Ground Beetle Responses to Heavy Metal in Soils: Carabus coriaceus as an Ecological Indicator
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Sites and Conditions
2.2. Sampling Methods for Soil and Carabid Beetles
2.3. Laboratory Analysis of Soil and Carabid Beetles
2.4. Statistical Analysis
2.5. Use of Generative AI
3. Results
3.1. Soil Chemical Properties
3.2. Vertical Distribution of Metal Content in Soil
3.3. Heavy Metal Content in Soil and Carabid Beetles
3.4. Bioaccumulation Factors in Carabid Beetles
4. Discussion
4.1. Soil Chemical Properties and Metal Contamination
4.2. Heavy Metal Content in Soils
4.3. Heavy Metal Content in Carabus coriaceus
4.4. Comparative Bioaccumulation Studies
Integrative Perspective on Soil–Beetle Interactions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. State of Knowledge of Soil Biodiversity: Status, Challenges and Potentialities; FAO: Rome, Italy, 2020; Available online: https://www.fao.org/documents/card/en/c/cb1928en (accessed on 13 August 2025).
- Su, C.; Jiang, L.; Zhang, W. A review on heavy metal contamination in the soil worldwide: Situation, impact and remediation techniques. Environ. Skept. Crit. 2014, 3, 24–38. [Google Scholar]
- Satarug, S.; Baker, J.R.; Urbenjapol, S.; Haswell-Elkins, M.; Reilly, P.E.; Williams, D.J.; Moore, M.R. A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol. Lett. 2003, 137, 65–83. [Google Scholar] [CrossRef]
- Boyd, R.S. Heavy metal pollutants and chemical ecology: Exploring new frontiers. J. Chem. Ecol. 2010, 36, 46–58. [Google Scholar] [CrossRef]
- Alloway, B.J. Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability, 3rd ed.; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Rascio, N.; Navari-Izzo, F. Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Sci. 2011, 180, 169–181. [Google Scholar] [CrossRef] [PubMed]
- Sauvé, S.; Norvell, W.A.; McBride, M.; Hendershot, W. Speciation and complexation of cadmium in extracted soil solutions. Environ. Sci. Technol. 2000, 34, 291–296. [Google Scholar] [CrossRef]
- Kim, R.Y.; Yoon, J.K.; Kim, T.S.; Yang, J.E.; Owens, G.; Kim, K.R. Bioavailability of heavy metals in soils: Definitions and practical implementation—A critical review. Environ. Geochem. Health 2015, 37, 1041–1061. [Google Scholar] [CrossRef] [PubMed]
- Michael, A. Heavy Metals in Soil: A Review. Chem. Eng. Process Tech. 2023, 8, 1076. [Google Scholar] [CrossRef]
- Linehan, D.J. Organic matter and trace metals in soils. In Soil Organic Matter and Biological Activity; Vaughan, D., Malcolm, R.E., Eds.; Developments in Plant and Soil Sciences; Springer: Dordrecht, The Netherlands, 1985; Volume 16, pp. 217–229. [Google Scholar] [CrossRef]
- Nederlof, M.M.; Van Riemsdijk, W.H.; De Haan, F.A.M. Effect of pH on the Bioavailability of Metals in Soils. In Integrated Soil and Sediment Research: A Basis for Proper Protection; Eijsackers, H.J.P., Hamers, T., Eds.; Soil & Environment; Springer: Dordrecht, The Netherlands, 1993; Volume 1, pp. 715–718. [Google Scholar] [CrossRef]
- Niemelä, J.; Kotze, J.; Ashworth, A.; Brandmayr, P.; Desender, K.; New, T.R.; Penev, L.; Samways, M.J.; Spence, J. The search for common anthropogenic impacts on biodiversity: A global network. J. Insect Conserv. 2000, 4, 3–9. [Google Scholar] [CrossRef]
- Lindqvist, L.; Block, M.; Tjalve, H. Distribution and excretion of Cd, Hg, methyl-Hg and ZS in the predatory beetle Pterostichus niger (Coleoptera: Carabidae). Environ. Toxicol. Chem. 1995, 14, 1195–1201. [Google Scholar] [CrossRef]
- Lövei, G.L.; Sunderland, K.D. Ecology and behavior of ground beetles (Coleoptera: Carabidae). Annu. Rev. Entomol. 1996, 41, 231–256. [Google Scholar] [CrossRef]
- McGeoch, M.A. The selection, testing and application of terrestrial insects as bioindicators. Biol. Rev. 1998, 73, 181–201. [Google Scholar] [CrossRef]
- Jakovljević, T.; Radojčić Redovniković, I.; Cvjetko, M.; Bukovac, I.; Sedak, M.; Đokić, M.; Bilandžić, N. The potential of poplar (Populus nigra var. italica) in the phytoremediation of cadmium. Šum. List 2015, 139, 231–232. Available online: https://hrcak.srce.hr/141896 (accessed on 13 August 2025).
- Wang, Q.; Chen, M.; Shan, G.; Chen, P.; Cui, S.; Yi, S.; Zhu, L. Bioaccumulation and biomagnification of emerging bisphenol analogues in aquatic organisms from Taihu Lake, China. Sci. Total Environ. 2017, 598, 814–820. [Google Scholar] [CrossRef] [PubMed]
- Forsythe, T.G. Feeding and locomotory functions in relation to body form in five species of ground beetle (Coleoptera: Carabidae). J. Zool. 1991, 223, 233–263. [Google Scholar] [CrossRef]
- Talarico, F.; Brandmayr, P.; Giulianini, P.G.; Ietto, F.; Naccarato, A.; Perrotta, E.; Tagarelli, A.; Giglio, A. Effects of metal pol-lution on survival and physiological responses in Carabus (Chaetocarabus) lefebvrei (Coleoptera, Carabidae). Eur. J. Soil Biol. 2014, 61, 80–89. [Google Scholar] [CrossRef]
- Purchart, L.; Kula, E. Content of heavy metals in bodies of field ground beetles (Coleoptera, Carabidae) with respect to selected ecological factors. Pol. J. Ecol. 2007, 55, 305–314. Available online: https://www.researchgate.net/publication/285700351 (accessed on 13 August 2025).
- Thiele, H.U. Carabid Beetles in Their Environments: A Study on Habitat Selection by Adaptations in Physiology and Behaviour; Springer: Berlin/Heidelberg, Germany, 1977. [Google Scholar]
- Turin, H.; Penev, L.; Casale, A. The Genus Carabus in Europe: A Synthesis; Pensoft Publishers: Sofia, Bulgaria, 2003. [Google Scholar]
- European Commission. Mission Soil: Caring for Soil Is Caring for Life—Implementation Plan; Directorate-General for Research and Innovation: Brussels, Belgium, 2021; Available online: https://ec.europa.eu/info/files/mission-soil-implementation-plan_en (accessed on 2 April 2025).
- Lagisz, M.; Laskowski, R. Evidence for between-generation effects in carabids exposed to heavy metals pollution. Ecotoxicology 2008, 17, 59–66. [Google Scholar] [CrossRef]
- Simon, E.; Harangi, S.; Baranyai, E.; Braun, M.; Fábián, I.; Mizser, S.; Tóthmérész, B. Distribution of toxic elements between biotic and abiotic components of terrestrial ecosystem along an urbanization gradient: Soil, leaf litter and ground beetles. Ecol. Indic. 2016, 60, 258–264. [Google Scholar] [CrossRef]
- NP Risnjak. Prirodna Obilježja; NP Risnjak: Crni Lug, Croatia, 2023; Available online: https://www.np-risnjak.hr/prirodna-obiljezja-parka/ (accessed on 30 March 2025).
- Krapina-Zagorje County. Official Website of Krapina-Zagorje County; Krapina-Zagorje County: Krapina, Croatia, 2022; Available online: https://zagorje.croatia.hr/en-gb (accessed on 2 May 2023).
- Eijkelkamp. Soil Augers—Product Information and User Manual; Eijkelkamp Soil & Water: Giesbeek, The Netherlands, 2009; Available online: https://www.eijkelkamp.com (accessed on 25 March 2025).
- Ministarstvo Poljoprivrede. Uzimanje Uzoraka tla za Provođenje Obvezne Analize tla. Savjetodavna Služba. 2 September 2025. Available online: https://savjetodavna.mps.hr/2025/09/02/uzimanje-uzoraka-tla-za-provodenje-obvezne-analize-tla/ (accessed on 5 September 2025).
- Greenslade, P.J.M. Pitfall trapping as a method for studying populations of Carabidae (Coleoptera). J. Anim. Ecol. 1964, 33, 301–310. [Google Scholar] [CrossRef]
- Spence, J.R.; Niemelä, J.K. Sampling carabid assemblages with pitfall traps: The madness and the method. Can. Entomol. 1994, 126, 881–894. [Google Scholar] [CrossRef]
- HRN ISO 10390:2005; Soil Quality—Determination of pH. Croatian Standards Institute: Zagreb, Croatia, 2005. Available online: https://repozitorij.hzn.hr/norm/HRN+ISO+10390%3A2005 (accessed on 12 June 2025).
- HRN ISO 13878:2004; Soil Quality—Determination of Total Nitrogen Content by Dry Combustion (Elemental Analysis). Croatian Standards Institute: Zagreb, Croatia, 2004. Available online: https://repozitorij.hzn.hr/norm/HRN+ISO+13878%3A2004 (accessed on 12 June 2025).
- ISO 15178:2005; Soil Quality—Determination of Total Sulfur by Dry Combustion. International Organization for Standardization: Geneva, Switzerland, 2005.
- HRN ISO 10694:2004; Soil Quality—Determination of Organic and Total Carbon After Dry Combustion (Elementary Analysis). Croatian Standards Institute: Zagreb, Croatia, 2004. Available online: https://repozitorij.hzn.hr/norm/HRN+ISO+10694%3A2004 (accessed on 12 June 2025).
- Egner, H.; Riehm, H.; Domingo, W.R. Untersuchungen über die chemische Bodenanalyse als Grundlage für die Beurteilung des Nährstoffzustandes der Böden. K. Lantbrukshögskolans Ann. 1960, 26, 199–215. [Google Scholar]
- ISO 13196:2015; Soil Quality—Screening of Soil Polluted with Potentially Toxic Elements—Method Using X-Ray Fluorescence Spectrometry (XRF). International Organization for Standardization: Geneva, Switzerland, 2015.
- SAS Institute. SAS/STAT® 9.1.3 User’s Guide; SAS Institute Inc.: Cary, NC, USA, 2004; Available online: http://support.sas.com/documentation/onlinedoc/91pdf/index_913.html (accessed on 15 November 2024).
- Digital Pedological Map of Croatia. 2021. Available online: http://pedologija.com.hr/iBaza/DPK-Hr_2021/index.html#6/45.527/14.677 (accessed on 1 April 2025). (In Croatian).
- Škorić, A. Priručnik za Pedološka Istraživanja; Sveučilište u Zagrebu, Fakultet Poljoprivrednih Znanosti: Zagreb, Croatia, 1982. [Google Scholar]
- Bašić, F. Pedologija; Školska Knjiga: Zagreb, Croatia, 2013. [Google Scholar]
- Kabata-Pendias, A.; Mukherjee, A.B. Trace Elements from Soil to Human; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar] [CrossRef]
- Sauvé, S.; Martínez, C.E.; McBride, M.; Hendershot, W. Adsorption of Free Lead (Pb2+) by Pedogenic Oxides, Ferrihydrite, and Leaf Compost. Soil Sci. Soc. Am. J. 2000, 64, 595–603. [Google Scholar] [CrossRef]
- Harmsen, J. Measuring bioavailability: From a scientific approach to standard methods. J. Environ. Qual. 2007, 36, 1420–1428. [Google Scholar] [CrossRef]
- Hrvatska agencija za poljoprivredu i hranu (HAPIH). Vodič za optimizaciju gospodarenja tlom i prilagodbu agroekosustava i ag-rotehničkih mjera klimatskim promjenama; HAPIH: Osijek, Croatia, 2023; Available online: https://www.hapih.hr/wp-content/uploads/2023/07/Agroekoteh-Vodic.pdf (accessed on 13 June 2025).
- Keeney, D.R.; Nelson, D.W. Nitrogen—Inorganic Forms. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, 2nd ed.; Page, A.L., Ed.; Agronomy Monograph No. 9; ASA–SSSA: Madison, WI, USA, 1982; pp. 643–698. [Google Scholar] [CrossRef]
- Martinović, J. Tla u Hrvatskoj: Monografija—Završni Izvještaj Prve Inventarizacije Tala; Državna Uprava za Zaštitu Prirode i Okoliša & Pokret Prijatelja Prirode “Lijepa Naša”: Zagreb, Croatia, 2000. [Google Scholar]
- Narodne Novine 71/2019. Pravilnik o Zaštiti Poljoprivrednog Zemljišta od Onečišćenja. Ministarstvo Poljoprivrede Republike Hrvatske. Available online: https://narodne-novine.nn.hr/clanci/sluzbeni/2019_07_71_1501.html (accessed on 13 August 2025).
- Nriagu, J.O.; Pacyna, J.M. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 1988, 333, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Fazal, M.A.; Kawachi, T.; Ichion, E. Validity of the Latest Research Findings on Causes of Groundwater Arsenic Contamination in Bangladesh. Water Int. 2001, 26, 380–389. [Google Scholar] [CrossRef]
- Springer, O.; Springer, D. Otrovani Modrozeleni Planet: Priručnik iz Ekologije, Ekotoksikologije i Zaštite Prirode i Okoliša; Meridijani: Zagreb, Croatia, 2008. [Google Scholar]
- Grant, A. Pollution Tolerant Species and Communities: Intriguing Toys or Invaluable Monitoring Tools? Hum. Ecol. Risk Assess. 2002, 8, 955–970. [Google Scholar] [CrossRef]
- Halamić, J.; Miko, S. Geokemijski Atlas Republike Hrvatske; Hrvatski Geološki Institut: Zagreb, Croatia, 2009. [Google Scholar]
- Adamczyk-Szabela, D.; Wolf, W.M. The Impact of Soil pH on Heavy Metals Uptake and Photosynthesis Efficiency in Melissa officinalis, Taraxacum officinalis, Ocimum basilicum. Molecules 2022, 27, 4671. [Google Scholar] [CrossRef]
- Caporale, A.G.; Violante, A. Chemical Processes Affecting the Mobility of Heavy Metals and Metalloids in Soil Environments. Curr. Pollut. Rep. 2016, 2, 15–27. [Google Scholar] [CrossRef]
- Lindberg, S.E.; Turner, R.R.; Lovett, G.M.; Richter, D.D.; Johnson, D.W. Atmospheric deposition and canopy interactions of major ions in forests: A review. Science 1982, 215, 1609–1611. [Google Scholar] [CrossRef]
- Hovmand, M.F.; Kemp, K.; Kystol, J.; Johnsen, I.; Riis-Nielsen, T.; Pacyna, J.M. Atmospheric heavy metal deposition accumulated in rural forest soils of Southern Scandinavia. Environ. Pollut. 2008, 155, 537–541. [Google Scholar] [CrossRef] [PubMed]
- Alekseev, S.; Ruchin, A.; Semishin, G. Seasonal Dynamics of Carabus coriaceus Linnaeus, 1758 “Coleoptera, Carabidae” Activity in the Areal’s Eastern Part. Entomol. Appl. Sci. Lett. 2021, 8, 26–31. [Google Scholar] [CrossRef]
- Viric Gasparic, H.; Lemic, D.; Bazok, R. Neonicotinoid residues in earthworms and ground beetles under intensive sugar beet production: Preliminary study in Croatia. Agronomy 2022, 12, 2102. [Google Scholar] [CrossRef]
- Šerić Jelaska, M.; Jelić, B.; Anđelić Dmitrović, B.; Kos, T. Bioaccumulation of pesticides in carabid beetles in a vineyard and olive grove under integrated pest management. Eur. J. Entomol. 2024, 121, 269–279. [Google Scholar] [CrossRef]
- Spurgeon, D.J.; Hopkin, S.P. Effects of metal-contaminated soils on the growth, sexual development, and early cocoon production of Eisenia fetida, with particular reference to zinc. Ecotoxicol. Environ. Saf. 1996, 35, 86–95. [Google Scholar] [CrossRef]
- Van Gestel, C.A.M.; Van Dis, W.A. The influence of soil characteristics on the toxicity of four chemicals to the earthworm Eisenia fetida andrei (Oligochaeta). Biol. Fertil. Soils 1988, 6, 262–265. [Google Scholar] [CrossRef]
- Rainio, J.; Niemelä, J. Ground beetles (Coleoptera: Carabidae) as bioindicators. Biodivers. Conserv. 2003, 12, 487–506. [Google Scholar] [CrossRef]
- de Vries, W.; Römkens, P.F.; Schütze, G. Critical Soil Concentrations of Cadmium, Lead, and Mercury in View of Health Effects on Humans and Animals. Rev. Environ. Contam. Toxicol. 2007, 191, 91–130. [Google Scholar] [CrossRef]
- Karczewska, A.; Gruss, I.; Szopka, K.; Dradrach, A.; Twardowski, J.; Twardowska, K. Arsenic Toxicity to Earthworms in Soils of Historical as Mining Sites: An Assessment Based on Various Endpoints and Chemical Extractions. Environ. Geochem. Health 2023, 45, 6713–6726. [Google Scholar] [CrossRef]
- Gruss, I.; Lallaouna, R.; Twardowski, J.; Magiera-Dulewicz, J.; Twardowska, K. Collembola Growth in Heavy Metal-Contaminated Soils. Sci. Rep. 2024, 14, 27998. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, J.; Cheng, J.; Zhu, Y.; Geng, J.; Wang, X.; Feng, X.; Hou, H. A New Method for Ecological Risk Assessment of Combined Contaminated Soil. Toxics 2023, 11, 411. [Google Scholar] [CrossRef]
- Schmidt, T.; Kimmel, S.; Hoeger, S.; Lemic, D.; Bazok, R.; Viric Gasparic, H. Plant protection products in agricultural fields—Residues in earthworms and assessment of potentially toxic effects to the environment. J. Cent. Eur. Agric. 2022, 23, 604–614. [Google Scholar] [CrossRef]
- Vijver, M.; Jager, T.; Posthuma, L.; Peijnenburg, W. Metal uptake from soils and soil-sediment mixtures by larvae of Tenebrio molitor (L.) (Coleoptera). Ecotoxicol. Environ. Saf. 2003, 54, 277–289. [Google Scholar] [CrossRef]
- Migliorini, M.; Pigino, G.; Bianchi, N.; Bernini, F.; Leonzio, C. The effects of heavy metal contamination on the soil arthropod community of a shooting range. Environ. Pollut. 2004, 129, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Lagisz, M. Changes in Morphology of the Ground Beetle Pterostichus oblongopunctatus F. (Coleoptera; Carabidae) from Vicinities of a Zinc- and Lead Smelter. Environ. Toxicol. Chem. 2008, 27, 1744–1747. [Google Scholar] [CrossRef] [PubMed]
- Stone, D.; Jepson, P.; Kramarz, P.; Laskowski, R. Time to Death Response in Carabid Beetles Exposed to Multiple Stressors along a Gradient of Heavy Metal Pollution. Environ. Pollut. 2001, 113, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Bednarska, A.J.; Gerhardt, A.; Laskowski, R. Locomotor Activity and Respiration Rate of the Ground Beetle Pterostichus oblongopunctatus (Coleoptera: Carabidae) Exposed to Elevated Nickel Concentration at Different Temperatures: Novel Application of Multispecies Freshwater Biomonitor®. Ecotoxicology 2010, 19, 864–871. [Google Scholar] [CrossRef]
Element | <5 | 5–6 | >6 |
---|---|---|---|
mg kg−1 of Air-Dried Soil | |||
Cr | 40 | 80 | 120 |
Cu | 60 | 90 | 120 |
Ni | 30 | 50 | 75 |
Pb | 50 | 100 | 150 |
Zn | 60 | 150 | 200 |
Mo | 15 | 15 | 15 |
As | 15 | 25 | 30 |
Co | 30 | 50 | 60 |
Depth/cm | pH (1 M KCl) | Humus (%) | TN (%) | TS (%) | TC (%) | mg K2O/100 g/Soil | mg P2O5/100 g/Soil |
---|---|---|---|---|---|---|---|
Krapina (orchard soil) | |||||||
0–30 | 7.22 | 1.0 | 0.195 | 0.056 | 7.70 | 18.7 | 2.2 |
30–60 | 7.30 | 1.1 | 0.146 | 0.051 | 7.06 | 15.9 | 3.2 |
Risnjak (forest soil) | |||||||
0–30 | 4.67 | 9.8 | 0.609 | 0.077 | 8.43 | 11.7 | 2.2 |
30–60 | 6.44 | 9.9 | 0.434 | 0.067 | 6.75 | 10.2 | 2.7 |
Depth/cm | As | Co | Cu | Mo | Pb | Cr | Ni | Zn |
---|---|---|---|---|---|---|---|---|
Krapina (orchard soil) | mg/kg | |||||||
0–30 | 23.4 ns | 2.8 ns | 49.9 ns | 10.3 ns | 11.5 ns | 82.5 ns | 111.7 ns | 83.6 ns |
30–60 | 22.9 ns | 2.6 ns | 48.4 ns | 10.0 ns | 10.1 ns | 90.6 ns | 120.7 ns | 82.1 ns |
Pr > F | 0.52 | 0.86 | 0.40 | 0.68 | 0.49 | 0.61 | 0.06 | 0.67 |
LSD | 2.16 | 3.34 | 4.21 | 1.86 | 5.11 | 40.1 | 9.70 | 9.02 |
Risnjak (forest soil) | ||||||||
0–30 | 29.7 ns | 7.0 ns | 26.9 ns | 2.9 ns | 84.5 a | 77.3 ns | 62.0 ns | 171.2 ns |
30–60 | 28.1 ns | 5.1 ns | 28.7 ns | 6.5 ns | 67.1 b | 108.9 ns | 63.7 ns | 155.4 ns |
Pr > F | 0.29 | 0.10 | 0.55 | 0.09 | 0.00 | 0.09 | 0.44 | 0.10 |
LSD | 3.74 | 2.38 | 7.38 | 4.40 | 3.86 | 39.9 | 5.39 | 9.36 |
As | Co | Cu | Mo | Pb | Cr | Ni | Zn | |
---|---|---|---|---|---|---|---|---|
Heavy metal concentration/mg/kg | ||||||||
Content of heavy metals in soil layer 0–30 cm | ||||||||
Krapina (orchard soil) | 23.4 b | 2.8 b | 49.9 a | 10.3 a | 11.5 b | 82.5 ns | 111.7 a | 83.6 b |
Risnjak (forest soil) | 29.7 a | 7.0 a | 26.9 b | 2.9 b | 84.5 a | 77.3 ns | 62.0 b | 171.2 a |
Pr > F | 0.01 | 0.01 | 0.00 | 0.01 | 0.00 | 0.79 | 0.00 | 0.00 |
LSD | 3.33 | 2.76 | 6.37 | 4.17 | 2.36 | 51.0 | 5.85 | 9.70 |
Content of heavy metals in soil layer 30–60 cm | ||||||||
Krapina (orchard soil) | 22.9 b | 2.6 ns | 48.4 a | 10.0 a | 10.1 b | 90.6 ns | 120.7 a | 82.1 b |
Risnjak (forest soil) | 28.1 a | 5.1 ns | 28.7 b | 6.5 b | 67.1 a | 108.9 ns | 63.7 b | 155.4 a |
Pr > F | 0.01 | 0.08 | 0.00 | 0.00 | 0.00 | 0.11 | 0.00 | 0.00 |
LSD | 2.76 | 3.05 | 5.63 | 2.31 | 5.95 | 24.6 | 9.4 | 8.66 |
Content of heavy metals in the carabid beetles | ||||||||
Krapina (orchard soil) | 2.3 a | 3.5 ns | 59.0 b | 3.0 ns | 1.8 ns | 9.0 a | 3.0 ns | 481.0 a |
Risnjak (forest soil) | 1.8 b | 3.3 ns | 90.0 a | 2.0 ns | 1.3 ns | 7.5 b | 2.8 ns | 377.0 b |
Pr > F | 0.39 | 0.54 | <0.05 | 0.21 | 0.21 | 0.00 | 0.36 | 0.01 |
LSD | 1.32 | 0.93 | 2.64 | 1.73 | 0.86 | 0.71 | 0.61 | 60.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viric Gasparic, H.; Lemic, D.; Perčin, A.; Roca, F.; Brigić, A.; Fruk, M.; Pajač Živković, I. Ground Beetle Responses to Heavy Metal in Soils: Carabus coriaceus as an Ecological Indicator. Agronomy 2025, 15, 2257. https://doi.org/10.3390/agronomy15102257
Viric Gasparic H, Lemic D, Perčin A, Roca F, Brigić A, Fruk M, Pajač Živković I. Ground Beetle Responses to Heavy Metal in Soils: Carabus coriaceus as an Ecological Indicator. Agronomy. 2025; 15(10):2257. https://doi.org/10.3390/agronomy15102257
Chicago/Turabian StyleViric Gasparic, Helena, Darija Lemic, Aleksandra Perčin, Franka Roca, Andreja Brigić, Mladen Fruk, and Ivana Pajač Živković. 2025. "Ground Beetle Responses to Heavy Metal in Soils: Carabus coriaceus as an Ecological Indicator" Agronomy 15, no. 10: 2257. https://doi.org/10.3390/agronomy15102257
APA StyleViric Gasparic, H., Lemic, D., Perčin, A., Roca, F., Brigić, A., Fruk, M., & Pajač Živković, I. (2025). Ground Beetle Responses to Heavy Metal in Soils: Carabus coriaceus as an Ecological Indicator. Agronomy, 15(10), 2257. https://doi.org/10.3390/agronomy15102257