Evaluation and Comparative Analysis of Meteorological Data, Moisture Content, and Rice Panicle Threshability
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Morphological Evaluation of the Type of Grain Shattering and the Shape of the Separation Pileus
3.2. Meteorological Data and Its Effect on the Seed Moisture Contents (MC) and Threshing Force (TF)
3.3. The Connection among TF and Other Dependent Parameters
3.4. Threshing Force Changes between Measurement Times (DAF)
3.5. TF Value Differences among the Examined Varieties in Different Measurement Times (DAF)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Govindaraj, M.; Masilamani, P.; Asokan, D.; Rajkumar, P.; Selvaraju, P. Effect of Different Harvesting and Threshing Methods on harvest Losses and Seed Quality of Rice Varieties. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 1510–1520. [Google Scholar] [CrossRef]
- Fu, J.; Chen, Z.; Han, L.; Ren, L. Review of Grain Threshing Theory and Technology. Int. J. Agric. 2018, 11, 12–20. [Google Scholar] [CrossRef]
- Benaseer, S.; Poomaruthai, M.; Albert, A.; Govindaraj, M.; Selvaraju, P.; Bhaskaran, M. Impact of Harvesting and Threshing Methods on Seed Quality-A Review. Agric. Rev. 2018, 39, 183–192. [Google Scholar] [CrossRef]
- Charles, A. Dissecting the quantitative variations of threshability in rice (Oryza sativa L.). Agro-Science 2019, 18, 22. [Google Scholar] [CrossRef]
- Fu, J.; Xie, G.; Ji, C.; Wang, W.; Zhou, Y.; Zhang, G.; Zha, X.; Abdeen, M.A. Study on the Distribution Pattern of Threshed Mixture by Drum-Shape Bar-Tooth Longitudinal Axial Flow Threshing and Separating Device. Agriculture 2021, 11, 756. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Chen, L.; Zhang, T.; Liang, Z.; Huang, M.; Su, Z. Study on Performance of Concentric Threshing Device with Multi-Threshing Gaps for Rice Combines. Agriculture 2021, 11, 1000. [Google Scholar] [CrossRef]
- Maity, A.; Lamichaney, A.; Joshi, D.C.; Bajwa, A.; Subramanian, N.; Walsh, M.; Bagavathiannan, M. Seed Shattering: A Trait of Evolutionary Importance in Plants. Front. Plant Sci. 2021, 12, 1180. [Google Scholar] [CrossRef] [PubMed]
- Lamo, J. Genetic Studies on Drought Tolerance and Grain Shattering in Rice. Ph.D Thesis, University of KwaZulu-Natal, Durban, South Africa, 2010. [Google Scholar]
- Olaye, A.; Moreira, J.; Hounhouigan, D.; Amponsah, S. Effect Of Threshing Drum Speed And Crop Weight On Paddy Grain Quality In Axial- Flow Thresher (ASI). Multidisciplin. Eng. Sci. Technol. 2016, 3, 3159–3199. [Google Scholar]
- Asli-Ardeh, E.A.; Abbaspour-Gilandeh, Y.; Abbasi, S. Study of Performance Parameters of Threshing Unit in a Single Plant Thresher. Am. J. Agric. Biol. Sci. 2009, 4, 92–96. [Google Scholar] [CrossRef] [Green Version]
- De Lucia, M.; Assennato, D. Agricultural Engineering in Development: Post-Harvest Operations and Management of Foodgrains. In Fao Agricultural Services; FAO Agricultural Services Bulletin: Rome, Italy, 1994; Volume 93, p. 150. [Google Scholar]
- Oba, S.; Sumi, N.; Fujimoto, F.; Yasue, T. Association between Grain Shattering Habit and Formation of Abscission Layer Controlled by Grain Shattering gene sh-2 in Rice (Oryza sativa L.). Jpn. J. crop Sci. 1995, 64, 607–615. [Google Scholar] [CrossRef] [Green Version]
- Van, D.X.; Jin, I.-D. Inheritance of grain shedding and abscission layers in the cross combination between rice varieties. J. Crop Sci. Biotechnol. 2010, 13, 83–89. [Google Scholar] [CrossRef]
- Shin, J.C.; Kwon, Y.W.; Chung, C.J. Effect of Meteorological Condition during Ripening on the Grain Shattering of Rice Plant. Korean J. Crop. Sci. 1982, 27, 229–234. [Google Scholar]
- Lee, S.-J.; Oh, C.-S.; Suh, J.-P.; McCouch, S.R.; Ahn, S.-N. Identification of QTLs for domestication-related and agronomic traits in an Oryza sativa x O. rufipogon BC1F7 population. Plant Breed. 2005, 124, 209–219. [Google Scholar] [CrossRef]
- Onishi, K.; Takagi, K.; Kontani, M.; Tanaka, T.; Sano, Y. Different patterns of genealogical relationships found in the two major QTLs causing reduction of seed shattering during rice domestication. Genome 2007, 50, 757–766. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; He, Y.; Zhan, C.; Yang, B.; Xu, E.; Zhang, H.; Wang, Z. Identification and Characterization of Quantitative Trait Loci for Shattering in Japonica Rice Landrace Jiucaiqing from Taihu Lake Valley, China. Plant Genome 2016, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, H.-S.; Chu, S.-H.; Jiang, W.; Cho, Y.-I.; Hahn, J.-H.; Eun, M.-Y.; McCouch, S.R.; Koh, H.-J. Characterization and Mapping of a Shattering Mutant in Rice That Corresponds to a Block of Domestication Genes. Genetics 2006, 173, 995–1005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, Y.; Kim, S.-M.; Zhao, X.; Jia, B.; Lee, H.-S.; Kim, K.-M.; Eun, M.-Y.; Jin, I.-D.; Sohn, J.-K. Identification for quantitative trait loci controlling grain shattering in rice. Genes Genom. 2010, 32, 173–180. [Google Scholar] [CrossRef]
- Okubo, K. Morphological Evaluation of the Trace of Grain Detachment inJaponicaRice Cultivars with Different Shattering Habits. Plant Prod. Sci. 2014, 17, 291–297. [Google Scholar] [CrossRef] [Green Version]
- Tomohiko, I.; Takao, S.; Hiroyuki, T.; Sumihiko, M. Equipment for Quantitative Measurement of Shattering Habit of Paddy. JARQ.; Japan 1990, 24, 37–42. [Google Scholar]
- Galimudi, A.; Kb, E.; Gandhudi, L.; Lrk, J.V.; S, N.R.; Addanki, K.R.; Balakrishnan, D.; Desiraju, S.; Jukanti, A.K.; Lv, S.R.; et al. Genetic analysis of dormancy and shattering traits in the backcross inbred lines derived from Oryza sativa cv. Swarna / O. nivara Ac. CR100008. Oryza-An Int. J. Rice 2020, 57, 1–13. [Google Scholar] [CrossRef]
- Kobayashi, A. Varietal adaptability for mechanized rice cultivation: Direct seeding adaptability, shattering habit, smoothness etc. J. Agric. Sci. 1990, 45, 186–189. [Google Scholar]
- Pauk, J.; Jancsó, M.; Simon-Kiss, I. Rice Doubled Haploids and Breeding. In Advances in Haploid Production in Higher Plants; Touraev, A., Forster, B.P., Jain, S.M., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 189–197. [Google Scholar] [CrossRef]
- Zhao, X.; Fitzgerald, M. Climate Change: Implications for the Yield of Edible Rice. PLoS ONE 2013, 8, e66218. [Google Scholar] [CrossRef] [PubMed]
- Lux, A.; Morita, S.; Abe, J.; Ito, K. An Improved Method for Clearing and Staining Free-hand Sections and Whole-mount Samples. Ann. Bot. 2005, 96, 989–996. [Google Scholar] [CrossRef]
- Ntakirutimana, F.; Wan, Y.; Liu, W.; Xie, W. Contribution of Awns to Seed Yield and Seed Shattering in Siberian Wildrye Grown under Irrigated and Rainfed Environments. Agronomy 2021, 11, 2219. [Google Scholar] [CrossRef]
- Zhao, X.; Xie, W.; Zhang, J.; Zhang, Z.; Wang, Y. Histological Characteristics, Cell Wall Hydrolytic Enzymes Activity and Candidate Genes Expression Associated with Seed Shattering of Elymus sibiricus Accessions. Front. Plant Sci. 2017, 08, 606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Lu, D.; Li, C.; Luo, J.; Zhu, B.-F.; Zhu, J.; Shangguan, Y.; Wang, Z.; Sang, T.; Zhou, B.; et al. Genetic Control of Seed Shattering in Rice by the APETALA2 Transcription Factor SHATTERING ABORTION1. The Plant. Cell 2012, 24, 1034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, I.; Sharma, H.L. Inheritance of grain threshability in rice. Euphytica 1982, 31, 815–816. [Google Scholar] [CrossRef]
- Tang, Z.; Li, Y.; Liang, Z. Optimal Parameters Prediction and Control of Rice Threshing for Longitudinal Axial Threshing Apparatus. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 2016, 32, 70–76. [Google Scholar] [CrossRef]
- Zhong, T.; YaoMing, L.; LiZhang, X. Assessment of Rice Threshing and Separation Performance for Just Mature Rice and over Mature Rice. Int. Agric. 2014, 23, 44–51. [Google Scholar]
- Ebata, M.; Tashiro, T. Studies on shedding habit of rice plant. I. Morphology of separation zone. Jpn. J. Crop Sci. 1990, 59, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Tang, Z.; Li, Y.; Zhao, Z.; Sun, T. Structural and parameter design of transverse multi-cylinders device on rice agronomic characteristics. Span. J. Agric. Res. 2015, 13, e0216. [Google Scholar] [CrossRef] [Green Version]
- Il Doo, J.; Yeong Hwan, B.; Jun, I. Formation and Development of Abscission Layer between Pedicel and Rachilla, and Changes in Grain Shedding during Ripening in African Rice, Oryza Glaberrima Steud. Korean J. Crop Sci. 1995, 40, 103–112. [Google Scholar]
- Li, C.; Zhou, A.; Sang, T. Rice Domestication by Reducing Shattering. Science 2006, 311, 1936–1939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.-W.; Huh, Y.-K. Threshing and Cutting Forces for Korean Rice. Trans. ASAE 1984, 27, 1654–1657. [Google Scholar] [CrossRef]
Variety | Number of Measurements | DAF | Variety | Number of Measurements | DAF | ||||
---|---|---|---|---|---|---|---|---|---|
2018 | 2019 | 2020 | 2018 | 2019 | 2020 | ||||
‘Janka’ | 1 | 37 | 38 | 38 | M 488 | 1 | 37 | 37 | 38 |
2 | - | 42 | 42 | 2 | - | 41 | 41 | ||
3 | - | 48 | 46 | 3 | - | 44 | 46 | ||
4 | 50 | 51 | 50 | 4 | 50 | 51 | 51 | ||
5 | 55 | 56 | 54 | 5 | 55 | 54 | 54 | ||
6 | 60 | 59 | 59 | 6 | 60 | 59 | - | ||
‘M 225’ | 1 | 37 | 38 | 38 | Ábel | 1 | 37 | 37 | 37 |
2 | - | 42 | 42 | 2 | 43 | 43 | 42 | ||
3 | - | 45 | 46 | 3 | - | 47 | 45 | ||
4 | 50 | 48 | 50 | 4 | - | 49 | 49 | ||
5 | 55 | 53 | 54 | 5 | - | 55 | 54 | ||
6 | 60 | 61 | 59 | 6 | 58 | 60 | 59 |
Variety | Shape of Separation Pileus | Type of Grain Shattering | ||
---|---|---|---|---|
Prominent | Flat | A | B | |
‘Janka’ | 277 (92.3%) | 23 (7.7%) | 275 (91.7%) | 25 (8.3%) |
‘M 225’ | 288 (94.0%) | 18 (6.0%) | 286 (95.3%) | 14 (4.7%) |
‘M 488’ | 266 (88.7%) | 34 (11.3%) | 272 (90.7%) | 28 (9.3%) |
‘Ábel’ | 212 (70.7%) | 88 (29.3%) | 265 (86.7%) | 35 (13.3%) |
Variety | Parameters | Precipitation | Tmean | Tmin | Tmax | RH (%) |
---|---|---|---|---|---|---|
‘Janka’ | TF | 0.228 | −0.209 | 0.045 | −0.194 | 0.119 |
MC | 0.465 | 0.360 | −0.047 | 0.309 | 0.408 | |
‘M 488’ | TF | −0.210 | 0.284 | 0.829 ** | −0.524 * | −0.305 |
MC | 0.361 | 0.646 ** | 0.162 | 0.325 | 0.421 | |
‘M 255’ | TF | −0.305 | 0.078 | 0.663 ** | −0.643 ** | −0.140 |
MC | 0.229 | 0.129 | −0.043 | 0.116 | 0.357 | |
‘Ábel’ | TF | −0.214 | 0.498 | 0.051 | 0.252 | −0.553 * |
MC | 0.640 * | 0.430 | −0.325 | 0.520 * | 0.207 | |
Mean | TF | −0.083 | 0.205 | 0.267 * | −0.091 | −0.142 |
MC | 0.386 * | 0.399 ** | −0.021 | 0.302 * | 0.328 ** |
Year | Number of Measurements | ’Janka’ | ’M 225’ | ’M 488’ | ’Ábel’ |
---|---|---|---|---|---|
2018 | 1 | 23.07 Db ± 1.09 | 20.91 Cab ± 2.76 | 26.11 Dc ± 2.51 | 21.05 Ba ± 1.61 |
2 | 13.99 Ca ± 0.86 | 14.64 Ba ± 0.68 | 18.48 Cb ± 1.40 | 25.19 Cc ± 1.11 | |
3 | 10.04 Aa ± 0.85 | 12.19 Aa ± 1.82 | 14.69 Ba ± 1.36 | - | |
4 | 11.94 Ba ± 0.65 | 12.16 Aa ± 1.20 | 11.98 Aa ± 0.32 | 15.75 Aa ± 0.95 | |
2019 | 1 | 23.55 Db ± 1.25 | 21.22 Aba ± 2.51 | 27.64 Cc ± 1.90 | 23.58 Bb ± 2.37 |
2 | 21.33 ABCa ± 1.52 | 22.50 Abab ± 1.96 | 25.48 ABCb ± 3.29 | 23.06 Bab ± 2.38 | |
3 | 23.21 BCDc ± 1.56 | 20.97 Abab ± 1.14 | 23.24 Abbc ± 2.55 | 20.12 Aa ± 2.64 | |
4 | 21.92 Bca ± 0.71 | 21.41 Aba ± 1.08 | 24.65 Abb ± 2.59 | 20.07 Aa ± 2.10 | |
5 | 21.86 BCb ± 0.56 | 20.75 Aab ± 1.95 | 24.58 Bc ± 1.51 | 20.10 Aa ± 0.81 | |
6 | 20.35 Aa ± 1.11 | 22.93 Bb ± 1.23 | 22.16 Ab ± 1.77 | 19.06 Aa ± 1.51 | |
2020 | 1 | 19.89 Ba ± 1.27 | 24.16 Db ± 2.28 | 24.52 Cb ± 4.11 | 19.24 Ba ± 1.67 |
2 | 18.88 Ba ± 2.53 | 19.58 Cab ± 1.97 | 22.04 BCc ± 2.84 | 21.84 Cbc ± 1.26 | |
3 | 16.65 Aa ± 1.60 | 17.74 Bcab ± 1.96 | 20.16 Abb ± 2.76 | 18.16 Bb ± 0.69 | |
4 | 15.81 Aa ± 1.68 | 15.28 Aa ± 1.57 | 20.11 Abb ± 2.74 | 18.26 Bb ± 1.43 | |
5 | 16.17 Aab ± 1.44 | 15.60 Aa ± 1.29 | 17.54 Ab ± 1.58 | 16.02 Aa ± 0.86 | |
6 | 16.42 Aab ± 1.05 | 17.17 AB ± 0.97 | - | 15.85 Aa ± 1.00 |
SS | df | MS | F | Sig. | |
---|---|---|---|---|---|
Variety | 10.12 | 3.00 | 3.37 | 19.86 | 0.02 |
Year | 0.81 | 2.00 | 0.40 | 2.37 | 0.24 |
DAF | 0.51 | 5.00 | 0.10 | 0.60 | 0.71 |
Year | Variety | |||
---|---|---|---|---|
‘Janka’ | ‘M 225’ | ‘M 488’ | ‘Ábel’ | |
2018 | 1.03 N ± 0.13 | 1.21 N ± 0.12 | 2.07 N ± 0.04 | 1.55 N ± 0.46 |
2019 | 0.99 N ± 0.07 | 1.20 N ± 0.11 | 1.94 N ± 0.27 | 1.59 N ± 0.36 |
2020 | 1.04 N ± 0.18 | 1.49 N ± 0.18 | 2.69 N ± 0.43 | 1.52 N ± 0.16 |
Mean | 1.02 N ± 0.03 | 1.30 N ± 0.17 | 2.23 N ± 0.40 | 1.55 N ± 0.03 |
Variety | Parameters | DAF | TF |
---|---|---|---|
‘Janka’ | TF | 0.022 | 1 |
MC | −0.520 | 0.053 | |
‘M 488’ | TF | −0.538 * | 1 |
MC | −0.717 ** | 0.078 | |
‘M 225’ | TF | −0.103 | 1 |
MC | −0.542 * | 0.093 | |
‘Ábel’ | TF | −0.538 * | 1 |
MC | −0.717 ** | 0.078 | |
Mean | TF | 0.232 | 1 |
MC | −0.602 ** | 0.312 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szalóki, T.; Székely, Á.; Tóth, F.; Tarnawa, Á.; Valkovszki, N.; Jancsó, M. Evaluation and Comparative Analysis of Meteorological Data, Moisture Content, and Rice Panicle Threshability. Agronomy 2022, 12, 744. https://doi.org/10.3390/agronomy12030744
Szalóki T, Székely Á, Tóth F, Tarnawa Á, Valkovszki N, Jancsó M. Evaluation and Comparative Analysis of Meteorological Data, Moisture Content, and Rice Panicle Threshability. Agronomy. 2022; 12(3):744. https://doi.org/10.3390/agronomy12030744
Chicago/Turabian StyleSzalóki, Tímea, Árpád Székely, Flórián Tóth, Ákos Tarnawa, Noémi Valkovszki, and Mihály Jancsó. 2022. "Evaluation and Comparative Analysis of Meteorological Data, Moisture Content, and Rice Panicle Threshability" Agronomy 12, no. 3: 744. https://doi.org/10.3390/agronomy12030744
APA StyleSzalóki, T., Székely, Á., Tóth, F., Tarnawa, Á., Valkovszki, N., & Jancsó, M. (2022). Evaluation and Comparative Analysis of Meteorological Data, Moisture Content, and Rice Panicle Threshability. Agronomy, 12(3), 744. https://doi.org/10.3390/agronomy12030744