Abstract
A two-year field study was performed to evaluate the cadmium (Cd) phytoremediation potential of two hyperaccumulators, Sedum alfredii (S.A.) and Sedum plumbizincicola (S.P.), in contaminated farmland. Biomass and Cd uptake in both species followed logistic growth models. S.A. reached maturity about 20 days earlier than S.P., with optimal harvest timing at the early late-flowering stage (early–mid May), compared to the full late-flowering stage (early June) for S.P. The primary Cd-accumulating organs were stems and flowers in S.A. and leaves and stems in S.P. Under identical conditions, S.P. exhibited higher theoretical biomass, Cd content, bioconcentration factor (BCF), and Cd uptake, supported by transcriptomic data showing upregulation of metal transporter and stress-related genes under Cd exposure. However, S.P. demonstrated greater environmental sensitivity and lower stress resistance, resulting in more variable real-world remediation efficiency than S.A. It is recommended to harvest at flowering stages, enhance biomass in key Cd-accumulating tissues, and select species based on local conditions. Future work should aim to breed Sedum varieties with greater biomass, Cd accumulation capacity, and stress tolerance. This study provides actionable insights for optimizing the timing and species selection in Cd phytoremediation.