Field Evaluations of Two Citrus Interspecific Hybrid Populations Using Desert Lime (Citrus glauca (Lindl.) Burkill) Identify Presumed Resistance and Tolerance to Huanglongbing
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Parentage Test
2.3. Evaluation of Disease Severity
2.4. Progeny Growth Measurements
2.5. DNA Extraction and Real-Time PCR for the Diagnosis of CLas
2.6. Statistical Analysis
3. Results
3.1. CLas Infection Incidence, Titter and Severity of HLB Symptoms in the Hybrid Progeny
3.2. Principal Components Analysis (PCA)
3.3. K-Means Clustering Analysis Identified Three Groups in the Hybrid Progeny
3.4. Grouping of the Hybrid Offspring Using Hierarchical Cluster Analysis (HCA) Also Identifies Three Major Groups
3.5. Comparison of the Three Clusters from the Hierarchical Cluster Analysis (HCA) over Time
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HLB | Huanglongbing |
CLas | Candidatus Liberibacter asiaticus |
ACP | Asian citrus psyllid |
Fam1 | Family 1 |
Fam2 | Family 2 |
qPCR | Quantitative real time PCR |
COX | Mitochondrial cytochrome oxidase |
LJ900 | Intragenic tandem-repeats of the CLas prophage hyvI/hyvII genes |
Ct | Cycle threshold |
ΔCt | Delta Ct, used for relative quantification of CLas (LJ900 Ct − COX Ct) |
PCA | Principal components analysis |
PC | Principal component |
HCA | Hierarchical cluster analysis |
d | Trunk diameter |
QTL | Quantitative trait locus |
LRR4 | Leucine-rich repeat-containing protein 4 |
PUB21 | U-box (PUB)-type E3 ligase |
PAMP | Pathogen-associated molecular patterns |
PTI | PAMP-triggered immunity |
ETI | Efector-triggered immunity |
ROS | Reactive oxygen species |
References
- Da Graça, J.V.; Douhan, G.W.; Halbert, S.E.; Keremane, M.L.; Lee, R.F.; Vidalakis, G.; Zhao, H. Huanglongbing: An overview of a complex pathosystem ravaging the world’s citrus. J. Integr. Plant Biol. 2016, 58, 373–387. [Google Scholar] [CrossRef] [PubMed]
- Cruz, J.; Ferreira, J.P.; Court, C.D. 2020–2021 Economic Contributions of the Florida Citrus Industry; Economic Impact Analysis Program, University of Florida-IFAS, Food & Resource Economics Department: Gainesville, FL, USA, 2023; p. 32. Available online: https://fred.ifas.ufl.edu/media/fredifasufledu/economic-impact-analysis/reports/FRE_Economic_Contributions_Florida_Citrus_Industry_Report_2020_21_WEB-(2).pdf (accessed on 18 February 2025).
- Halbert, S.E. The discovery of huanglongbing in Florida. In Proceedings of the 2nd International Citrus Canker and Huanglongbing Research Workshop, Orlando, FL, USA, 7–11 November 2005; p. 50. [Google Scholar]
- Bove, J.M. Huanglongbing: A destructive, newly-emerging, century-old disease of citrus. J. Plant Pathol. 2006, 88, 7–37. [Google Scholar]
- Koh, E.J.; Zhou, L.; Williams, D.S.; Park, J.; Ding, N.; Duan, Y.P.; Kang, B.H. Callose deposition in the phloem plasmodesmata and inhibition of phloem transport in citrus leaves infected with “Candidatus Liberibacter asiaticus”. Protoplasma 2012, 249, 687–697. [Google Scholar] [CrossRef] [PubMed]
- Folimonova, S.Y.; Robertson, C.J.; Garnsey, S.M.; Gowda, S.; Dawson, W.O. Examination of the responses of different genotypes of citrus to huanglongbing (citrus greening) under different conditions. Phytopathology 2009, 99, 1346–1354. [Google Scholar] [CrossRef]
- Stover, E.; Inch, S.; Richardson, M.L.; Hall, D.G. Conventional Citrus of Some Scion/Rootstock Combinations Show Field Tolerance under High Huanglongbing Disease Pressure. HortScience 2016, 51, 127–132. [Google Scholar] [CrossRef]
- Miles, G.P.; Stover, E.; Ramadugu, C.; Keremane, M.L.; Lee, R.F. Apparent Tolerance to Huanglongbing in Citrus and Citrus-related Germplasm. Hortscience 2017, 52, 31–39. [Google Scholar] [CrossRef]
- Ramadugu, C.; Keremane, M.L.; Halbert, S.E.; Duan, Y.P.; Roose, M.L.; Stover, E.; Lee, R.F. Long-Term Field Evaluation Reveals Huanglongbing Resistance in Citrus Relatives. Plant Dis. 2016, 100, 1858–1869. [Google Scholar] [CrossRef]
- Deng, H.; Achor, D.; Exteberria, E.; Yu, Q.; Du, D.; Stanton, D.; Liang, G.; Gmitter, F.G. Phloem Regeneration Is a Mechanism for Huanglongbing-Tolerance of “Bearss” Lemon and “LB8-9” Sugar Belle® Mandarin. Front. Plant Sci. 2019, 10, 277. [Google Scholar] [CrossRef]
- Huang, M.; Roose, M.L.; Yu, Q.; Du, D.; Yu, Y.; Zhang, Y.; Deng, Z.; Stover, E.; Gmitter, F.G. Construction of High-Density Genetic Maps and Detection of QTLs Associated With Huanglongbing Tolerance in Citrus. Front. Plant Sci. 2018, 9, 1694. [Google Scholar] [CrossRef]
- Huang, M.; Roose, M.L.; Yu, Q.; Stover, E.; Hall, D.G.; Deng, Z.; Gmitter, F.G. Mapping of QTLs and candidate genes associated with multiple phenotypic traits for Huanglongbing tolerance in citrus. Hortic. Plant J. 2023, 9, 705–719. [Google Scholar] [CrossRef]
- Alves, M.N.; Lopes, S.A.; Raiol-Junior, L.L.; Wulff, N.A.; Girardi, E.A.; Ollitrault, P.; Pena, L. Resistance to ‘Candidatus Liberibacter asiaticus,’ the Huanglongbing Associated Bacterium, in Sexually and/or Graft-Compatible Citrus Relatives. Front. Plant Sci. 2021, 11, 617664. [Google Scholar] [CrossRef]
- Alves, M.N.; Raiol, L.L.; Girardi, E.A.; Miranda, M.; Wulff, N.A.; Carvalho, E.V.; Lopes, S.A.; Ferro, J.A.; Ollitrault, P.; Pena, L. Insight into resistance to ‘Candidatus Liberibacter asiaticus,’ associated with Huanglongbing, in Oceanian citrus genotypes. Front. Plant Sci. 2022, 13, 1009350. [Google Scholar] [CrossRef] [PubMed]
- Singerman, A.; Burani-Arouca, M.; Futch, S.H. The Profitability of New Citrus Plantings in Florida in the Era of Huanglongbing. Hortscience 2018, 53, 1655–1663. [Google Scholar] [CrossRef]
- Obreza, T.A.; Morgan, K.T.; Albrigo, L.G.; Boman, B.J.; Kadyampakeni, D.; Vashisth, T.; Zekri, M.; Graham, J.; Johnson, E. Nutrition of Florida Citrus Trees, 3rd Edition: Chapter 8. Recommended Fertilizer Rates and Timing: SL462/SS675, 2/2020. EDIS 2020, 2020, 20. [Google Scholar] [CrossRef]
- Fang, Q.; Wang, L.; Yu, H.; Huang, Y.; Jiang, X.; Deng, X.; Xu, Q. Development of Species-Specific InDel Markers in Citrus. Plant Mol. Biol. Report. 2018, 36, 653–662. [Google Scholar] [CrossRef]
- MacDicken, K.G.; Wolf, G.V.; Briscoe, C. Standard research methods for multipurpose trees and shrubs. In Multipurpose Tree Species Network Research Series: Manual; MacDicken, K.G., Wolf, G.V., Briscoe, C.B., Eds.; Winrock International Institute for Agricultural Development, Forestry/Fuelwood Research and Development Project (F/FRED): Arlington, VA, USA, 1991; p. 93. [Google Scholar]
- Magarik, Y.A.S.; Roman, L.A.; Henning, J.G. How should we measure the DBH of multi-stemmed urban trees? Urban For. Urban Green. 2020, 47, 126481. [Google Scholar] [CrossRef]
- Li, W.; Hartung, J.S.; Levy, L. Quantitative real-time PCR for detection and identification of Candidatus Liberibacter species associated with citrus huanglongbing. J. Microbiol. Methods 2006, 66, 104–115. [Google Scholar] [CrossRef]
- Morgan, J.K.; Zhou, L.; Li, W.; Shatters, R.G.; Keremane, M.; Duan, Y.-P. Improved real-time PCR detection of ‘Candidatus Liberibacter asiaticus’ from citrus and psyllid hosts by targeting the intragenic tandem-repeats of its prophage genes. Mol. Cell. Probes 2012, 26, 90–98. [Google Scholar] [CrossRef]
- Hilf, M.E.; Luo, W. Dynamics of ‘Candidatus Liberibacter asiaticus’ Colonization of New Growth of Citrus. Phytopathology 2018, 108, 1165–1171. [Google Scholar] [CrossRef]
- Ibanez, F.; Stelinski, L.L. Temporal Dynamics of Candidatus Liberibacter asiaticus Titer in Mature Leaves from Citrus sinensis cv Valencia Are Associated with Vegetative Growth. J. Econ. Entomol. 2019, 113, 589–595. [Google Scholar] [CrossRef]
- Raiol-Junior, L.L.; Cifuentes-Arenas, J.C.; Cunniffe, N.J.; Turgeon, R.; Lopes, S.A. Modeling ‘Candidatus Liberibacter asiaticus’ Movement Within Citrus Plants. Phytopathology 2021, 111, 1711–1719. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.; Gao, J.; Yuan, C.; Zhan, X.; Cui, X.; Zheng, Z.; Deng, X.; Xu, M. Current Epidemic Situation and Control Status of Citrus Huanglongbing in Guangdong China: The Space–Time Pattern Analysis of Specific Orchards. Life 2023, 13, 749. [Google Scholar] [CrossRef] [PubMed]
- Bove, J.M.; Ayres, A.J. Etiology of three recent diseases of citrus in Sao Paulo State: Sudden death, variegated chlorosis and huanglongbing. IUBMB Life 2007, 59, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Villar-Luna, H.; Santos-Cervantes, M.E.; Rodríguez-Negrete, E.A.; Méndez-Lozano, J.; Leyva-López, N.E. Economic and Social Impact of Huanglongbing on the Mexico Citrus Industry: A Review and Future Perspectives. Horticulturae 2024, 10, 481. [Google Scholar] [CrossRef]
- Costa, G.V.d.; Neves, C.S.V.J.; Bassanezi, R.B.; Leite, R.P.; Telles, T.S. Economic impact of Huanglongbing on orange production. Rev. Bras. De. Frutic. 2021, 43, e-472. [Google Scholar] [CrossRef]
- Pandey, S.S.; Hendrich, C.; Andrade, M.O.; Wang, N. Candidatus Liberibacter: From Movement, Host Responses, to Symptom Development of Citrus Huanglongbing. Phytopathology 2022, 112, 55–68. [Google Scholar] [CrossRef]
- Lee, J.A.; Halbert, S.E.; Dawson, W.O.; Robertson, C.J.; Keesling, J.E.; Singer, B.H. Asymptomatic spread of huanglongbing and implications for disease control. Proc. Natl. Acad. Sci. USA 2015, 112, 7605–7610. [Google Scholar] [CrossRef]
- Roy, B.A.; Kirchner, J.W. Evolutionary dynamics of pathogen resistance and tolerance. Evolution 2000, 54, 51–63. [Google Scholar] [CrossRef]
- Bisi, R.B.; Albrecht, U.; Bowman, K.D. Response of Citrus Germplasm Seedlings to Candidatus Liberibacter Asiaticus Infection under Controlled Greenhouse Conditions. HortScience 2024, 59, 278–287. [Google Scholar] [CrossRef]
- Albrecht, U.; Bowman, K.D. Tolerance of trifoliate citrus rootstock hybrids to Candidatus Liberibacter asiaticus. Sci. Hortic. 2012, 147, 71–80. [Google Scholar] [CrossRef]
- Albrecht, U.; Bowman, K.D. Tolerance of the Trifoliate Citrus Hybrid US-897 (Citrus reticulata Blanco x Poncirus trifoliata L. Raf.) to Huanglongbing. Hortscience 2011, 46, 16–22. [Google Scholar] [CrossRef]
- Roach, D.A.; Wulff, R.D. Maternal effects in plants. Annu. Rev. Ecol. Syst. 1987, 18, 209–235. [Google Scholar] [CrossRef]
- Mott, R.; Yuan, W.; Kaisaki, P.; Gan, X.; Cleak, J.; Edwards, A.; Baud, A.; Flint, J. The Architecture of Parent-of-Origin Effects in Mice. Cell 2014, 156, 332–342. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Singh, K.; Huff, M.; Gottschalk, C.; Do, M.; Staton, M.; Keremane, M.L.; Krueger, R.; Ramadugu, C.; Dardick, C. Deep R-gene discovery in HLB resistant wild Australian limes uncovers evolutionary features and potentially important loci for hybrid breeding. Front. Plant Sci. 2025, 15, 1503030. [Google Scholar] [CrossRef]
- Alves, M.N.; Cifuentes-Arenas, J.; Niñoles, R.; Raiol-Junior, L.L.; Carvalho, E.; Quirós-Rodriguez, I.; Ferro, J.A.; Licciardello, C.; Alquezar, B.; Carmona, L.; et al. Transcriptomic analysis of early stages of ‘Candidatus Liberibacter asiaticus’ infection in susceptible and resistant species after inoculation by Diaphorina citri feeding on young shoots. Front. Plant Sci. 2025, 16, 1502953. [Google Scholar] [CrossRef]
- Zhao, P.; Yang, H.; Sun, Y.; Zhang, J.; Gao, K.; Wu, J.; Zhu, C.; Yin, C.; Chen, X.; Liu, Q.; et al. Targeted MYC2 stabilization confers citrus Huanglongbing resistance. Science 2025, 388, 191–198. [Google Scholar] [CrossRef]
- Ma, W.; Pang, Z.; Huang, X.; Xu, J.; Pandey, S.S.; Li, J.; Achor, D.S.; Vasconcelos, F.N.C.; Hendrich, C.; Huang, Y.; et al. Citrus Huanglongbing is a pathogen-triggered immune disease that can be mitigated with antioxidants and gibberellin. Nat. Commun. 2022, 13, 529. [Google Scholar] [CrossRef]
- Weber, K.C.; Mahmoud, L.M.; Stanton, D.; Welker, S.; Qiu, W.M.; Grosser, J.W.; Levy, A.; Dutt, M. Insights into the mechanism of Huanglongbing tolerance in the Australian finger lime (Citrus australasica). Front. Plant Sci. 2022, 13, 23. [Google Scholar] [CrossRef]
- Fan, J.; Chen, C.; Yu, Q.; Khalaf, A.; Achor, D.S.; Brlansky, R.H.; Moore, G.A.; Li, Z.-G.; Gmitter, F.G. Comparative Transcriptional and Anatomical Analyses of Tolerant Rough Lemon and Susceptible Sweet Orange in Response to ‘Candidatus Liberibacter asiaticus’ Infection. Mol. Plant-Microbe Interact. 2012, 25, 1396–1407. [Google Scholar] [CrossRef]
- Zou, X.; Bai, X.; Wen, Q.; Xie, Z.; Wu, L.; Peng, A.; He, Y.; Xu, L.; Chen, S. Comparative Analysis of Tolerant and Susceptible Citrus Reveals the Role of Methyl Salicylate Signaling in the Response to Huanglongbing. J. Plant Growth Regul. 2019, 38, 1516–1528. [Google Scholar] [CrossRef]
- Swingle, W.T.; Reece, P.C. The botany of citrus and its wild relatives of the orange subfamily. In The Citrus Industry, 2nd ed.; Reuther, W., Webber, H.J., Batchelor, L.D., Eds.; University of California, Division of Agricultural Sciences: Berkeley, CA, USA, 1967; pp. 190–430. [Google Scholar]
- Albrecht, U.; Fadli, A.; Ramadugu, C. Evaluation of Citrus × Microcitrus Hybrid Scions. Available online: https://citrusindustry.net/2022/07/11/evaluation-of-citrus-x-microcitrus-hybrid-scions/ (accessed on 2 June 2025).
2019-1 | 2019-2 | 2020-2 | 2021-1 | 2021-2 | 2022-1 | 2022-2 | |
---|---|---|---|---|---|---|---|
ΔCt < 18.75 (%) w | 69.9 | 78.1 | 87.7 | 86.3 | 83.6 | 76.7 | 78.1 |
ΔCt > 18.75 (%) w | 30.1 | 21.9 | 12.3 | 13.7 | 16.4 | 23.3 | 21.9 |
ΔCt Mean ± SE x | 13.01 ± 1.01 | 9.60 ± 1.00 | 6.79 ± 0.73 | 8.63 ± 0.81 | 8.18 ± 0.85 | 9.57 ± 0.95 | 9.62 ± 0.90 |
Defoliation 1–3 (%) y | 83.6 | 79.5 | 83.6 | 50.7 | 68.5 | 89.0 | 67.1 |
Defoliation 4–5 (%) y | 16.4 | 20.5 | 16.4 | 49.3 | 31.5 | 11.0 | 32.9 |
Defoliation Mean ± SE x | 2.49 ± 0.12 | 2.67 ± 0.12 | 2.48 ± 0.12 | 3.45 ± 0.12 | 2.93 ± 0.13 | 2.4 ± 0.13 | 2.97 ± 0.12 |
Chlorosis 1–3 (%) z | 97.3 | 98.6 | 97.3 | 100.0 | 100.0 | 100.0 | 100.0 |
Chlorosis 4–5 (%) z | 2.7 | 1.4 | 2.7 | 0.0 | 0.0 | 0.0 | 0.0 |
Chlorosis Mean ± SE x | 1.82 ± 0.10 | 1.88 ± 0.09 | 1.84 ± 0.1 | 1.38 ± 0.07 | 1.53 ± 0.08 | 1.59 ± 0.09 | 1.36 ± 0.07 |
Principal Component (PC) | Eigenvalue | Percent | Cumulative Percent |
---|---|---|---|
1 | 9.4815 | 36.47 | 36.47 |
2 | 6.6207 | 25.46 | 61.93 |
3 | 1.5556 | 5.98 | 67.91 |
4 | 1.4039 | 5.40 | 73.31 |
5 | 1.1356 | 4.37 | 77.68 |
6 | 0.9873 | 3.80 | 81.48 |
7 | 0.7772 | 2.99 | 84.47 |
8 | 0.6934 | 2.67 | 87.14 |
9 | 0.5139 | 1.98 | 89.11 |
10 | 0.4782 | 1.84 | 90.95 |
11 | 0.3554 | 1.37 | 92.32 |
12 | 0.3196 | 1.23 | 93.55 |
Variable | Cluster 1 | Cluster 2 | Cluster 3 |
---|---|---|---|
ΔCt 2019-1 | 22.35 | 9.32 | 9.19 |
ΔCt 2019-2 | 18.77 | 7.18 | 5.09 |
ΔCt 2020-2 | 14.53 | 3.15 | 3.99 |
ΔCt 2021-1 | 17.80 | 4.58 | 5.14 |
ΔCt 2021-2 | 17.89 | 4.93 | 3.85 |
ΔCt 2022-1 | 19.18 | 6.46 | 5.21 |
ΔCt 2022-2 | 18.90 | 5.49 | 6.12 |
Trunk Diameter 2022 (Z-score) | 0.16 | −1.07 | 0.57 |
Trunk Diameter 2023 (Z-score) | 0.20 | −1.10 | 0.55 |
Tree Height 2022 (Z-score) | 0.61 | −1.04 | 0.25 |
Tree Height 2023 (Z-score) | 0.55 | −1.01 | 0.27 |
Canopy Volume 2023 (Z-score) | 0.34 | −1.09 | 0.46 |
Defoliation 2019-1 | 1.95 | 3.60 | 2.16 |
Defoliation 2019-2 | 2.24 | 3.75 | 2.28 |
Defoliation 2020-2 | 1.95 | 3.60 | 2.19 |
Defoliation 2021-2 | 2.48 | 4.05 | 2.53 |
Defoliation 2022-1 | 2.05 | 3.45 | 1.97 |
Defoliation 2022-2 | 2.95 | 3.75 | 2.50 |
Chlorosis 2019-1 | 1.00 | 2.10 | 2.19 |
Chlorosis 2019-2 | 1.24 | 1.90 | 2.28 |
Chlorosis 2020-2 | 1.05 | 2.10 | 2.19 |
Chlorosis 2021-1 | 1.00 | 1.55 | 1.53 |
Chlorosis 2021-2 | 1.10 | 1.55 | 1.81 |
Chlorosis 2022-1 | 1.00 | 1.85 | 1.81 |
Chlorosis 2022-2 | 1.00 | 1.45 | 1.53 |
Tree ID | Mean ΔCt y | ΔCt Min-Max y | Median Defoliation z | Defoliation Min-Max z | Median Chlorosis y | Trunk Diameter 2023 (Z-Score by Family) | Tree Height 2023 (Z-Score by Family) | Canopy Volume 2023 (Z-Score by Family) | Hierarchical Clusters | K-Means Clusters |
---|---|---|---|---|---|---|---|---|---|---|
Fam2-53 | 23.4 | 19.5–25.3 | 2.0 | 1–2 | 1 | 0.206 | 0.591 | 0.144 | 1 | 1 |
Fam2-01 | 22.6 | 17.5–26.3 | 4.0 | 3–4 | 1 | −1.433 | −1.283 | −1.065 | 1 | 1 |
Fam2-44 | 21.7 | 17.4–25.4 | 2.0 | 1–3 | 1 | −0.243 | 0.868 | −0.460 | 1 | 1 |
Fam2-14 | 21.7 | 18.8–24.7 | 3.0 | 2–3 | 1 | 0.387 | 0.302 | 0.344 | 1 | 1 |
Fam2-28 | 21.5 | 16.1–26.4 | 3.0 | 2–4 | 1 | −1.199 | −0.768 | −1.082 | 1 | 1 |
Fam2-16 | 21.5 | 16.6–25.6 | 3.0 | 2–4 | 1 | 0.075 | 0.419 | 0.370 | 1 | 1 |
Fam2-45 | 21.4 | 15.7–25.3 | 2.0 | 2–2 | 1 | 0.491 | 0.673 | 0.871 | 1 | 1 |
Fam2-52 | 20.9 | 8.3–26.5 | 1.0 | 1–3 | 1 | 1.694 | 2.028 | 1.726 | 1 | 1 |
Fam2-23 | 19.8 | 8.6–26.8 | 2.0 | 2–4 | 1 | 0.480 | 0.236 | 0.194 | 1 | 1 |
Fam2-27 | 19.6 | 4.8–26.6 | 2.0 | 1–3 | 1 | 0.110 | −0.045 | 0.632 | 1 | 1 |
Fam2-05 | 19.0 | 8.5–24.5 | 2.0 | 2–3 | 1 | 0.088 | 0.475 | 0.801 | 1 | 1 |
Fam2-22 | 18.6 | 7.9–26.1 | 2.0 | 1–4 | 1 | 0.169 | 0.797 | −0.019 | 1 | 1 |
Fam2-51 | 18.2 | 9.5–25.0 | 2.5 | 1–4 | 1 | 0.499 | 0.838 | −0.375 | 1 | 1 |
Fam2-57 | 17.6 | 7.7–25.0 | 2.5 | 2–3 | 1 | −0.277 | 0.255 | 0.136 | 1 | 1 |
Fam2-60 | 17.5 | 6.8–25.7 | 3.0 | 3–4 | 1 | −0.396 | 0.611 | −0.947 | 1 | 1 |
Fam2-61 | 17.1 | 4.5–24.8 | 2.0 | 2–2 | 1 | −0.376 | 0.392 | 0.376 | 1 | 1 |
Fam2-07 | 15.6 | 6.0–25.4 | 2.5 | 1–4 | 1 | −0.769 | −0.260 | 0.357 | 1 | 1 |
Fam2-32 | 15.2 | 5.8–26.3 | 1.0 | 1–4 | 1 | 0.819 | 0.710 | 0.919 | 1 | 1 |
Fam2-62 | 14.7 | 4.7–25.1 | 1.0 | 1–1 | 1 | 2.089 | 1.909 | 1.909 | 1 | 1 |
Fam2-65 | 10.9 | 4.5–21.2 | 1.5 | 1–3 | 1 | 1.054 | 1.181 | 1.291 | 1 | 1 |
Fam1-20 | 9.8 | 2.7–17.5 | 2.0 | 1–3 | 1 | 0.767 | 1.629 | 1.004 | 1 | 1 |
Fam2-35 | 15.7 | 4.2–26.1 | 3.0 | 3–4 | 1 | −1.571 | −1.801 | −1.702 | 2 | 2 |
Fam2-21 | 11.4 | 4.5–22.8 | 3.0 | 3–3 | 1 | −0.452 | −0.063 | −0.111 | 2 | 3 |
Fam2-10 | 10.3 | 3.7–26.4 | 2.0 | 2–3 | 1 | −0.186 | −1.099 | 0.187 | 2 | 3 |
Fam2-42 | 9.9 | 4.7–26.2 | 3.0 | 3–3 | 1 | −0.746 | −1.328 | −1.119 | 2 | 2 |
Fam2-33 | 8.9 | 3.1–26.5 | 4.5 | 4–5 | 1 | −2.125 | −1.638 | −1.346 | 2 | 2 |
Fam2-39 | 8.5 | 5.7–11.3 | 4.0 | 2–5 | 1 | −1.700 | −1.754 | −1.930 | 2 | 2 |
Fam2-03 | 8.4 | 2.7–23.9 | 3.5 | 3–5 | 2 | −1.532 | −0.253 | −1.237 | 2 | 2 |
Fam2-34 | 8.3 | 3.4–16.1 | 2.5 | 2–3 | 1 | −0.416 | −0.516 | −0.355 | 2 | 3 |
Fam2-26 | 8.3 | 4.8–15.3 | 4.0 | 3–5 | 1 | −1.360 | −0.790 | −0.963 | 2 | 2 |
Fam2-09 | 7.8 | 5.3–12.7 | 3.0 | 3–4 | 1 | −0.525 | −1.328 | −0.839 | 2 | 2 |
Fam2-59 | 6.0 | 1.9–24.0 | 3.0 | 3–3 | 1 | −0.386 | −0.559 | −0.782 | 2 | 2 |
Fam2-24 | 6.0 | 1.7–26.0 | 4.0 | 3–5 | 2 | −1.441 | −1.722 | −1.736 | 2 | 2 |
Fam2-18 | 5.9 | 3.6–11.6 | 2.0 | 2–3 | 1 | −0.321 | −0.347 | −0.428 | 2 | 3 |
Fam1-01 | 5.5 | 2.9–15.4 | 4.0 | 3–4 | 2 | −0.496 | 0.395 | −0.399 | 2 | 2 |
Fam2-38 | 4.9 | 2.5–7.5 | 2.0 | 1–4 | 1 | −0.302 | −1.180 | −0.854 | 2 | 3 |
Fam1-14 | 4.5 | 0.5–16.6 | 3.0 | 3–4 | 2 | 0.350 | 0.756 | 0.666 | 2 | 3 |
Fam1-15 | 4.5 | −0.8–10.8 | 3.0 | 2–3 | 2 | −0.639 | −0.865 | −0.753 | 2 | 3 |
Fam2-63 | 4.5 | 1.7–7.5 | 4.0 | 3–5 | 1 | −0.929 | −1.398 | −0.687 | 2 | 2 |
Fam2-64 | 4.3 | 1.4–8.6 | 3.0 | 3–4 | 2 | −1.303 | −1.592 | −1.809 | 2 | 2 |
Fam1-26 | 3.9 | 2.3–5.5 | 3.5 | 3–4 | 2 | −0.264 | 0.265 | 0.125 | 2 | 2 |
Fam1-09 | 3.7 | 2.4–4.9 | 5.0 | 4–5 | 3 | −0.935 | −0.285 | −0.994 | 2 | 2 |
Fam1-12 | 3.5 | 2.0–5.9 | 3.0 | 3–3 | 2 | −0.670 | −0.534 | −0.392 | 2 | 2 |
Fam1-16 | 3.2 | 0.6–5.1 | 4.0 | 3–4 | 2 | −0.957 | −1.076 | −0.836 | 2 | 2 |
Fam1-28 | 3.1 | 1.9–4.9 | 4.0 | 4–5 | 3 | −0.800 | −1.662 | −1.479 | 2 | 2 |
Fam1-23 | 3.1 | 1.3–4.8 | 3.0 | 2–3 | 2 | 0.015 | −1.153 | −0.272 | 2 | 3 |
Fam1-21 | 2.5 | 0.7–5.0 | 3.0 | 3–4 | 2 | −0.854 | −0.811 | −0.520 | 2 | 2 |
Fam1-02 | 2.5 | 1.9–3.5 | 3.0 | 2–4 | 3 | 0.486 | −0.576 | 0.104 | 2 | 3 |
Fam1-10 | 2.4 | −0.7–4.4 | 5.0 | 5–5 | 2 | −2.285 | −1.922 | −2.233 | 2 | 2 |
Fam1-18 | 1.4 | 0.0–2.5 | 3.5 | 2–4 | 2 | −1.095 | −0.349 | −0.853 | 2 | 2 |
Fam1-07 | 9.3 | 6.7–14.7 | 2.5 | 2–4 | 2 | 0.297 | 0.531 | 0.558 | 3 | 3 |
Fam2-46 | 8.5 | 4.8–24.9 | 2.0 | 2–3 | 1 | 0.426 | 1.203 | 0.324 | 3 | 3 |
Fam2-56 | 8.1 | 4.4–16.4 | 2.0 | 1–2 | 2 | 1.079 | 1.313 | 1.643 | 3 | 3 |
Fam2-36 | 7.1 | 2.3–14.0 | 3.0 | 3–4 | 2 | 0.075 | 0.511 | −0.247 | 3 | 3 |
Fam2-02 | 6.8 | 3.8–9.3 | 1.0 | 1–2 | 2 | 1.380 | 0.403 | 0.500 | 3 | 3 |
Fam2-06 | 6.7 | 3.8–9.2 | 2.0 | 1–2 | 2 | 1.054 | 0.103 | 0.703 | 3 | 3 |
Fam1-24 | 6.0 | 3.4–9.9 | 2.5 | 2–3 | 1 | 0.911 | 0.870 | 0.968 | 3 | 3 |
Fam2-40 | 6.0 | 4.0–8.1 | 2.0 | 1–2 | 2 | 0.853 | 0.531 | 0.564 | 3 | 3 |
Fam2-20 | 6.0 | 3.9–8.1 | 2.0 | 1–2 | 2 | 1.836 | 1.146 | 1.630 | 3 | 3 |
Fam2-49 | 5.9 | 0.2–14.8 | 2.0 | 2–3 | 2 | 1.148 | 0.880 | 0.928 | 3 | 3 |
Fam2-37 | 5.6 | 3.9–7.7 | 3.0 | 1–4 | 2 | 1.222 | −0.242 | 0.512 | 3 | 3 |
Fam2-29 | 5.4 | 3.6–7.6 | 2.0 | 1–3 | 1 | 0.562 | 0.066 | 0.187 | 3 | 3 |
Fam2-43 | 4.7 | 2.7–7.5 | 2.0 | 2–3 | 2 | 0.324 | 1.425 | 1.048 | 3 | 3 |
Fam2-08 | 4.7 | 2.7–9.0 | 1.0 | 1–1 | 1 | 1.567 | 0.776 | 1.279 | 3 | 3 |
Fam1-08 | 4.6 | 1.5–9.6 | 2.5 | 1–3 | 2 | 2.188 | 1.733 | 2.299 | 3 | 3 |
Fam1-19 | 4.1 | 2.3–6.6 | 1.5 | 1–2 | 2 | −0.131 | −0.520 | −0.239 | 3 | 3 |
Fam1-06 | 4.1 | 2.9–6.2 | 2.0 | 2–4 | 2 | 1.016 | 0.723 | 0.479 | 3 | 3 |
Fam1-05 | 3.9 | 1.9–8.6 | 3.0 | 2–4 | 3 | 1.193 | 0.902 | 0.336 | 3 | 3 |
Fam2-04 | 3.3 | 1.9–4.5 | 2.0 | 1–2 | 2 | 0.227 | −0.081 | 1.259 | 3 | 3 |
Fam1-27 | 3.2 | 1.2–6.8 | 2.0 | 1–3 | 2 | 1.057 | 0.707 | 1.389 | 3 | 3 |
Fam1-22 | 2.8 | 1.1–4.4 | 3.0 | 3–4 | 2 | −0.146 | 1.101 | 0.132 | 3 | 3 |
Fam1-04 | 2.5 | 0.9–5.1 | 1.0 | 1–1 | 3 | 0.993 | 0.142 | 0.909 | 3 | 3 |
Fam2-30 | 2.3 | 0.2–6.6 | 2.0 | 2–4 | 3 | 0.075 | −0.595 | −0.740 | 3 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Besilla-Renteria, M.B.; Febres, V.J.; Chaparro, J.X. Field Evaluations of Two Citrus Interspecific Hybrid Populations Using Desert Lime (Citrus glauca (Lindl.) Burkill) Identify Presumed Resistance and Tolerance to Huanglongbing. Agronomy 2025, 15, 2407. https://doi.org/10.3390/agronomy15102407
Besilla-Renteria MB, Febres VJ, Chaparro JX. Field Evaluations of Two Citrus Interspecific Hybrid Populations Using Desert Lime (Citrus glauca (Lindl.) Burkill) Identify Presumed Resistance and Tolerance to Huanglongbing. Agronomy. 2025; 15(10):2407. https://doi.org/10.3390/agronomy15102407
Chicago/Turabian StyleBesilla-Renteria, Maria B., Vicente J. Febres, and Jose X. Chaparro. 2025. "Field Evaluations of Two Citrus Interspecific Hybrid Populations Using Desert Lime (Citrus glauca (Lindl.) Burkill) Identify Presumed Resistance and Tolerance to Huanglongbing" Agronomy 15, no. 10: 2407. https://doi.org/10.3390/agronomy15102407
APA StyleBesilla-Renteria, M. B., Febres, V. J., & Chaparro, J. X. (2025). Field Evaluations of Two Citrus Interspecific Hybrid Populations Using Desert Lime (Citrus glauca (Lindl.) Burkill) Identify Presumed Resistance and Tolerance to Huanglongbing. Agronomy, 15(10), 2407. https://doi.org/10.3390/agronomy15102407