melo-Abreu, J.P.; Villalobos, F.J. OliveCan: A Process-Based Model of Development, Growth and Yield of Olive Orchards. Front. Plant Sci. 2018, 9, 632. [Google Scholar] [CrossRef] [PubMed]
- Ozalp, A.Y.; Akinci, H. Evaluation of Land Suitability for Olive (Olea europaea L.) Cultivation Using the Random Forest Algorithm. Agriculture 2023, 13, 1208. [Google Scholar] [CrossRef]
- Mairech, H.; López-Bernal, Á.; Moriondo, M.; Dibari, C.; Regni, L.; Proietti, P.; Villalobos, F.J.; Testi, L. Is New Olive Farming Sustainable? A Spatial Comparison of Productive and Environmental Performances between Traditional and New Olive Orchards with the Model OliveCan. Agric. Syst. 2020, 181, 102816. [Google Scholar] [CrossRef]
- Morales, A.; Leffelaar, P.A.; Testi, L.; Orgaz, F.; Villalobos, F.J. A Dynamic Model of Potential Growth of Olive (Olea europaea L.) Orchards. Eur. J. Agron. 2016, 74, 93–102. [Google Scholar] [CrossRef]
- Mairech, H.; López-Bernal, Á.; Moriondo, M.; Dibari, C.; Regni, L.; Proietti, P.; Villalobos, F.J.; Testi, L. Sustainability of Olive Growing in the Mediterranean Area under Future Climate Scenarios: Exploring the Effects of Intensification and Deficit Irrigation. Eur. J. Agron. 2021, 129, 126319. [Google Scholar] [CrossRef]
- Smoly, I.; Elbaz, H.; Engelen, C.; Wechsler, T.; Elbaz, G.; Ben-Ari, G.; Samach, A.; Friedlander, T. A Model Estimating the Level of Floral Transition in Olive Trees Exposed to Warm Periods during Winter. J. Exp. Bot. 2025, 76, 1266–1284. [Google Scholar] [CrossRef]
- Puig-Sirera, À.; Rallo, G.; Paredes, P.; Paço, T.A.; Minacapilli, M.; Provenzano, G.; Pereira, L.S. Transpiration and Water Use of an Irrigated Traditional Olive Grove with Sap-Flow Observations and the FAO56 Dual Crop Coefficient Approach. Water 2021, 13, 2466. [Google Scholar] [CrossRef]
- Rallo, G.; Baiamonte, G.; Juárez, J.M.; Provenzano, G. Improvement of FAO-56 Model to Estimate Transpiration Fluxes of Drought Tolerant Crops under Soil Water Deficit: Application for Olive Groves. J. Irrig. Drain. Eng. 2014, 140, A4014001. [Google Scholar] [CrossRef]
- Ramos, T.B.; Darouich, H.; Oliveira, A.R.; Farzamian, M.; Monteiro, T.; Castanheira, N.; Paz, A.; Gonçalves, M.C.; Pereira, L.S. Water Use and Soil Water Balance of Mediterranean Tree Crops Assessed with the SIMDualKc Model in Orchards of Southern Portugal. Agric. Water Manag. 2023, 279, 108209. [Google Scholar] [CrossRef]
- Moriondo, M.; Ferrise, R.; Trombi, G.; Brilli, L.; Dibari, C.; Bindi, M. Modelling Olive Trees and Grapevines in a Changing Climate. Environ. Model. Softw. 2015, 72, 387–401. [Google Scholar] [CrossRef]
- Moriondo, M.; Leolini, L.; Brilli, L.; Dibari, C.; Tognetti, R.; Giovannelli, A.; Rapi, B.; Battista, P.; Caruso, G.; Gucci, R.; et al. A Simple Model Simulating Development and Growth of an Olive Grove. Eur. J. Agron. 2019, 105, 129–145. [Google Scholar] [CrossRef]
- Büttner, G. CORINE Land Cover and Land Cover Change Products. In Land Use and Land Cover Mapping in Europe; Manakos, I., Braun, M., Eds.; Remote Sensing and Digital Image Processing; Springer: Dordrecht, The Netherlands, 2014; pp. 55–74. ISBN 978-94-007-7968-6. [Google Scholar]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-Km Spatial Resolution Climate Surfaces for Global Land Areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A State-of-the-Art Global Reanalysis Dataset for Land Applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. Available online: https://www.R-project.org (accessed on 5 June 2025).
- Wickham, H.; François, R.; Henry, L.; Müller, K. Dplyr: A Grammar of Data Manipulation. Available online: https://CRAN.R-project.org/package=dplyr (accessed on 25 April 2024).
- Hijmans, R.J.; Bivand, R.; Forner, K.; Ooms, J.; Pebesma, E.; Sumner, M.D. Terra: Spatial Data Analysis. Available online: https://CRAN.R-project.org/package=terra (accessed on 7 July 2022).
- Wickham, H.; Chang, W.; Henry, L.; Pedersen, T.L.; Takahashi, K.; Wilke, C.; Woo, K.; Yutani, H.; Dunnington, D. Ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics. Available online: https://CRAN.R-project.org/package=ggplot2 (accessed on 5 February 2024).
- Pebesma, E. Simple Features for R: Standardized Support for Spatial Vector Data. R J. 2018, 10, 439–446. [Google Scholar] [CrossRef]
- Anderegg, W.R.L.; Callaway, E.S.; Boykoff, M.T.; Yohe, G.; Root, T.y.L. Awareness of Both Type 1 and 2 Errors in Climate Science and Assessment. Bull. Am. Meteorol. Soc. 2014, 95, 1445–1451. [Google Scholar] [CrossRef]
- Khan, S.; Verma, S. Ensemble Modeling to Predict the Impact of Future Climate Change on the Global Distribution of Olea europaea subsp. cuspidata. Front. For. Glob. Change 2022, 5, 977691. [Google Scholar] [CrossRef]
- Guise, I.; Silva, B.; Mestre, F.; Muñoz-Rojas, J.; Duarte, M.F.; Herrera, J.M. Climate Change Is Expected to Severely Impact Protected Designation of Origin Olive Growing Regions over the Iberian Peninsula. Agric. Syst. 2024, 220, 104108. [Google Scholar] [CrossRef]
- Arenas-Castro, S.; Gonçalves, J.F.; Moreno, M.; Villar, R. Projected Climate Changes Are Expected to Decrease the Suitability and Production of Olive Varieties in Southern Spain. Sci. Total Environ. 2020, 709, 136161. [Google Scholar] [CrossRef]
- Montsant, A.; Baena, O.; Bernárdez, L.; Puig, J. Modelling the Impacts of Climate Change on Potential Cultivation Area and Water Deficit in Five Mediterranean Crops. Span. J. Agric. Res. 2021, 19, e0301. [Google Scholar] [CrossRef]
- Bordoni, M.; Gambarani, A.; Giganti, M.; Vivaldi, V.; Rossi, G.; Bazzano, P.; Meisina, C. Present and Projected Suitability of Olive Trees in a Currently Marginal Territory in the Face of Climate Change: A Case Study from N-Italy. Sustainability 2025, 17, 1949. [Google Scholar] [CrossRef]
- Charalampopoulos, I.; Polychroni, I.; Psomiadis, E.; Nastos, P. Spatiotemporal Estimation of the Olive and Vine Cultivations’ Growing Degree Days in the Balkans Region. Atmosphere 2021, 12, 148. [Google Scholar] [CrossRef]
- Tsiaras, S.; Domakinis, C. Use of GIS in Selecting Suitable Tree Crop Cultivation Sites in Mountainous Less Favoured Areas: An Example from Greece. Forests 2023, 14, 1210. [Google Scholar] [CrossRef]
- Cabezas, J.M.; Ruiz-Ramos, M.; Soriano, M.A.; Gabaldón-Leal, C.; Santos, C.; Lorite, I.J. Identifying Adaptation Strategies to Climate Change for Mediterranean Olive Orchards Using Impact Response Surfaces. Agric. Syst. 2020, 185, 102937. [Google Scholar] [CrossRef]
- Lorite, I.J.; Gabaldón-Leal, C.; Ruiz-Ramos, M.; Belaj, A.; de la Rosa, R.; León, L.; Santos, C. Evaluation of Olive Response and Adaptation Strategies to Climate Change under Semi-Arid Conditions. Agric. Water Manag. 2018, 204, 247–261. [Google Scholar] [CrossRef]
- Bonizzato, A. The Socio-Economic Impacts of Organic and Conventional Olive Growing in Italy. New Medit 2020, 19, 117–131. [Google Scholar] [CrossRef]
- Anastasiou, E.; Balafoutis, A.T.; Fountas, S. Trends in Remote Sensing Technologies in Olive Cultivation. Smart Agric. Technol. 2023, 3, 100103. [Google Scholar] [CrossRef]
- Kakkavou, K.; Gemtou, M.; Fountas, S. Drivers and Barriers to the Adoption of Precision Irrigation Technologies in Olive and Cotton Farming—Lessons from Messenia and Thessaly Regions in Greece. Smart Agric. Technol. 2024, 7, 100401. [Google Scholar] [CrossRef]
- Kokkotos, E.; Zotos, A.; Tsirogiannis, G.; Patakas, A. Prediction of Olive Tree Water Requirements under Limited Soil Water Availability, Based on Sap Flow Estimations. Agronomy 2021, 11, 1318. [Google Scholar] [CrossRef]
- Ropero, R.F.; Rumí, R.; Aguilera, P.A. Bayesian Networks for Evaluating Climate Change Influence in Olive Crops in Andalusia, Spain. Nat. Resour. Model. 2019, 32, e12169. [Google Scholar] [CrossRef]














| Geomorphological Suitability Score | Total (%) |
|---|---|
| 0 | 24.12 |
| 2 | 0.03 |
| 3 | 0.84 |
| 4 | 4.97 |
| 5 | 9.92 |
| 6 | 9.76 |
| 7 | 15.92 |
| 8 | 16.82 |
| 9 | 12.21 |
| 10 | 5.41 |
| Climatic Suitability Score | Area Covered (%) |
|---|---|
| 0 | 36.29 |
| 5 | 0.00 |
| 6 | 0.54 |
| 7 | 3.77 |
| 8 | 17.02 |
| 9 | 36.00 |
| 10 | 6.38 |
| Total Suitability Score | Total Greece Area (%) | Over CLC Areas (%) |
|---|---|---|
| 0 | 41.93 | 0.00 |
| 5 | 0.02 | 0.00 |
| 6 | 1.44 | 0.13 |
| 7 | 14.61 | 8.28 |
| 8 | 32.23 | 58.53 |
| 9 | 9.76 | 33.05 |
| 10 | 0.01 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Charalampopoulos, I.; Droulia, F.; Mavridi, A.; Roussos, P.A. Mapping the Climatic Suitability for Olive Groves in Greece. Agronomy 2025, 15, 2604. https://doi.org/10.3390/agronomy15112604
Charalampopoulos I, Droulia F, Mavridi A, Roussos PA. Mapping the Climatic Suitability for Olive Groves in Greece. Agronomy. 2025; 15(11):2604. https://doi.org/10.3390/agronomy15112604
Chicago/Turabian StyleCharalampopoulos, Ioannis, Fotoula Droulia, Androniki Mavridi, and Peter A. Roussos. 2025. "Mapping the Climatic Suitability for Olive Groves in Greece" Agronomy 15, no. 11: 2604. https://doi.org/10.3390/agronomy15112604
APA StyleCharalampopoulos, I., Droulia, F., Mavridi, A., & Roussos, P. A. (2025). Mapping the Climatic Suitability for Olive Groves in Greece. Agronomy, 15(11), 2604. https://doi.org/10.3390/agronomy15112604

